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Abstract

Let G be an even graph. If α and β are non-negative integers such that
3α + 6β = |E(G)|, then we say that (α, β) is an admissible pair for G.
If G admits a decomposition into α cycles of length 3 and β cycles of
length 6 for every admissible pair (α, β), then we say that G admits a
{Cα

3 , C
β
6 }-decomposition. In this paper, it is proved that for λ ≥ 1, with

m and n at least three, the λ-fold complete m-partite graph in which each
partite set has n vertices admits a {Cα

3 , C
β
6 }-decomposition if and only if

λn(m−1) ≡ 0 (mod 2) and 3α+6β = λ
(
m
2

)
n2. This is a companion result

to Huang and Fu [(4, 5)-Cycle systems of complete multipartite graphs,
Taiwanese J. Math. 16 (2012), 999–1006]. A similar result has also been
obtained by the authors for the tensor product of complete graphs in
[Discuss. Math. Graph Theory, doi:10.7151/dmgt.2178 (in press)].

1 Introduction

In this paper, graphs are assumed to be loopless, connected and finite. Let Ck

denote the cycle of length k. The cycle C3 is called a triangle. The complete graph
on n vertices is denoted by Kn and Kn denotes the complement of Kn. A bowtie
is a pair of triangles with a common vertex and we denote it by (a, b, c) ∪ (a, d, e).
If H1, H2, . . . , Hk are edge-disjoint subgraphs of the graph G such that E(G) =
E(H1)∪E(H2)∪ · · · ∪E(Hk), then we say that H1, H2, . . . , Hk decompose G and we
write this as G = H1 ⊕H2 ⊕ · · · ⊕Hk. If each Hi

∼= H, 1 ≤ i ≤ k, then we say that
H decomposes G and we denote it by H|G. If each Hi

∼= Cm, the cycle of length
m, then we write Cm|G and in this case we say that G has a Cm-decomposition or
an m-cycle decompositon. A graph G is {H1, H2}-decomposable if the edge set E(G)
of G can be partitioned into E1, E2, . . . , Ek such that for every i ∈ {1, 2, . . . , k},
〈Ei〉 � H1 or 〈Ei〉 � H2. Let G be an even graph. For integers α and β the pair
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(α, β) is an admissible pair for the graph G if 3α + 6β = |E(G)|. If G admits a
decomposition into α cycles of length 3 and β cycles of length 6 for every admissible
pair (α, β), then G has a {Cα

3 , C
β
6 }-decomposition. The graph obtained by replacing

each edge of G by λ parallel edges is denoted by G(λ).

The problem of decomposing K2n+1(λ) and K2n(λ) − I, where I is a perfect
matching, into cycles of varying lengths is completely settled by Bryant el al. [13, 14].
Recently, Bahmanian and Šajna [3] posed the following problem:

Determine the necessary and sufficient conditions on the parameters λ,m, n, and
a1, a2, . . . , at for the complete equipartite multigraph (Km ◦ Kn)(λ) to admit a de-
composition into cycles of lengths a1, a2, . . . , at. The necessary conditions (see [3])
are the following:

(1) 2 ≤ ai ≤ mn for all i = 1, 2, . . . , t;

(2) if m = 2, then a1, a2, . . . , at are all even;

(3)
∑t

i=1 ai = mn
⌊
λn(m−1)

2

⌋
;

(4) if λ is odd, then
∑

ai≥3 ai ≥ n2
(
m
2

)
; and

(5) if λ is even, then max{ai : i = 1, 2, . . . , t} ≤ 1
2
λn2

(
m
2

)− t+ 2.

Decomposing the graph (Km ◦ Kn)(λ) into triangles is considered in [18] and
Ck-decompositions of Km ◦ Kn, k ∈ {4, 6, 8, p, 2p, 3p, p2, mn}, where p is a prime,
are considered in [6, 22, 24, 25, 28, 29, 30]. Existence of Ck-decompositions of the
graphs K3 ◦ Kn, K4 ◦ Kn and K5 ◦ Kn are proved in [16], [8] and [9], respectively.
Decomposition of Kn,n

∼= K2 ◦ Kn into cycles of even length is studied in [34].
Decomposition of Km ◦ Kn into k-cycles, where k is small, is dealt with in [32,
33]. Recently, irrespective of the parity of k, the authors of [15] actually solve the
existence problem for a Ck-decomposition of (Km ◦ Kn)(λ) whose cycle-set can be
partitioned into 2-regular graphs containing all the vertices except those belonging to
one part. Existence of a C5-decomposition of (Km◦Kn)(λ) and a Cp-decomposition of
(Km ◦Kn)(λ), where p is a prime, are obtained in [10] and [31], respectively.

Huang and Fu [21] obtained a necessary and sufficient condition for the exis-
tence of a {Cα

4 , C
β
5 }-decomposition of the complete equipartite graph, Km ◦ Kn.

Similarly, the present authors obtained a necessary and sufficient condition for the
existence of a {Cα

3 , C
β
6 }-decomposition of the λ-fold tensor product of the complete

graphs, (Km × Kn)(λ); see [27]. Bahmanian and Šajna [3] showed that if Km(λn)
has a decomposition into cycles of lengths k1, k2, . . . , kt (plus a perfect matching if
λn(m − 1) is odd), then (Km ◦ Kn)(λ) has a decomposition into cycles of lengths
k1n, k2n, . . . , ktn (plus a perfect matching if λn(m−1) is odd). Billington [5] obtained
necessary and sufficient conditions for the existence of a {Cα

3 , C
β
4 }-decomposition of

Ka,b,c, a ≤ b ≤ c, where Ka,b,c is the complete tripartite graph with parts of size
a, b and c, respectively. Recently, Ganesamurthy and Paulraja, in [17], have dis-
cussed the existence of a {Cα

3 , C
β
6 }-decomposition of the graph Ka,b,c, a ≤ b ≤ c.
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In this paper, we obtain a necessary and sufficient condition for the existence of a
{Cα

3 , C
β
6 }-decomposition of (Km ◦Kn)(λ).

We prove the following main theorem.

Theorem 1.1. Let m,n ≥ 3, α, β ≥ 0 and let λ ≥ 1. The graph (Km◦Kn)(λ) admits
a {Cα

3 , C
β
6 }-decomposition if and only if λn(m − 1) ≡ 0 (mod 2) and 3α + 6β =

λ
(
m
2

)
n2.

2 Preliminaries and some known results

The wreath product (also called the lexicographic product) of the graphs G1 and G2,
denoted by G1 ◦ G2, has vertex set V (G1) × V (G2) in which (x1, y1)(x2, y2) is an
edge whenever x1x2 is an edge in G1 or, x1 = x2 and y1y2 is an edge in G2, see
Figure 1. Let V (G) = {x1, x2, . . . , xm} and V (H) = {1, 2, . . . , n}. For xi ∈ V (G),
xi × V (H) = {(xi, j) | j ∈ {1, 2, . . . , n}}; we denote (xi, j) by xi

j . For 1 ≤ i ≤ m,
the set X i = {xi

1, x
i
2, . . . , x

i
n} is the ith layer (of vertices) of G ◦ H, corresponding

to the vertex xi of V (G), see Figure 1. The graph Km ◦Kn is the complete m-partite
graph in which each partite set has exactly n vertices.
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Figure 1: The graph C3 ◦ P3.

A latin square of order n, denoted by Ln, is an n × n array, each cell of which
contains exactly one of the symbols in {1, 2, . . . , n} such that each row and each
column of the array contains each of the symbols in {1, 2, . . . n} exactly once. A latin
square is said to be idempotent if the cell (i, i) contains the symbol i, 1 ≤ i ≤ n. As
in [7], a cell (i, j) of a partial latin square is termed “empty” if it contains no entry
and “filled” otherwise. We represent a partial latin square L by a set of ordered triples
(i, j, k), where the entry k occurs in row i and column j. A quasigroup of order n is a
pair (Q, ∗), where Q is a set of size n and “ ∗ ” is a binary operation on Q such that
for every pair of elements a, b ∈ Q, the equations a ∗ x = b and y ∗ a = b have unique
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solutions. Let Q = {1, 2, . . . , 2m} and let H = {{1, 2}, {3, 4}, . . . , {2m− 1, 2m}};
the two element sets {2i−1, 2i} ∈ H are holes of the quasigroup. A quasigroup with
holes H is a quasigroup (Q, ∗) of order 2m in which for each h = {2i− 1, 2i} ∈ H,
(h, ∗) is a subquasigroup of (Q, ∗), see [23].

Let C = {C1, C2, . . . , Cr} be any family of nonempty sets. The intersection graph
of C, denoted by Ω(C), is the graph having C as vertex set with C i adjacent to Cj if
and only if i �= j and C i ∩ Cj �= ∅; see [4].

We use the following theorems to prove our results.

Theorem 2.1. [1] For every n and n �= 6, 8, there exists a PBD (n, {3, 4, 5}),
where PBD denotes pairwise balanced design.

Theorem 2.2. [17] Let Ka,b,c be the complete tripartite graph with a ≤ b ≤ c and
let Ka,b,c �= K1,1,c, when c ≡ 1 (mod 6) and c > 1. If a ≡ b ≡ c (mod 6), then Ka,b,c

admits a {Cα
3 , C

β
6 }-decomposition for any α ≡ a (mod 2), with 0 ≤ α ≤ ab.

Theorem 2.3. [19] Let k ≥ 3 be an odd integer.
(i) If m ≥ 3, then Km ◦ K2k can be decomposed into cycles of length k.
(ii) If m ≥ 3 is odd, then Km ◦ Kk can be decomposed into cycles of length k.

Theorem 2.4. [26] Let m ≥ 3, n ≥ 3 and λ ≥ 1. If C is a Cp-decomposition of
(Km ◦ Kn)(λ), where 3 ≤ p ≤ mn, is a prime, then Ω(C), the intersection graph
of Cp-decomposition of (Km ◦ Kn)(λ), is Hamiltonian.

From the proof of Theorem 6.1 of [11], we have the following theorem.

Theorem 2.5. [11]
(i) If n ≡ 11 (mod 12), then Kn \ E(K11) has a bowtie decomposition.
(ii) If n ≡ 5 (mod 12), then Kn \ E(K5) has a bowtie decomposition.

Theorem 2.6. [11]
(i) If n ≡ 1 or 9 (mod 12), then Kn can be decomposed into bowties.
(ii) If n ≡ 3 or 7 (mod 12), then Kn can be decomposed into bowties and one C3.
(iii) If n ≡ 0, 2, 6, or 8 (mod 12), then Kn − I, where I is a perfect matching, has
a bowtie decomposition.

Theorem 2.7. [31] Let G be a connected even multigraph on k ≥ 3 edges with
maximum degree Δ(G) = Δ and vertex chromatic number χ(G) = χ. Then for all
n ≥ Δ/2, the graph G ◦Kn admits a decomposition into cycles of length k whenever
there exist at least χ− 2 mutually orthogonal latin squares of order n.

3 A {Cα
3 , C

β
6 }-decomposition of Km ◦Kn

In this section, we prove Theorem 1.1 when λ = 1. Throughout the paper, B denotes
the bowtie.
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Lemma 3.1. For the bowtie B, the graph B ◦ Kn, n ≥ 2, admits a {Cα
3 , C

β
6 }-

decomposition.

Proof. The graph B ◦ Kn = (K3 ⊕ K3) ◦ Kn = Kn,n,n ⊕ Kn,n,n. Hence by
Theorem 2.2, B ◦ Kn admits the required decomposition except when n is odd
and (α, β) = (0, n2). For this pair (0, n2), a {C0

3 , C
n2

6 }-decomposition of B ◦ Kn

follows from Theorem 2.7.

Lemma 3.2. If Km ◦ Kn, n ≥ 2 has a C3-decomposition, then
(i) it has a bowtie decomposition whenever

(
m
2

)
n2 ≡ 0 (mod 2);

(ii) it has a decomposition into bowties and one C3 whenever
(
m
2

)
n2 ≡ 1 (mod 2).

Proof. Let C denote the set of all cycles of length three in a C3-decomposition of
Km ◦ Kn. Let Ω(C) be the intersection graph of C. Then Ω(C) has Hamiltonian
cycle C, by Theorem 2.4. If the Hamilton cycle C has even length, then Ω(C) has a
1-factor; each edge of the 1-factor corresponds to a bowtie of Km ◦Kn; the bowties
corresponding to a 1-factor of Ω(C) yield a bowtie decomposition of Km ◦Kn. If the
Hamilton cycle C is of odd length, then C admits a almost perfect matching M . The
ends of each of the edges of M yield a bowtie of Km ◦ Kn and the M-unsaturated
vertex of Ω(C) corresponds to a triangle of Km ◦ Kn.

Remark 3.3. An ordered triple (i, j, k) stands for the (i, j)th entry of a latin
square, k. We write the entries of a partial latin square by ordered triples in the
following lemma; for example, the three triples (xi, yl, z), (xk, yj, z) and (xk, yl, w)
represent the following partial latin square, where rxi

represents the row xi and cyj
represents the column yj of the latin square.

cyj cyl
rxi

z
rxk

z w

It is well-known that a latin square of order n gives rise to a decomposition of
Kn,n,n into triangles. The edge induced subgraph of Kn,n,n corresponding to the
above partial latin square is isomorphic to K2,2,2 − E(K3); since, for example, the
entry w gives the triangle (xk, yl, w) and the two entries z give the two triangles
namely, (xk, yj, z) and (xi, yl, z). It is easy to observe that K2,2,2 − E(K3) can be
decomposed into a C3 and a C6.

Remark 3.4. By the definition of the wreath product of graphs, each K2 in Kr

yields a complete bipartite graph Kst,st in Kr ◦Kst. Similarly, each K2 in Kr yields
a Ks,s in Kr ◦Ks; this Ks,s in Kr ◦Ks, in turn, gives a copy of the graph Kst,st in
(Kr ◦Ks) ◦K t. As Kr is the complete graph, Kr ◦Kst

∼= (Kr ◦Ks) ◦Kt.

Lemma 3.5. The graphs K4 ◦K6 and K8 ◦K6 admit {Cα
3 , C

β
6 }-decompositions.
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Proof. (i) Clearly,

K4 ◦K6 = (K4 ◦K2) ◦K3, by Remark 3.4,

= (K8 − I) ◦K3, where I is a perfect matching,

= (B ⊕B ⊕B ⊕B) ◦K3, by Theorem 2.6,

where B denotes the bowtie,

= B ◦K3 ⊕ B ◦K3 ⊕ B ◦K3 ⊕B ◦K3,

and now apply Lemma 3.1.

(ii) Next consider the graph K8 ◦ K6 and the commutative quasigroup (Q, ∗) on
the set Q = {1, 2, . . . , 16}, with holes Hi = {2i − 1, 2i}, given below. For our
convenience, we assume that the vertex set of K8 ◦ K6 is Q × Z3. For each pair
x, y ∈ Q, with x < y and with {x, y} not a hole, we give three triangles in K8 ◦K6,
namely, ((x, i), (y, i), (x ◦ y, i− 1)), i ∈ Z3.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
r1 11 7 3 9 4 15 6 16 14 13 12 5 8 10
r2 12 13 15 7 6 10 11 8 9 3 4 16 5 14
r3 14 13 9 16 7 15 5 2 6 1 10 8
r4 9 16 1 12 5 14 15 8 2 10 11 6
r5 10 13 4 7 1 16 8 11 2 12
r6 2 11 1 12 8 10 3 15 14 4
r7 3 5 16 14 15 12 13 11
r8 14 2 6 4 5 9 1 3
r9 2 15 16 8 12 13
r10 13 6 11 4 3 1
r11 10 3 4 7
r12 1 7 9 5
r13 7 9
r14 6 2
r15
r16

Figure 2: A quasigroup of order 16, with holes.

Now we will obtain a {Cα
3 , C

β
6 }-decomposition of K8◦K6. For β ≤ 24, we proceed

as follows: consider the 8 partial latin squares, each having 3 cells (given below), of
(Q, ∗) in Figure 2.

{(r1, c3, 11), (r2, c3, 12), (r2, c9, 11)}, {(r1, c4, 7), (r1, c6, 9), (r2, c6, 7)},
{(r1, c12, 13), (r2, c4, 13), (r2, c12, 3)}, {(r1, c5, 3), (r1, c8, 15), (r2, c5, 15)},
{(r1, c7, 4), (r1, c9, 6), (r2, c7, 6)}, {(r1, c16, 10), (r2, c8, 10), (r2, c16, 14)},
{(r1, c10, 16), (r2, c10, 8), (r2, c14, 16)}, {(r1, c14, 5), (r1, c15, 8), (r2, c15, 5)}.

Observe that in each of the three cells of the above partial latin squares, two of the
cells have the same entry and hence the edge induced subgraph corresponding to the
partial latin square is isomorphic to K2,2,2 − E(K3).

As pointed out earlier, for every pair of elements x, y ∈ Q with x < y and with
{x, y} not a hole, we have three triangles, namely, ((x, i), (y, i), (x ◦ y, i− 1)), i ∈ Z3.
For example, consider the partial latin square {(r1, c3, 11), (r2, c3, 12), (r2, c9, 11)}.
The pair of elements 1 and 3 of Q and i = 0, 1, 2 yield the three triangles
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((1, 0), (3, 0), (11, 2)), ((1, 1), (3, 1), (11, 0)) and ((1, 2), (3, 2), (11, 1)). Similarly, for
the pair of elements 2 and 3 we have three triangles, ((2, 0), (3, 0), (12, 2)), ((2, 1),
(3, 1), (12, 0)) and ((2, 2), (3, 2), (12, 1)). Finally, for the pair of elements 2 and 9,
the three triangles are ((2, 0), (9, 0), (11, 2)), ((2, 1), (9, 1), (11, 0)) and ((2, 2), (9, 2),
(11, 1)). The union of these nine triangles gives three copies of K2,2,2 − E(K3); for
example, for the pairs of elements of Q, namely, {1, 3}, {2, 3} and {2, 9} when i = 0,
yield the three triangles ((1, 0), (3, 0), (11, 2)), ((2, 0), (3, 0), (12, 2)) and ((2, 0), (9, 0),
(11, 2)) and their union is isomorphic to K2,2,2 − E(K3). For i = 1, the union
of the triangles ((1, 1), (3, 1), (11, 0)), ((2, 1), (3, 1), (12, 0)) and ((2, 1), (9, 1), (11, 0))
yields a copy of K2,2,2 − E(K3). Finally, for i = 2, the union of the triangles
((1, 2), (3, 2), (11, 1)), ((2, 2), (3, 2), (12, 1)) and ((2, 2), (9, 2), (11, 1)) gives a copy of
K2,2,2 −E(K3). Thus each of the eight partial latin squares listed above yields three
subgraphs isomorphic to K2,2,2 − E(K3) in K8 ◦ K6. Hence the eight partial latin
squares yield 24 copies of K2,2,2 − E(K3) in K8 ◦ K6, and each of the cells not in
these eight partial latin squares gives three triangles. This completes the proof for
β ≤ 24, because each copy of K2,2,2 −E(K3) is decomposable into three copies of C3

or, one C3 and one C6.

Next we suppose that β ≥ 25.

The graph K8 ◦K6 = (K3 ⊕K3 ⊕K4 ⊕K2,2,3) ◦K6

= K3 ◦K6 ⊕K3 ◦K6 ⊕K4 ◦K6 ⊕K12,12,18.

Now apply Theorem 2.2 to each of the graphs K3◦K6
∼= K6,6,6, K2,2,3◦K6

∼= K12,12,18

and (i) of this lemma to the graph K4 ◦K6 to obtain a {Cα
3 , C

β
6 }-decomposition of

K8 ◦K6.

As mentioned in the introduction, in the following lemma X i = {xi
1, x

i
2, . . . , x

i
n}

denotes the ith layer of K5 ◦K3.

Lemma 3.6. The graph K5 ◦K3 admits a {Cα
3 , C

β
6 }-decomposition.

Proof. First we consider the proof for β ≤ 9. Let G1, G2, G3 and H be the subgraphs
of K5 ◦K3 induced by the edges in the union of cycles in (x1

1, x
2
3, x

3
1) ∪ (x1

1, x
3
3, x

5
1) ∪

(x2
3, x

4
1, x

5
1), (x

1
1, x

4
1, x

5
3)∪(x2

1, x
3
1, x

5
3)∪(x2

1, x
3
3, x

4
1), (x

1
3, x

2
1, x

5
1)∪(x1

3, x
3
1, x

4
1)∪(x3

1, x
4
3, x

5
1)

and (x1
1, x

2
1, x

4
3), respectively, where (x

i
a, x

j
b, x

k
c ) denotes a cycle of length 3 in K5◦K3.

Each of the subgraphs Gi, 1 ≤ i ≤ 3, of K5◦K3, is isomorphic to K2,2,2−E(K3). Let
ρ = (1 2 3) be a permutation on {1, 2, 3}. If ρ acts on the subscripts of the vertices
of V (K5 ◦K3), then Gi, ρ(Gi), ρ

2(Gi), 1 ≤ i ≤ 3, and H, ρ(H), ρ2(H), decompose the
graph K5 ◦K3 into nine isomorphic copies of K2,2,2 −E(K3) and three copies of C3.
As the graph K2,2,2 −E(K3) is decomposable into three copies of C3, or one C3 and
one C6, the result follows for β ≤ 9.

Next we suppose that β ≥ 10.

The graph K5 ◦K3 = (B ⊕ C4) ◦K3

= B ◦K3 ⊕ C4 ◦K3

= B ◦K3 ⊕K6,6.
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As C6 | K6,6, now apply Lemma 3.1 to complete the proof.

Lemma 3.7. The graph K11 \E(K5) has a decomposition into bowties and one C3.

Proof. Let V (K11) = {x1, x2, . . . , x11}, V (K5) = {x1, x2, . . . , x5} and E(K5) =
E(〈x1, x2, . . . , x5〉). A bowtie decomposition of K11 \ E(K5) is

(x1, x11, x10) ∪ (x10, x9, x2), (x7, x6, x1) ∪ (x1, x8, x9),
(x8, x7, x2) ∪ (x2, x6, x11), (x10, x6, x3) ∪ (x3, x9, x7),
(x11, x7, x4) ∪ (x4, x6, x9), (x8, x6, x5) ∪ (x5, x9, x11),
(x4, x8, x10) ∪ (x10, x7, x5)

and the leave C3 is (x3, x8, x11).

Next we supply the proof of Theorem 1.1 when λ = 1.

Proof of Theorem 1.1.

Let λ = 1. The proof of the necessity is obvious and so we prove the sufficiency.
By hypothesis, 3 | (m

2

)
or 3 |n2.

Case 1:
(
m
2

) ≡ 0 (mod 3).

Clearly, m ≡ 0, 1,3 or 4 (mod 6).

Subcase 1.1: m is odd.

Then m ≡ 1 or 3 (mod 6). If m ≡ 1 or 9 (mod 12), then the graph

Km ◦Kn = (B ⊕B ⊕ · · · ⊕B) ◦Kn, by Theorem 2.6, where B is the bowtie,

= B ◦Kn ⊕ B ◦Kn ⊕ · · · ⊕ B ◦Kn

and apply Lemma 3.1 to complete the proof.

If m ≡ 3 or 7 (mod 12), then Km ◦ Kn = (K3 ⊕ B ⊕ B ⊕ · · · ⊕ B) ◦ Kn, by
Theorem 2.6. Now apply Theorem 2.2 and Lemma 3.1 to the graphsK3◦Kn

∼= Kn,n,n

and B ◦Kn, respectively.

Subcase 1.2: m is even.

Then m ≡ 0 or 4 (mod 6). Then by hypothesis, n is even, say 2n′, where n′ ≥ 2
as n ≥ 4. As m ≡ 0 or 4 (mod 6), 2m ≡ 0, 8 (mod 12). The graph

Km ◦Kn = Km ◦K2n′

= (Km ◦K2) ◦Kn′

= (K2m − I) ◦Kn′

= (B ⊕ B ⊕ · · · ⊕ B) ◦Kn′, by Theorem 2.6,

= B ◦Kn′ ⊕B ◦Kn′ ⊕ B ◦Kn′ .

Now apply Lemma 3.1 to the graph B ◦Kn′ .

Case 2: n ≡ 0 ( mod 3).

By Case 1, we assume that 3 � | (m
2

)
. Then m ≡ 2 or 5 (mod 6).
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Subcase 2.1: m is odd.

Then m ≡ 5 or 11 (mod 12). First we assume that n ≡ 0 (mod 6). Let n = 6k,
k ≥ 1. If m ≡ 5 (mod 12), then the graph

Km ◦Kn = Km ◦K6k

= (Km ◦K3) ◦K2k

= (B ⊕ B ⊕ · · · ⊕ B) ◦K2k, by Theorem 2.3 and Lemma 3.2,

= B ◦K2k ⊕B ◦K2k ⊕ · · · ⊕B ◦K2k.

Now apply Lemma 3.1 to the graph B ◦K2k to get a desired decomposition.

If m ≡ 11 (mod 12), then the graph

Km ◦Kn = (Km ◦K3) ◦K2k

= (K3 ⊕B ⊕ B ⊕ · · · ⊕ B) ◦K2k, by Theorem 2.3 and Lemma 3.2,

= K3 ◦K2k ⊕B ◦K2k ⊕ B ◦K2k ⊕ · · · ⊕ B ◦K2k.

The required decomposition follows by Lemma 3.1.

Next we assume that n ≡ 3 (mod 6). Let n = 6k + 3, k ≥ 0. First we prove the
result for k = 0; when k = 0, n = 3. If m ≡ 5 (mod 12), then the graph

Km ◦K3 = (K5 ⊕B ⊕ B ⊕ · · · ⊕ B) ◦K3, by Theorem 2.5,

= K5 ◦K3 ⊕ B ◦K3 ⊕B ◦K3 ⊕ · · · ⊕ B ◦K3.

Now the desired decomposition follows by Lemmas 3.1 and 3.6. If m ≡ 11 (mod 12),
then m = 12k′ + 11. For k′ ≥ 0, the graph

Km ◦K3 = (K11 ⊕ B ⊕B ⊕ · · · ⊕B) ◦K3, by Theorem 2.5,

= (K5 ⊕K3 ⊕B ⊕B ⊕ · · · ⊕B) ◦K3, by Lemma 3.7,

= K5 ◦K3 ⊕K3 ◦K3 ⊕ B ◦K3 ⊕ · · · ⊕B ◦K3.

Now the result follows by Theorem 2.2, and Lemmas 3.1 and 3.6.

Next we suppose that k ≥ 1. If m ≡ 5 (mod 12), then the graph

Km ◦Kn = Km ◦K6k+3

= (Km ◦K3) ◦K2k+1

= (B ⊕B ⊕ · · · ⊕ B) ◦K2k+1, by Theorem 2.3 and Lemma 3.2,

= B ◦K2k+1 ⊕ B ◦K2k+1 ⊕ · · · ⊕ B ◦K2k+1.

The desired decomposition follows by Lemma 3.1. If m ≡ 11 (mod 12), then the
graph

Km ◦Kn = (Km ◦K3) ◦K2k+1

= (K3 ⊕ B ⊕ · · · ⊕B) ◦K2k+1, by Theorem 2.3 and Lemma 3.2,

= K3 ◦K2k+1 ⊕ B ◦K2k+1 ⊕B ◦K2k+1 ⊕ · · · ⊕B ◦K2k+1.
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Now the result follows by Theorem 2.2 and Lemma 3.1.

Subcase 2.2: m is even.

Then by the assumption, 3 does not divide
(
m
2

)
, m ≡ 2 or 8 (mod 12) and

hence m �= 6. Then the hypothesis implies n is even; let n = 6k, k ≥ 1, as by
assumption n ≡ 0 (mod 3). As Km can be decomposed into copies of K3, K4 and
K5, for m �= 6, 8, by Theorem 2.1, Km ◦K6k is decomposed into copies of K3 ◦K6k,
K4 ◦ K6k and K5 ◦ K6k. We show that, for m �= 8, each of the graphs K3 ◦ K6k,
K4 ◦K6k and K5 ◦K6k has a {Cα

3 , C
β
6 }-decomposition. By Theorem 2.2, the graph

K3 ◦K6k = K6k,6k,6k has a {Cα
3 , C

β
6 }-decomposition. Moreover, the graph

K4 ◦K6k = (K4 ◦K2) ◦K3k

= (K8 − I) ◦K3k

= (B ⊕B ⊕B ⊕ B) ◦K3k, by Theorem 2.6,

= B ◦K3k ⊕ B ◦K3k ⊕ B ◦K3k ⊕ B ◦K3k

and hence by Lemma 3.1, K4 ◦ K6k has a {Cα
3 , C

β
6 }-decomposition. Further, the

graph

K5 ◦K6k = (K5 ◦K3) ◦K2k

= (B ⊕B ⊕B ⊕ B ⊕ B) ◦K2k, by Theorem 2.3 and Lemma 3.2,

= B ◦K2k ⊕ B ◦K2k ⊕ B ◦K2k ⊕ B ◦K2k ⊕ B ◦K2k.

Now apply Lemma 3.1 to the graph B ◦ K2k to have a {Cα
3 , C

β
6 }-decomposition of

K5 ◦K6k.

Finally, we prove the result for m = 8. If k = 1, then apply Lemma 3.5. If k ≥ 2,
then the graph

K8 ◦K6k = (K8 ◦K6) ◦Kk

= (B ⊕ B ⊕ · · · ⊕ B) ◦Kk, by Theorem 2.3 and Lemma 3.2,

= B ◦Kk ⊕ B ◦Kk ⊕ · · · ⊕ B ◦Kk.

The result now follows by Lemma 3.1.

4 A {Cα
3 , C

β
6 }-decomposition of (Km ◦Kn)(λ)

In Section 3, existence of a {Cα
3 , C

β
6 }-decomposition of (Km ◦Kn)(λ), when λ = 1,

is obtained. In this section, we prove the same for λ > 1.

Lemma 4.1. The graph K8(2) admits a decomposition into bowties and two copies
of K5.

Proof. Let V (K8(2)) = {x1, x2, . . . , x8}. The induced subgraphs 〈x1, x2, x3, x4, x5〉
and 〈x1, x2, x6, x7, x8〉 of K8(2) are isomorphic to K5(2) and they have a pair of edges
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x1x2 in common. From these two K5(2), consider two edge-disjoint K5’s, one from
each copy. The remaining edges are partitioned into bowties as follows:

(x3, x6, x1) ∪ (x1, x4, x7), (x1, x8, x5) ∪ (x5, x3, x7),
(x3, x6, x2) ∪ (x2, x4, x7), (x2, x8, x5) ∪ (x5, x6, x7),
(x4, x6, x8) ∪ (x8, x3, x7), (x5, x6, x4) ∪ (x4, x3, x8).

This gives a required decomposition.

Lemma 4.2. If n ≥ 2, then the graph (K3 ◦ Kn)(2) � K3(2) ◦ Kn has a C6-
decomposition.

Proof. The proof follows from Theorem 2.7.

Let M denote the multigraph having four vertices, six edges, a pair of edge-
disjoint triangles and a pair of vertices each having degree two; it is denoted by
M = (a, b, c) ∪ (b, d, c). The graph K4(2) can be decomposed into two copies of M.
This graph M is used in the next Lemma 4.3.

Lemma 4.3. If n ≥ 2, then the graph M ◦Kn admits a {Cα
3 , C

β
6 }-decomposition.

Proof. Let M = (x1, x2, x3) ∪ (x2, x4, x3). The graph M ◦Kn � (K3 ⊕K3) ◦Kn =
(K3 ◦ Kn) ⊕ (K3 ◦ Kn). Then by Theorem 2.2 we obtain the required {Cα

3 , C
β
6 }-

decomposition except when n is odd and α = 0. In this case the required decompo-
sition follows from Theorem 2.7.

Lemma 4.4. If n ≥ 3, then the graph (K4 ◦Kn)(2) has a {Cα
3 , C

β
6 }-decomposition.

Proof. Let n be even. The graph (K4◦Kn)(2) � K4(2)◦Kn = (K3⊕K3⊕K3⊕K3)◦
Kn asK4(2) has aK3-decomposition. As n is even, the result follows by Theorem 2.2.
If n is odd, then the graph (K4 ◦Kn)(2) � K4(2) ◦Kn = (M ⊕M) ◦Kn, where M
is the graph defined just above Lemma 4.3. The result follows by Lemma 4.3.

A bowtie system of order n is a pair (S,B), where B is a collection of edge disjoint
bowties which partition the edge set of Kn, and S is the vertex set of Kn. As in [12],
we define a 2-perfect bowtie system as follows: “If t = {(a, b, c)∪ (a, d, e)} is a bowtie
we will denote by 2t the set of two bowties {(a, b, e)∪ (a, c, d), (a, b, d)∪ (a, c, e)}. A
bowtie system (S,B) is said to be 2-perfect provided it is possible, for each t ∈ B,
to select a bowtie from 2t so that the resulting collection B∗ of bowties gives a
bowtie system (S,B∗).” It is clear that, if a graph G admits a 2-perfect bowtie
decomposition, then obviously G has a bowtie decomposition.

Combining the results of [2], [12] and [20], we have the following Theorem 4.5.

Theorem 4.5. [2, 12, 20] Existence of a λ-fold bowtie system of Kn(λ) for various
values of n and λ is given in the table below:
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λ (mod 6) n ≥ 5 Leave
1, 5 (mod 6) 1 or 9 (mod 12) ∅

3 or 7 (mod 12) K3

2, 4 (mod 6) 0 or 1 (mod 3) ∅
3 (mod 6) 1 (mod 4) ∅
0 (mod 6) all n ∅

Lemma 4.6. Let m,n ≥ 3 and let α, β ≥ 0. The graph (Km ◦ Kn)(2) admits a
{Cα

3 , C
β
6 }-decomposition if and only if 3(α+ 2β) = m(m− 1)n2.

Proof. The necessity follows by the edge divisibility condition and we prove the
sufficiency. By hypothesis, m ≡ 0 or 1 (mod 3) or n ≡ 0 (mod 3).

Case 1. m ≡ 0 or 1 (mod 3)

First, if m = 3 and n is even, then (K3 ◦Kn)(2) = (K3 ◦Kn)⊕ (K3 ◦Kn); now
apply Theorem 2.2. If m = 3 and n is odd, then apply Theorem 2.2 if α �= 0. If
α = 0, apply Lemma 4.2. Next, if m = 4, then the lemma follows by Lemma 4.4. If
m ≥ 5, then (Km◦Kn)(2) � (Km(2)◦Kn) = (B⊕B⊕· · ·⊕B)◦Kn, by Theorem 4.5.
Proof for this case now follows by Lemma 3.1.

Case 2. n ≡ 0 (mod 3)

Let n = 3k. Because of Case 1, we assume m ≡ 2 (mod 3). As Km can be
decomposed into copies of K3, K4 and K5, for m �= 8, by Theorem 2.1, the graph
(Km ◦Kn)(2) can be decomposed into copies of (K3 ◦Kn)(2), (K4 ◦Kn)(2) and (K5 ◦
Kn)(2). Now we prove that each of these graphs admits a {Cα

3 , C
β
6 }-decomposition.

Clearly, (K3 ◦ Kn)(2) has a required decomposition, by Case 1 above. Next, (K4 ◦
Kn)(2) = (K4 ◦ K3k)(2) also admits a desired decomposition, by Lemma 4.4. The
graph (K5 ◦ Kn)(2) = (K5 ◦ K3k)(2) = (K5 ◦ K3k) ⊕ (K5 ◦ K3k). If k = 1, then
apply Lemma 3.6. For k ≥ 2, the graph (K5 ◦K3k)(2) � (B⊕B⊕ · · ·⊕B) ◦Kk, by
Theorem 2.3 and Lemma 3.2; apply Lemma 3.1 to B ◦Kk. The graph

(K8 ◦Kn)(2) = (K8(2) ◦Kn)

= (K5 ⊕K5 ⊕B ⊕ · · · ⊕B) ◦K3k by Lemma 4.1,

= (K5 ◦K3) ◦Kk ⊕ (K5 ◦K3) ◦Kk ⊕B ◦K3k ⊕ . . . B ◦K3k

= B ◦Kk ⊕ B ◦Kk ⊕ · · · ⊕ B ◦Kk, by Theorem 2.3

and Lemma 3.2.

Now apply Lemma 3.1, to get a required decomposition.

Let L′
m denote the cells above the main diagonal of an idempotent latin square

Lm.

Theorem 4.7. [23] For all odd m ≥ 3, the graph Km(3) has a C3-decomposition.

It is well-known that each cell of L′
m corresponds to a triangle of Km(3) and all

the cells of L′
m give a C3-decomposition of Km(3). By suitably pairing the cells of

L′
m, we obtain the following lemma.
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Lemma 4.8. If m ≥ 5 and m ≡ 3 (mod 4), then the graph Km(3) has a decomposi-
tion into the graphs B, M , C3(2) and one C3.

Proof. Let m = 4k + 3 and let V (Km(3)) = {x1, x2, . . . , xm}. Also, let Lm be an
idempotent commutative latin square of order m. In L′

m, each odd row has even
number of cells. Now we pair the consecutive cells, from the left, of the odd rows of
L′
m; the entries of each such pair yields one of the graphs B, M or C3(2). Again in

L′
m, each even row has odd number of cells. We pair consecutive cells, from the left,

of each of the even rows of L′
m so that the last cell is left out in the pairing. In this

pairing also the entries corresponding to the pair of cells yield any one of the graphs
B, M or C3(2).

After the above pairing, there are 2k + 1 cells left out in the last column of L′
m.

Pair these cells, from top to bottom, except the cell in the (n−1)th row. The entries
in such a pairing again yield any one of the graphs B, M or C3(2). Finally the entry
corresponding to the cell in the last column and n−1th row of L′

m yield a triangle.

In the proof of the following lemma, let (Lm, ∗) denote a commutative quasigroup
of order m with holes and let L′′

m denote the cells of (Lm, ∗) which lie above the holes.

Lemma 4.9. If m ≥ 6 is even, then the graph (Km − I)(3) has a bowtie decomposi-
tion, where I is a perfect matching of Km.

Proof. Let (Lm, ∗) be a commutative quasigroup of order m with holes H = {{1, 2},
{3, 4}, . . . , {m− 1, m}}. Corresponding to H , consider the matching x1x2, x3x4, . . . ,
xm−1xm of Km. In L′′

m, each row has an even number of cells and we pair the
consecutive cells of each of the rows from left to right as in the above lemma. One
can easily check that the entries in the consecutive cells of L′′

m yield only a bowtie,
using the fact that (Lm, ∗) is a commutative quasigroup with holes.

Lemma 4.10. Let m,n ≥ 3 and let α, β ≥ 0. The graph (Km ◦ Kn)(3) admits a
{Cα

3 , C
β
6 }-decomposition if and only if n(m− 1) ≡ 0 (mod 2) and α + 2β =

(
m
2

)
n2.

Proof. The necessity follows by the degree condition and the edge divisibility condi-
tion. Now we prove the sufficiency in two cases.

Case 1: m is odd.

Then m ≡ 1 or 3 (mod 4). If m ≡ 1 (mod 4), then the graph

(Km ◦Kn)(3) � Km(3) ◦Kn

= (B ⊕B ⊕ · · · ⊕B) ◦Kn, by Theorem 4.5,

= B ◦Kn ⊕ B ◦Kn ⊕ · · · ⊕ B ◦Kn.

Now apply Lemma 3.1 to B ◦Kn to get a required decomposition.

Next, let m ≡ 3 (mod 4). If m = 3 and n is even, then (K3 ◦ Kn)(3) = (K3 ◦
Kn)⊕ (K3 ◦Kn)⊕ (K3 ◦Kn); apply Theorem 2.2 to the graph K3 ◦Kn. If m = 3 and
n is odd, then (K3 ◦Kn)(3) = (K3 ◦Kn)(2)⊕ (K3 ◦Kn); and now apply Lemma 4.6



P. PAULRAJA AND R. SRIMATHI /AUSTRALAS. J. COMBIN. 78 (2) (2020), 297–313 310

and Theorem 2.2 to the graphs (K3 ◦Kn)(2) and K3 ◦Kn, respectively. If m ≥ 5,
then the graph Km(3) ◦ Kn can be decomposed into copies of B ◦ Kn, M ◦ Kn,
C3(2)◦Kn and C3 ◦Kn as Km(3) can be decomposed into copies of B, M , C3(2) and
one copy of C3 by Lemma 4.8. Now apply Lemmas 3.1, 4.3, 4.6 and Theorem 2.2 to
the graphs B ◦Kn, M ◦Kn, C3(2) ◦Kn and K3 ◦Kn, respectively, to get a required
decomposition.

Case 2: m is even.

In this case n is even; let n = 2k, k ≥ 2. The graph

(Km ◦Kn)(3) � (Km ◦K2k)(3)

= (Km ◦K2)(3) ◦Kk

= (K2m − I)(3) ◦Kk

= (B ⊕B ⊕ · · · ⊕B) ◦Kk, by Lemma 4.9,

= B ◦Kk ⊕B ◦Kk ⊕ · · · ⊕ B ◦Kk.

Now apply Lemma 3.1 to B ◦Kk to get a desired decomposition.

Lemma 4.11. Let m,n ≥ 3 and let α, β ≥ 0. The graph (Km ◦ Kn)(6) admits a
{Cα

3 , C
β
6 }-decomposition if and only if α+ 2β = m(m− 1)n2.

Proof. The necessity follows by the edge divisibility condition and we prove the
sufficiency. If m = 3, then (K3◦Kn)(6) = (K3◦Kn)(2)⊕(K3◦Kn)(2)⊕(K3◦Kn)(2).
Now apply Lemma 4.6 to the graph (K3 ◦Kn)(2) to get a required decomposition of
(K3◦Kn)(6). Ifm = 4, then (K4◦Kn)(6) = (K4◦Kn)(2)⊕(K4◦Kn)(2)⊕(K4◦Kn)(2),
and apply Lemma 4.4 to get a required decomposition of (K4 ◦Kn)(6).

Now we assume that m ≥ 5. Then the graph

(Km ◦Kn)(6) � Km(6) ◦Kn

= (B ⊕B ⊕ · · · ⊕B) ◦Kn, by Theorem 4.5,

= B ◦Kn ⊕ B ◦Kn ⊕ · · · ⊕ B ◦Kn.

Now apply Lemma 3.1 to get a required decomposition.

Now we complete the proof of Theorem 1.1 when λ > 1.

Proof of Theorem 1.1.

Let λ ≡ t (mod 6) and let λ = 6k + t, t ∈ {0, 1, 2, 3, 4, 5}.
If λ ≡ 0 (mod 6), then the graph (Km◦Kn)(6k) = (Km◦Kn)(6)⊕(Km◦Kn)(6)⊕

· · · ⊕ (Km ◦Kn)(6) and by Lemma 4.11 the required decomposition follows.

If λ ≡ 3 (mod 6), then the graph (Km ◦ Kn)(6k + 3) = (Km ◦ Kn)(6) ⊕ (Km ◦
Kn)(6)⊕· · ·⊕ (Km ◦Kn)(6)⊕ (Km ◦Kn)(3) and the required decomposition follows
by Lemmas 4.10 and 4.11.

If λ ≡ 2 (mod 6), then the graph (Km ◦ Kn)(6k + 2) = (Km ◦ Kn)(6) ⊕ (Km ◦
Kn)(6)⊕· · ·⊕ (Km ◦Kn)(6)⊕ (Km ◦Kn)(2) and the required decomposition follows
by Lemmas 4.6 and 4.11.
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If λ ≡ 4 (mod 6), then the graph (Km ◦ Kn)(6k + 4) = (Km ◦ Kn)(6) ⊕ (Km ◦
Kn)(6) ⊕ · · · ⊕ (Km ◦ Kn)(6) ⊕ (Km ◦ Kn)(2) ⊕ (Km ◦ Kn)(2) and the required
decomposition follows by Lemmas 4.6 and 4.11.

If λ ≡ 1 (mod 6), then the graph (Km ◦ Kn)(6k + 1) = (Km ◦ Kn)(6) ⊕ (Km ◦
Kn)(6)⊕ · · · ⊕ (Km ◦Kn)(6)⊕Km ◦Kn and the required decomposition follows by
Lemma 4.11 and the proof of Theorem 1.1 when λ = 1 (see Section 3).

If λ ≡ 5 (mod 6), then the graph (Km ◦ Kn)(6k + 5) = (Km ◦ Kn)(6) ⊕ (Km ◦
Kn)(6)⊕· · ·⊕ (Km ◦Kn)(6)⊕Km ◦Kn ⊕Km ◦Kn ⊕ · · · ⊕Km ◦Kn︸ ︷︷ ︸

5 copies

and now, again

the required decomposition follows by Lemma 4.11 and the proof of Theorem 1.1
when λ = 1 (see Section 3).
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