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Abstract

We investigate the smallest number λk(G) of edges that can be removed
from a non-empty graph G so that the resulting graph contains no k-
clique. Turán’s theorem tells us that λk(Kn) is the number of edges
missing from the Turán graph T (n, k − 1). The investigation of λ3(G)
was initiated by Tuza. Let G(k) be the union of k-cliques of G. Let m, t,
and κ be the number of edges of G(k), the number of k-cliques of G, and(
k
2

)
, respectively. We prove that λk(G) ≤ 2m+κt

3κ
, and that equality holds

if and only if the k-cliques of G are pairwise edge-disjoint. We also prove
that λk(G) ≤ m

(
1− (κ−1

κ
)(m

κt
)

1
κ−1

)
, and this bound is also attained by

unions of pairwise edge-disjoint k-cliques.

1 Introduction

Unless stated otherwise, we use small letters such as x to denote non-negative integers
or elements of a set, and capital letters such as X to denote sets or graphs. The set
{1, 2, . . . } of positive integers is denoted by N. For any n ∈ N, the set {1, . . . , n}
is denoted by [n]. For a set X, the set of all 2-element subsets of X is denoted by(
X
2

)
. Every arbitrary set is taken to be finite. For standard terminology in graph

theory, we refer the reader to [6, 23]. Every graph G is taken to be simple, that is,
its vertex set V (G) and edge set E(G) satisfy E(G) ⊆

(
V (G)
2

)
. We may represent an

edge {v, w} by vw. For X ⊆ V (G), G[X ] denotes the subgraph of G induced by X,
that is, G[X] = (X,E(G) ∩

(
X
2

)
). For S ⊆ E(G), G− S denotes the subgraph of G

obtained by removing the edges in S from G, that is, G−S = (V (G), E(G)\S). We
may abbreviate G− {e} to G− e.

A graph G is complete if every two distinct vertices of G are neighbours (that is,
E(G) =

(
V (G)
2

)
). The complete graph ([n],

(
[n]
2

)
) is denoted by Kn. If G is a complete
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graph and |V (G)| = k, then G is also called a k-clique. If G contains a k-clique H ,
then we call H a k-clique of G. We denote the set of k-cliques of G by Ck(G). The
size of a largest clique of G is called the clique number of G and is denoted by ω(G).

The classical Turán problem is to determine, for a given graph H , the maximum
number of edges a graph can have if it contains no copy of H . Turán [20] solved this
problem for H = Kk. The special case H = K3 had been settled by Mantel [18].

For 1 ≤ k ≤ n, let I1, . . . , Ik be sets that partition an n-element set X such
that, for each i ∈ [k], |Ii| is �n/k� or �n/k	, and let T (n, k) be the graph with
vertex set X and edge set {vw : (v, w) ∈ Ii × Ij for some i, j ∈ [k] with i 
= j}. We
call T (n, k) a Turán graph. Clearly, T (n, k − 1) contains no k-clique. Note that
|E(T (n, k − 1))| ≤

(
k−2
k−1

)
n2

2
. Turán’s theorem is the following.

Theorem 1.1 (Turán [20]) If G is a graph, n = |V (G)|, m = |E(G)|, k ≥ 2, and
G contains no k-clique, then

m ≤ |E(T (n, k − 1))|.

Moreover, equality holds if and only if G is a copy of T (n, k − 1).

Several known proofs are provided and discussed in Aigner’s recommended expository
article [2]. Turán’s theorem is a fundamental result that gave rise to extremal graph
theory (see [6]).

We consider a generalization of the Turán problem in the same spirit of our work
in [8, 9, 10]. We investigate the smallest number of edges that can be removed from a
non-empty graph G so that the resulting graph contains no k-clique. We call a subset
L of E(G) a k-clique edge cover of G if ω(G− L) < k, that is, if the graph obtained
from G by removing the edges in L contains no k-clique. Thus, L is a k-clique edge
cover of G if and only if each k-clique of G has an edge in L. The size of a smallest
k-clique edge cover of G will be denoted by λk(G) and called the k-clique edge cover
number of G.

The study of λ3(G) was initiated by Tuza [21, 22]. In [21], Tuza conjectured that
λ3(G) is at most twice the size of a largest set of pairwise edge-disjoint triangles
(3-cliques) of G. This popular conjecture has been treated by many authors and
verified for certain cases (see, for example, [4, 11, 12, 13, 14, 16, 19, 22, 24]) but is
still open.

Turán’s theorem is the solution to our problem for the case G = Kn. Clearly,
λk(Kn) is the number of edges missing from T (n, k − 1), that is,

λk(Kn) = |E(Kn)| − |E(T (n, k − 1))| =
(
n

2

)
− |E(T (n, k − 1))|. (1)

Turán’s theorem actually yields the following general result, giving a lower bound on
λk(G).
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Corollary 1.2 If G is a graph, n = |V (G)|, m = |E(G)|, and k ≥ 2, then

λk(G) ≥ m− |E(T (n, k − 1))|.

Moreover, equality holds if G contains T (n, k − 1).

Proof. Let L be a k-clique edge cover of G of size λk(G). By Theorem 1.1, we have
|E(T (n, k − 1))| ≥ |E(G− L)| = m− λk(G), and the bound follows.

Suppose that G contains T (n, k − 1). Let L = E(G)\E(T (n, k − 1)). Then,
L is a k-clique edge cover of G. We have m − |E(T (n, k − 1))| ≤ λk(G) ≤ |L| =
m− |E(T (n, k − 1))|, so λk(G) = m− |E(T (n, k − 1))|. �

By taking G = Kn in Corollary 1.2, we obtain (1).
For a graph G, let G(k) denote the subgraph of G given by the union of k-cliques

of G. Note that the edges of G that are not edges of G(k) are redundant for our
problem; their removal does not affect λk(G) (see Proposition 2.3). Thus, in our
main results, we will only consider the edges in G(k).

The following is our first main result, proved in Section 3.

Theorem 1.3 If G is a graph, k ≥ 2, m = |E(G(k))|, and t = |Ck(G)|, then

λk(G) ≤
2m+

(
k
2

)
t

3
(
k
2

) .

Moreover, equality holds if and only if the k-cliques of G are pairwise edge-disjoint.

Trivially,

m ≤
(
k

2

)
t. (2)

Proposition 2.5 gives us the straightforward bound λk(G) ≤ t. By (2), this follows
immediately from the bound in Theorem 1.3, and the smaller m is, the better the
latter bound is. If m =

(
k
2

)
t, then the k-cliques of G are pairwise edge-disjoint, and

the two bounds are attained.
By adapting the probabilistic argument of Alon in [3] to our problem, we obtain

the next sharp upper bound, also proved in Section 3.

Theorem 1.4 If G is a graph, k ≥ 3, m = |E(G(k))|, t = |Ck(G)|, and κ =
(
k
2

)
,

then
λk(G) ≤ m

(
1−

(
κ− 1

κ

)(m
κt

) 1
κ−1

)
.

Moreover, equality holds if the k-cliques of G are pairwise edge-disjoint.

In the next section, we investigate λk(G) from a structural point of view. Some of
the structural results obtained are then used in the proof of Theorem 1.3. Section 3
is devoted to the proofs of Theorems 1.3 and 1.4. In Section 4, we compare the
bounds in these theorems, using real analysis.
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2 Structural results

In this section, we mainly observe how λk(G) is affected by the removal of edges
from G.

Let C1
k(G) denote the set {C ∈ Ck(G) : E(C) ∩ E(K) 
= ∅ for some K ∈

Ck(G)\{C}}. Let C2
k(G) denote Ck(G)\C1

k(G). Then, a k-clique C of G is a member
of C2

k(G) if and only if, for each k-clique K of G such that K 
= C, C and K have no
common edge.

Lemma 2.1 If G is a graph, H is a subgraph of G, and L is a k-clique edge cover
of G, then L ∩ E(H) is a k-clique edge cover of H.

Proof. The result is immediate if Ck(H) = ∅. Suppose Ck(H) 
= ∅. Let J =
L ∩ E(H). We need to show that, for each C ∈ Ck(H), e ∈ E(C) for some e ∈ J .
Since H is a subgraph of G, C ∈ Ck(G). Thus, e ∈ E(C) for some e ∈ L. Since
C ∈ Ck(H), e ∈ E(H). Thus, e ∈ J . �

We point out that |L| = λk(G) does not guarantee that |L ∩ E(H)| = λk(H).
Indeed, if k ≥ 3, G is a copy of Kk, e1 = {1, 2}, e2 = {1, k}, L = {e1}, and
H = G− e2, then L is a k-clique edge cover of G of size λk(G), L ∩ E(H) = L, and
∅ is a k-clique edge cover of H .

Corollary 2.2 If H is a subgraph of G, then λk(H) ≤ λk(G).

Proof. Let L be a k-clique edge cover of G of size λk(G). By Lemma 2.1, λk(H) ≤
|L ∩ E(H)| ≤ |L|. �

Proposition 2.3 If G is a graph and e ∈ E(G)\
⋃

C∈Ck(G)E(C), then λk(G− e) =

λk(G).

Proof. Since e /∈
⋃

C∈Ck(G)E(C), Ck(G − e) = Ck(G). Thus, a set of edges is a
k-clique edge cover of G− e if and only if it is a k-clique edge cover of G. The result
follows. �

Proposition 2.4 If G is a graph and e ∈ E(G), then λk(G) ≤ 1 + λk(G− e).

Proof. Let L be a k-clique edge cover of G − e of size λk(G − e). Since e ∈ E(C)
for each C ∈ Ck(G)\Ck(G − e), {e} ∪ L is a k-clique edge cover of G. Therefore,
λk(G) ≤ |{e} ∪ L| = 1 + |L|. �

Proposition 2.5 For any graph G, λk(G) ≤ |Ck(G)|, and equality holds if and only
if Ck(G) = C2

k(G).
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Proof. For each C ∈ Ck(G), let eC be an edge of C. Let L = {eC : C ∈ Ck(G)}. Since
L is a k-clique edge cover of G, λk(G) ≤ |L| ≤ |Ck(G)|. Suppose Ck(G) 
= C2

k(G).
Then, E(C1) ∩ E(C2) 
= ∅ for some C1, C2 ∈ Ck(G). Let e′ ∈ E(C1) ∩ E(C2). Let
L′ = {eC : C ∈ Ck(G)\{C1, C2}} ∪ {e′}. Since L′ is a k-clique edge cover of G,
λk(G) ≤ |L′| ≤ |Ck(G)| − 1. Now suppose Ck(G) = C2

k(G). Then, the k-cliques of G
are pairwise edge-disjoint. Let L∗ be a smallest k-clique edge cover of G. Then,

λk(G) = |L∗| = |L∗ ∩
⋃

C∈Ck(G)

E(C)| = |
⋃

C∈Ck(G)

(L∗ ∩ E(C))| =
∑

C∈Ck(G)

|L∗ ∩ E(C)|

≥
∑

C∈Ck(G)

1 = |Ck(G)| ≥ λk(G),

and hence λk(G) = |Ck(G)|. �

3 Proofs of the main results

In this section, we prove Theorems 1.3 and 1.4.

Lemma 3.1 If A, B, and C are distinct k-cliques with E(A) ∩ E(B) ∩ E(C) = ∅,
then

|(E(A) ∪ E(B))\E(C)| ≥
(
k

2

)
.

For the proof of Lemma 3.1, we first prove the following.

Lemma 3.2 If 2 ≤ t ≤ k, 0 ≤ p ≤ k − t+ 1, 0 ≤ q ≤ k − t + 1, and p+ q ≤ k + 1,
then (

k

2

)
≥
(
t

2

)
+

(
p

2

)
+

(
q

2

)
.

Proof. We use induction on k. The base case k = 2 is trivial. Consider k > 2. If
p ≤ 1 or q ≤ 1, then

(
p
2

)
+
(
q
2

)
≤
(
k−t+1

2

)
, and the result follows since

(
k
2

)
≥
(
t
2

)
+
(
k−t+1

2

)
(indeed, for a k-clique A, a t-element subset T of V (A), and an element x of T , the
number

(
k
2

)
of edges of A is at least the sum of the number

(
t
2

)
of edges of A[T ] and

the number
(
k−t+1

2

)
of edges of A[(V (A)\T ) ∪ {x}]). Suppose p ≥ 2 and q ≥ 2. Let

k′ = k− 1, p′ = p− 1, and q′ = q− 1. Then, 2 ≤ t ≤ k′ (as 2 ≤ p ≤ k− t+1 implies
k ≥ t+1), 0 < p′ ≤ k′ − t+1, 0 < q′ ≤ k′ − t+1, and p′ + q′ ≤ k′. By the induction
hypothesis,

(
k′
2

)
≥
(
t
2

)
+
(
p′
2

)
+
(
q′
2

)
. Now

(
k
2

)
=
(
k′
2

)
+k′ ≥

(
t
2

)
+
(
p′
2

)
+
(
q′
2

)
+(p′+q′) =(

t
2

)
+
(
p
2

)
+
(
q
2

)
. �

Proof of Lemma 3.1. Let T = V (A) ∩ V (B), P = V (C) ∩ V (A), and Q =
V (C) ∩ V (B). Let t = |T |, p = |P |, and q = |Q|. We have max{t, p, q} ≤ k. Let
r = |(E(A) ∪ E(B))\E(C)|. If t ≤ 1, then E(A) ∩ E(B) = ∅, and hence

r ≥ |E(A)|+ |E(B)| − |E(C)| =
(
k

2

)
.
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Suppose t ≥ 2. Since

∅ = (E(A) ∩ E(B)) ∩ E(C) =

(
T

2

)
∩ E(C),

|V (C) ∩ T | ≤ 1. We have p = |V (C) ∩ T | + |V (C) ∩ (V (A)\T )| ≤ 1 + |V (A)\T | ≤
k − t + 1. Similarly, q ≤ k − t+ 1. Since

k = |C| ≥ |P ∪Q| = p+ q − |P ∩Q| = p+ q − |V (C) ∩ T | ≥ p+ q − 1,

p + q ≤ k + 1. Now, E(C) ∩ (E(A) ∪ E(B)) =
(
P
2

)
∪
(
Q
2

)
. We have

r = |(E(A) ∪ E(B))\(E(C) ∩ (E(A) ∪ E(B)))|
≥ |E(A) ∪ E(B)| − |E(C) ∩ (E(A) ∪ E(B))|

≥ 2

(
k

2

)
−
(
t

2

)
−
(
p

2

)
−
(
q

2

)
.

By Lemma 3.2,
(
k
2

)
−
(
t
2

)
−
(
p
2

)
−
(
q
2

)
≥ 0, and hence r ≥

(
k
2

)
. �

Proof of Theorem 1.3. We may assume that G = G(k). Let κ =
(
k
2

)
. If the t

k-cliques of G are pairwise edge-disjoint, then m = κt and λk(G) = t = 2m+κt
3κ

. We
now prove the bound in the theorem and show that it is attained only if the k-cliques
of G are pairwise edge-disjoint.

We use induction on t. If t = 0, then λk(G) = 0 and the result is trivial. Suppose
t ≥ 1. Then, m ≥ κ. If k = 2, then t = m and λk(G) = m = 2m+κt

3κ
. Suppose k ≥ 3.

Suppose first that C2
k(G) 
= ∅. Let K ∈ C2

k(G). Let e∗ ∈ E(K). If Ck(G − e∗) =
∅, then λk(G) = 1 ≤ 2m+κt

3κ
, and equality holds only if Ck(G) = {K}. Suppose

Ck(G − e∗) 
= ∅. Since K ∈ C2
k(G) and K /∈ Ck(G − e∗), e /∈

⋃
C∈Ck(G−e∗)E(C) for

each e ∈ E(K)\{e∗}. Taking H = G − E(K), we thus have Ck(H) = Ck(G − e∗) =
Ck(G)\{K}. By repeated application of Proposition 2.3, λk(H) = λk(G− e∗). Thus,
by Proposition 2.4 and the induction hypothesis,

λk(G) ≤ 1 + λk(H) ≤ 1 +
2(m− κ) + κ(t− 1)

3κ
=

2m+ κt

3κ
,

and equality holds throughout only if the k-cliques of H are pairwise edge-disjoint,
in which case the k-cliques of G are pairwise edge-disjoint.

Now suppose C2
k(G) = ∅. Then, Ck(G) = C1

k(G).
Suppose that G has three distinct k-cliques C1, C2, and C3 that have a com-

mon edge e∗. Then, Ck(G − e∗) ⊆ Ck(G)\{C1, C2, C3}. By Proposition 2.4 and the
induction hypothesis,

λk(G) ≤ 1 + λk(G− e∗) ≤ 1 +
2(m− 1) + κ(t− 3)

3κ
<

2m+ κt

3κ
.

Now suppose that

no three distinct k-cliques of G have a common edge. (3)
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Let r = λk(G). Let L be a k-clique edge cover of G of size r. For any e ∈ L and
any subgraph H of G, let Ck(H, e) = {C ∈ Ck(H) : e ∈ E(C)}. Let G1 = G. Let
e1 ∈ L such that |Ck(G1, e1)| = max{|Ck(G1, e)| : e ∈ L}, and let G2 = G1 − e1. If
r ≥ 2, then let e2 ∈ L\{e1} such that |Ck(G2, e2)| = max{|Ck(G2, e)| : e ∈ L\{e1}},
and let G3 = G2 − e2. If r ≥ 3, then let e3 ∈ L\{e1, e2} such that |Ck(G3, e3)| =
max{|Ck(G3, e)| : e ∈ L\{e1, e2}}, and let G4 = G3 − e3. Continuing in this way,
we obtain e1, . . . , er and G1, . . . , Gr+1 such that L = {e1, . . . er}, Gr+1 = G − L,
Ck(Gi) 
= ∅ for each i ∈ [r], and Ck(Gr+1) = ∅. For each i ∈ [r], let Ai = Ck(Gi, ei).
By construction,

|A1| ≥ · · · ≥ |Ar|. (4)

Note that A1, . . . ,Ar partition Ck(G) (that is, Ck(G) = A1∪· · ·∪Ar and Ai∩Aj = ∅
for i 
= j), so t =

∑r
i=1 |Ai|. For each i ∈ [r], 1 ≤ |Ai| ≤ 2 as Ck(Gi) 
= ∅ and (3)

holds.
Let I1 = {i ∈ [r] : |Ai| = 1} and I2 = {i ∈ [r] : |Ai| = 2}. Let r1 = |I1| and

r2 = |I2|. Then, r1 + r2 = r. Since Ck(G) = C1
k(G), we have |A1| = 2, so r2 ≥ 1. By

(4), I2 = [r2] and I1 = [r]\[r2]. We have

t =
r∑

i=1

|Ai| =
∑
i∈I2

|Ai|+
∑
i∈I1

|Ai| = 2r2 + r1.

Let Y =
⋃

C∈Ck(Gr2+1)
E(C). Let F = E(G)\Y . If r2 = r, then r1 = 0 and Gr2+1

has no k-cliques. If r2 < r, then we have |Ar2+1| = 1 (as r2 + 1 ∈ I1), and hence
Gr2+1 has no two distinct k-cliques with a common edge. Since |Ai| = 1 for each
i ∈ [r]\[r2], Gr2+1 has exactly r1 k-cliques. Thus, |F | = m− r1κ.

For each i ∈ I2, let Ci,1 and Ci,2 be the two members of Ai. For each pair
(e, i) ∈ F × I2, let

χ(e, i) =

{
1 if e ∈ E(Ci,1) ∪ E(Ci,2);
0 otherwise.

By (3),
∑

i∈I2 χ(e, i) ≤ 2 for each e ∈ F . Moreover, by construction, we have
e1, . . . , er2 ∈ F and

∑
i∈I2 χ(e1, i) = χ(e1, 1) = 1. Thus, we have

∑
e∈F

∑
i∈I2

χ(e, i) <
∑
e∈F

2 = 2|F | = 2(m− r1κ). (5)

Consider any i ∈ I2. We show that
∑

e∈F χ(e, i) ≥ κ. Let X1 = E(Ci,1) ∩ Y and
X2 = E(Ci,2)∩Y . If j ∈ [2] and Xj = ∅, then

∑
e∈F χ(e, i) ≥ |E(Ci,j)| = κ. Suppose

X1 
= ∅ and X2 
= ∅. Let ei,1 ∈ X1 and ei,2 ∈ X2. Then, ei,1 ∈ E(Ci,1) ∩ E(D1)
for some D1 ∈ Ck(Gr2+1), and ei,2 ∈ E(Ci,2) ∩ E(D2) for some D2 ∈ Ck(Gr2+1). Let
D = {D ∈ Ck(Gr2+1) : E(Ci,2) ∩ E(D) 
= ∅}. Then, D2 ∈ D. Suppose D′ 
= D1 for
some D′ ∈ D. Let e′ ∈ E(Ci,2)∩E(D′). Since the k-cliques of Gr2+1 are pairwise edge-
disjoint, there exist j1, j2 ∈ [r]\[r2] such that j1 
= j2, ej1 ∈ E(D1), and ej2 ∈ E(D′).
By the above, we obtain that (L\{ei, ej1, ej2}) ∪ {ei,1, e′} is a k-clique edge cover of
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G (that is, we can ‘eliminate’ Ci,1, D1, Ci,2, and D′ by using ei,1 and e′ instead of
ei, ej1 , and ej2 , and the remaining k-cliques of G are ‘eliminated’ by the remaining
edges in L). This gives us λk(G) ≤ |L| − 1, which contradicts λk(G) = r = |L|.
Thus, D2 = D1, D = {D1}, and hence X2 ⊆ E(D1). Similarly, X1 ⊆ E(D2), so
X1 ⊆ E(D1) (as D2 = D1). By (3), E(Ci,1) ∩ E(Ci,2) ∩ E(D1) = ∅. By Lemma 3.1,
|(E(Ci,1) ∪ E(Ci,2))\E(D1)| ≥ κ. Thus, since

(E(Ci,1) ∪ E(Ci,2))\E(D1) = (E(Ci,1) ∪ E(Ci,2))\(X1 ∪X2)

= (E(Ci,1) ∪ E(Ci,2))\Y,

we have |(E(Ci,1) ∪ E(Ci,2))\Y | ≥ κ, and hence
∑

e∈F χ(e, i) ≥ κ, as required.
Therefore, we have

r2κ =
∑
i∈I2

κ ≤
∑
i∈I2

∑
e∈F

χ(e, i) =
∑
e∈F

∑
i∈I2

χ(e, i) < 2(m− r1κ)

(by 5), and hence 2m > r2κ + 2r1κ. Thus, since t = 2r2 + r1, we have 2m + κt >
3(r1 + r2)κ = 3rκ, and hence r < 2m+κt

3κ
. �

Proof of Theorem 1.4. We may assume that G = G(k) and E(G) = [m]. Let
p be a real number satisfying 0 ≤ p ≤ 1. We set up an independent random
experiment for each edge, and an edge is chosen with probability p. More formally,
for i ∈ [m], let (Ωi, Pi) be given by Ωi = {0, 1}, Pi({1}) = p, and Pi({0}) = 1 − p.
Let Ω = Ω1 × · · ·×Ωm, and let P : 2Ω → [0, 1] such that P ({x}) =

∏m
i=1 Pi({xi}) for

each x = (x1, . . . , xm) ∈ Ω, and P (A) =
∑

x∈A P ({x}) for each A ⊆ Ω. Then, (Ω, P )
is a probability space.

For each x = (x1, . . . , xm) ∈ Ω, let Sx = {i ∈ [m] : xi = 1} and Tx = {C ∈
Ck(G) : E(C) ∩ Sx = ∅}. For each C ∈ Tx, let eC ∈ E(C). Let Tx = {eC : C ∈ Tx}.
Let Dx = Sx ∪ Tx. Then, Dx is a k-clique edge cover of G.

Let X : Ω → R be the random variable given by X(x) = |Sx|. For each i ∈ [m],
let Xi : Ω → R be the indicator random variable for whether edge i is in Sx, that is,

Xi(x) =

{
1 if i ∈ Sx;
0 otherwise.

Then, X =
∑m

i=1Xi. For each i ∈ [m], we have P (Xi = 1) = Pi({1}) = p.
Let Y : Ω → R be the random variable given by Y (x) = |Tx|. For each C ∈ Ck(G),

let YC : Ω → {0, 1} be the random variable given by

YC(x) =

{
1 if E(C) ∩ Sx = ∅;
0 otherwise.

Then, Y =
∑

C∈Ck(G) YC . For each C ∈ Ck(G), we have P (YC = 1) = (1− p)κ.
For any random variable Z, let E[Z] denote the expected value of Z. By linearity

of expectation,

E[X + Y ] = E[X] + E[Y ] =

m∑
i=1

E[Xi] +
∑

C∈Ck(G)

E[YC ]
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=

m∑
i=1

P (Xi = 1) +
∑

C∈Ck(G)

P (YC = 1) = mp + t(1− p)κ.

Let f(p) = mp + t(1 − p)κ. By the probabilistic pigeonhole principle, there exists
some x∗ ∈ Ω such that X(x∗) + Y (x∗) ≤ E[X + Y ]. Thus, X(x∗) + Y (x∗) ≤ f(p).
We have

λk(G) ≤ |Dx∗| = |Sx∗|+ |Tx∗| ≤ |Sx∗|+ |Tx∗| = X(x∗) + Y (x∗) ≤ f(p).

We have shown that λk(G) ≤ f(p) for any real p satisfying 0 ≤ p ≤ 1. Let
p∗ = 1−

(
m
κt

) 1
κ−1 . Using differentiation, we find that f(p) is a minimum when p = p∗.

We have λk(G) ≤ f(p∗) = m
(
1− (κ−1

κ
)(m

κt
)

1
κ−1

)
.

If the k-cliques of G are pairwise edge-disjoint, then m = κt and λk(G) = t =
m
κ
= m

(
1− (κ−1

κ
)(m

κt
)

1
κ−1

)
. �

4 Comparison of the main bounds

We conclude this paper with a comparison of the bounds in Theorems 1.3 and 1.4
similar to that in [7]. Let k, t, and m be as in the theorems. For each of the two
bounds, we determine ranges of values of m for which the bound is better than the
other. Let κ =

(
k
2

)
. Recall from Section 1 that m ≤ κt, and that equality holds if

and only if the t k-cliques are pairwise edge-disjoint, in which case the two bounds
are equal and attained. We now consider m < κt. We mention in passing that
by the Kruskal–Katona Theorem [15, 17], the minimum value of m in terms of k
and t is attained when the vertex sets of the t k-cliques are in colex order (loosely
speaking, when they are as close as possible to each other); for further reading, see,
for example, [1, 5].

Let b1(k, t,m) and b2(k, t,m) be the bound in Theorem 1.3 and the bound in
Theorem 1.4, respectively; that is,

b1(k, t,m) =
2m+ κt

3κ
and b2(k, t,m) = m

(
1−

(
κ− 1

κ

)(m
κt

)1/(κ−1)
)
.

We prove the following result, using several well-known facts from real analysis.

Theorem 4.1 Suppose k ≥ 3, t ≥ 1, and m < κt. Let x1 > 1 be the real number
6.71... that satisfies e(x1−1)/3 = x1.

(a) We have

b2(k, t,m) < b1(k, t,m) if m ≤ 1

x1
κt.

(b) There exists a unique real number x0 such that 4 ≤ x0 < x1 and
(

3κ−3
3κ−2−x0

)κ−1

=

x0. We have
b1(k, t,m) < b2(k, t,m) if m >

1

x0

κt.
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The larger k is, the larger x0 is. Moreover, for any real δ > 0, x0 > x1 − δ if k is
sufficiently large. We have x0 = 4 if k = 3, x0 = 5.22... if k = 4, x0 = 5.78... if
k = 5, and x0 ≥ 6.08... if k ≥ 6.

Since m can be at most κt, this result tells us that the range of values of m for which
the bound in Theorem 1.3 is better than the bound in Theorem 1.4 is significantly
wider than that for which the opposite holds. Also note that the result solves our
problem for k sufficiently large in the following sense.

Corollary 4.2 Let k, t, κ, m, and x1 be as in Theorem 4.1.
(a) If m ≤ κt/x1, then b2(k, t,m) < b1(k, t,m).
(b) If m > κt/x1 and k is sufficiently large, then b1(k, t,m) < b2(k, t,m).

We now prove Theorem 4.1. The set of real numbers is denoted by R, and
the set of positive real numbers is denoted by R

+. We shall make use of standard
notation for real intervals. Let e be the base of the natural logarithm, that is,
e = limn→∞

(
1 + 1

n

)n
= 2.71828....

Lemma 4.3 If f : R+ → R
+ is the function given by

f(x) =

(
1 +

1

x

)x+1

for x > 0, then f(x) decreases as x increases, and limx→∞ f(x) = e.

Proof. Let g : (−1
2
,∞) → R be the function given by

g(z) = z − ln(1 + z)

for z > −1
2
. The derivative dg

dz
is 1 − 1

1+z
, which is negative for −1

2
< z < 0, 0 for

z = 0, and positive for z > 0. Thus, g(z) increases from g(0) = 0 as z increases from
0 to infinity, and hence

g(z) > 0 for z > 0. (6)

We have ln f(x) = (x + 1) ln
(
1 + 1

x

)
. Using implicit differentiation, we obtain

1
f(x)

df
dx

= ln
(
1 + 1

x

)
+(x+1)

(
1

1+ 1
x

) (
− 1

x2

)
= ln

(
1 + 1

x

)
− 1

x
. Thus, by (6) with z = 1

x
,

− 1
f(x)

df
dx

> 0, and hence, since f(x) > 0, we obtain df
dx

< 0. Therefore, f(x) decreases
as x increases. Now limx→∞ f(x) =

(
limx→∞

(
1 + 1

x

)x) (
limx→∞

(
1 + 1

x

))
= e. �

Lemma 4.4 Let A = {(x, y) ∈ R × R : y ≥ 3, 1 ≤ x < 3y − 2}. Let f : A → R be
the function given by

f(x, y) =

(
3y − 3

3y − 2− x

)y−1

− x

for (x, y) ∈ A. For any y0 ∈ [3,∞), f(xy0 , y0) = 0 for some unique xy0 ∈ (1, 3y0−2),
and f(x, y) < 0 for any x ∈ (1, xy0] and y ∈ [y0,∞) such that x 
= xy0 or y 
= y0.
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Moreover, let x1 > 1 be the real number 6.71... that satisfies e(x1−1)/3 = x1.
(a) If y0, y1 ∈ [3,∞) with y0 < y1, then xy0 < xy1 < x1.
(b) For any real δ > 0, there exists some yδ ∈ [3,∞) such that xy > x1 − δ for any
y ∈ (yδ,∞).

Proof. Let g : [1, 3y0 − 2) → R such that g(x) = f(x, y0) for x ∈ [1, 3y0 − 2). We
have

dg

dx
= (y0 − 1)

(
3y0 − 3

3y0 − 2− x

)y0−2
3y0 − 3

(3y0 − 2− x)2
− 1 =

1

3

(
3y0 − 3

3y0 − 2− x

)y0

− 1.

As x increases from 1 to 3y0−2, the value of 1
3

(
3y0−3

3y0−2−x

)y0
increases from 1

3
to ∞, and

hence dg
dx

increases from −2
3

to ∞. Thus, there exists a unique x∗ ∈ (1, 3y0 − 2) such
that dg

dx
is 0 at x∗, and g(x∗) = min{g(x) : x ∈ [1, 3y0 − 2)} < g(1) = 0. Thus, g(x)

decreases from g(1) = 0 to g(x∗), and then increases from g(x∗) to ∞. Consequently,
there exists a unique xy0 ∈ (1, 3y0−2) such that g(xy0) = 0 = g(1) and g(x) < g(xy0)
for each x ∈ (1, xy0).

Now suppose x ∈ (1, xy0 ] and y ∈ [y0,∞). Let z0 = 3y0−2−x
x−1

and z = 3y−2−x
x−1

.
Then, z ≥ z0. We have

f(x, y) + x =

(
1 +

x− 1

3y − 2− x

)y−1

=

(
1 +

1

z

)(z+1)(x−1)/3

=

((
1 +

1

z

)z+1
)(x−1)/3

≤
((

1 +
1

z0

)z0+1
)(x−1)/3

(by Lemma 4.3)

= f(x, y0) + x. (7)

Therefore,
f(x, y) ≤ f(x, y0) = g(x) ≤ g(xy0) = 0. (8)

If x 
= xy0 , then x < xy0 , and hence g(x) < g(xy0). If y 
= y0, then y > y0, z > z0,(
1 + 1

z

)z+1
<
(
1 + 1

z0

)z0+1

(by Lemma 4.3), and hence f(x, y) < f(x, y0) by (7).
Thus, if x 
= xy0 or y 
= y0, then g(x) < g(xy0) or f(x, y) < f(x, y0), so f(x, y) < 0
by (8).

Let h : [1,∞) → R be the function given by h(x) = e(x−1)/3 − x for x ∈ [1,∞).
Using differentiation, we obtain that the minimum value of h occurs at x = 1+3 ln 3 <
x1, and that h has no other turning points. Thus, h(x) decreases from h(1) = 0 to
h(1 + 3 ln 3) < 0 as x increases from 1 to 1 + 3 ln 3, and h(x) increases to infinity
as x increases from 1 + 3 ln 3. Note that h(x1) = 0. Let z′0 =

3y0−2−xy0

xy0−1
. We have

0 = f(xy0 , y0) =

((
1 + 1

z′0

)z′0+1
)(xy0−1)/3

− xy0 > e(xy0−1)/3 − xy0 by Lemma 4.3.

Thus, h(xy0) < 0, and hence xy0 < x1.
Next, suppose y0 < y1. By the same argument for xy0 , xy1 < x1. Let p :

[1, 3y1 − 2) → R such that p(x) = f(x, y1) for x ∈ (1, 3y1 − 2). By the argument
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above, p(x) < 0 for x ∈ (1, xy1), p(xy1) = 0, and p(x) > 0 for x ∈ (xy1 , 3y1−2). Since
y1 ∈ (y0,∞), we have p(x) = f(x, y1) < 0 for any x ∈ (1, xy0 ], so xy1 > xy0 . Thus,
(a) is proved.

Finally, let δ ∈ R
+. Let δ′ = min{1

2
, δ}. Let x′ = x1 − δ′. Since x′ < x1,

h(x′) < 0. Let q : [3,∞) → R such that q(y) = f(x′, y) for y ∈ [3,∞). We
have x′ ≥ x1 − 1

2
> 6 and q(3) =

(
6

7−x′
)2 − x′ >

(
6

7−6

)2 − x1 > 0. For any
y ∈ [3,∞), let zy = 3y−2−x′

x′−1
. As y increases to infinity, zy increases to infinity. We

have q(y) =

((
1 + 1

zy

)zy+1
)(x′−1)/3

− x′. Thus, by Lemma 4.3, q(y) decreases from

q(3) > 0 to h(x′) < 0 as y increases from 3 to infinity. Thus, there exists some
yδ ∈ [3,∞) such that q(yδ) = 0. We have f(x′, yδ) = 0, so x′ = xyδ . By (a), xy > xyδ

for any y ∈ (yδ,∞). Thus, (b) is proved. �

Proof of Theorem 4.1. Since k ≥ 3 and t ≥ 1, m ≥ κ ≥ 3. Let x = κt/m. Since
m < κt, x > 1. Let ∼ be any of the relations <, =, and >. We have

b1(k, t,m) ∼ b2(k, t,m) ⇔ 2m+ κt

m
∼ 3κ

(
1−

(
κ− 1

κ

)(
1

x

)1/(κ−1)
)

⇔ 2 + x ∼ 3κ− 3(κ− 1)

x1/(κ−1)
⇔ 3(κ− 1) ∼ (3κ− 2− x)x1/(κ−1). (9)

Suppose m ≤ κt/(3κ − 2). Then, x ≥ 3κ − 2. Thus, we have 3(κ − 1) > 0 ≥
(3κ− 2− x)x1/(κ−1). By (9), b1(k, t,m) > b2(k, t,m).

Now suppose m > κt/(3κ− 2). Then, x < 3κ− 2. By (9),

b1(k, t,m) ∼ b2(k, t,m) ⇔ (3κ− 3)κ−1 ∼ (3κ− 2− x)κ−1x

⇔
(

3κ− 3

3κ− 2− x

)κ−1

∼ x ⇔
(
1 +

x− 1

3κ− 2− x

)κ−1

∼ x. (10)

Let z = (3κ− 2− x)/(x− 1). Let f be as in Lemma 4.3. We have(
1 +

x− 1

3κ− 2− x

)κ−1

=

(
1 +

1

z

)(z+1)(x−1)/3

= (f(z))(x−1)/3 > e(x−1)/3, (11)

where the last inequality is given by Lemma 4.3.
By the argument for the function h in the proof of Lemma 4.4, h(y) increases

from h(x1) = 0 as y increases from x1, so h(y) ≥ 0 for y ≥ x1. Thus, e(y−1)/3 ≥ y
for y ≥ x1. Together with (10) and (11), this gives us that b1(k, t,m) > b2(k, t,m) if
x ≥ x1, that is, if m ≤ κt/x1. Thus, (a) is proved.

We now prove (b). Let f now be as in Lemma 4.4. Let y0 = κ. By Lemma 4.4,
f(xy0 , y0) = 0 for some unique xy0 ∈ (1, x1), and the larger y0 is, the larger xy0 is.
Let x0 = xy0 . Thus, the larger k is, the larger x0 is. Also, by Lemma 4.4 (b), for
any real δ > 0, x0 > x1 − δ if k is sufficiently large. It can be checked that x0 = 4 if
k = 3, x0 = 5.22... if k = 4, x0 = 5.78... if k = 5, and x0 = 6.08... if k = 6. Thus,
x0 ≥ 4 as k ≥ 3. Also, x0 ≥ 6.08... if k ≥ 6.
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Suppose m > κt/x0. Then, x < x0. We have
(

3κ−3
3κ−2−x

)κ−1 − x = f(x, y0) < 0 by
Lemma 4.4. By (10), b1(k, t,m) < b2(k, t,m). �
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