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Abstract

We consider uniformly random set partitions of size n with exactly k
blocks, and uniformly random permutations of size n with exactly k cy-
cles, under the regime where n − k ∼ t

√
n, t > 0. In this regime, there

is a simple approximation for the entire process of component counts; in
particular, the number of components of size 3 converges in distribution
to Poisson with mean 2

3
t2 for set partitions and mean 4

3
t2 for permuta-

tions, and with high probability all other components have size one or
two. These approximations are proved, with preasymptotic error bounds,
using combinatorial bijections for placements of r rooks on a triangular
half of an n × n chess board, together with the Chen–Stein method for
processes of indicator random variables.

1 Introduction

We exploit two combinatorial bijections, each involving non-attacking rooks on a
lower triangular chess board, to describe the component structure of set partitions
and permutations under the regime where the size n and the number of compo-
nents k satisfies r ≡ r(n, k) := n − k ∼ t

√
n, t > 0. A similar analysis, focused

on the approximation of Stirling numbers, and exploiting only the existence of the
bijections rather than their explicit forms, was carried out by the authors in [2] using
Chen–Stein Poisson approximation [5]. In this paper we apply the Poisson process
approximation approach outlined in [3] to fully characterize the component structure.
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The total variation distance between the distributions of two random variables
X and Y in R

n is defined as

dTV (L(X),L(Y )) = sup
A⊂Rn

|P(X ∈ A)− P(Y ∈ A)|,

where the sup is taken over all Borel sets A. When there is no confusion, we instead
write dTV (X, Y ) to denote the total variation distance between the distributions
L(X) and L(Y ).

Our main results, both of which follow from Lemma 3.3, are summarized below.
The first result concerns the cycle lengths in a random permutation of size n into
exactly k cycles.

Theorem 1.1. For each integer i ≥ 1, let Ci ≡ Ci(n, k) denote the number of cycles
of size i in a random permutation of size n into exactly k cycles, and denote the
joint distribution of cycle sizes by C ≡ C(n, k) := (C1, C2, . . .). Let W1 ≡ W1(n, k)

denote a Poisson random variable with λ1 := EW1 =
4
3
(n−k)2

n
. If k(1), k(2), . . . is an

increasing sequence of nonnegative integers such that n− k(n) ∼ t
√
n as n tends to

infinity, then we have (with k ≡ k(n))

dTV ( C, (n− 2(n− k) +W1,(n− k)− 2W1,W1, 0, 0, . . .) )

= O

(
exp

(
2

3

(n− k)2

n

)
· (n− k)3

n2

)
.

(1)

The second result is an analogous theorem for the block sizes in a random set
partition of size n into exactly k blocks.

Theorem 1.2. For each integer i ≥ 1, let Di ≡ Di(n, k) denote the number of blocks
of size i in a random set partition of size n into exactly k blocks, and denote the
joint distribution of block sizes by D ≡ D(n, k) := (D1, D2, . . .). Let W2 ≡ W2(n, k)

denote a Poisson random variable with λ2 := EW2 =
2
3
(n−k)2

n
. If k(1), k(2), . . . is an

increasing sequence of nonnegative integers such that n− k(n) ∼ t
√
n as n tends to

infinity, then we have (with k ≡ k(n))

dTV ( D, (n− 2(n− k) +W2,(n− k)− 2W2,W2, 0, 0, . . .) )

= O

(
exp

(
4

3

(n− k)2

n

)
· (n− k)3

n2

)
.

(2)

In Section 2.1, we describe the two bijections involving the placements of rooks
on a chess board, after which we provide a qualitative explanation of the theorem
above. In Section 2.2, we define the random variables of interest and outline the
Poisson approximation approach. In Section 3.1, we combine these two techniques
to prove preasymptotic bounds for Poisson process approximation, summarized in
Lemma 3.3, which are used to prove the main results above. Finally, in Section 4 we
present some applications and corollaries.
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2 Approach

2.1 Rook bijections

Each of these structures, viz., set partitions and permutations, has an intimate rela-
tion with placements of r non-challenging rooks on the triangular board

B ≡ Bn := {(i, j) : 1 ≤ i < j ≤ n}.

For the case of set partitions, two rooks challenge or attack as per the usual rules of
chess if they lie in the same row or column. For the case of permutations, two rooks
are said to challenge or attack if they lie in the same column. We write S(n, k) for
the Stirling number of the second kind, counting the number of partitions of a set
of size n into a set of exactly k blocks. We write s(n, k) for the Stirling number of
first kind, whose absolute value counts the number of permutations of a set of size n
having exactly k cycles. In either case, the Stirling number is equal to the number
of ways to place r unlabelled rooks on Bn with no attacks.

We utilize two different bijections involving the placements of rooks on the board
B, one for set partitions and the other for permutations. What follows is a partial
description of those bijections for the purpose of understanding the proofs of our
results, and we refer the interested reader to [4] for the complete proofs of these
bijections.
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6
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(B) CC
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(C) RC

6
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2 b
1

1 2 3 4 5 6

(D) CR

Figure 1: The board Bn := {(i, j) : 1 ≤ i < j ≤ n), drawn in French notation:
square (i, j) is in the ith row from bottom to top, and in the jth column from left
to right; the case n = 6 is illustrated. A rook at (i, j) forces i and j to belong to the
same component, implying a block of size at least two. For two rooks, say a and b
with 1 ≤ a < b ≤ r, there are four kinds of possible coincidence, according to the row
or column coordinate of rook a being equal to the row or column coordinate of rook
b, as shown. In the case of set partitions, attacks are the RR and CC coincidences;
in the case of permutations, attacks are the CC coincidences. In both cases, the
non-attack coincidences are alignments, implying blocks of size three or more.

The first bijection is for set partitions, and requires that no two rooks lie in
the same row or column. A board with no rooks corresponds to the set partition
{{1}, {2}, . . . , {n}}, i.e., the set partition with n blocks of size 1. The placement of
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a single rook at coordinate (i, j), 1 ≤ i < j ≤ n, combines the two separate blocks
{i}, {j}, into a single block of size 2, i.e., {i, j}. The placement of two rooks in
coordinates (i, j) and (j, �), 1 ≤ i < j < � ≤ n, where the row-coordinate of one rook
is the column-coordinate of the other, is what we call an alignment. This corresponds
to combining blocks {i, j} and {j, �} into a single block {i, j, �} of size 3; see Figure 2.
Further alignments correspond to combining blocks in an analogous manner.

The second bijection is for permutations, and requires that no two rooks lie in
the same column. A board with no rooks corresponds to the identity permutation
(1)(2) · · · (n). The placement of a single rook at coordinate (i, j), 1 ≤ i < j ≤ n,
creates a cycle of length two, namely, (i j), without changing the other fixed points.
The placement of another rook at coordinate (i, k), 1 ≤ i < k ≤ n and j �= k, i.e., in
the same row, creates a cycle of length three, either (i j k) or (i k j) depending on
whether j < k or j > k, respectively, and corresponds to the event RR in Figure 1A.
In general, we have the following rules:

1. element i is a fixed point if there are no rooks in row i or column i, i ≥ 1;

2. a cycle of length 2, say (i j), occurs when there is exactly one rook in row i
and column j, and no other rooks in row j;

3. a cycle of length 3 or more occurs when two or more rooks lie in the same row,
or two or more rooks are in alignment.

A qualitative interpretation of Theorem 1.2 is thus as follows, all relations of
course being approximate: the number of blocks of size 4 or more is 0. The number
of blocks of size 3 is the number of single alignments. The number of blocks of size 2
is the number of rooks minus twice the number of single alignments. The number of
blocks of size 1 is n minus twice the number of rooks (the factor of two is because
each rook combines two singletons), plus the number of single alignments to prevent
over double-counting (each alignment converts three singletons into a single block of
size 3, whereas a non-alignment converts four singletons into two blocks of size 2).
The qualitative interpretation of Theorem 1.1 is the same, with blocks replaced with
cycles.

2.2 Poisson approximation

Now consider the
(
n
2

)r
ways to place r distinguishable rooks on the board Bn, even

allowing two or more rooks on the same square, and consider all such placements as
equally likely. Write

WRR := the number of pairs of rooks placed in the same row as each other,

so that WRR is a random variable, with 0 ≤ WRR ≤ (
r
2

)
. It is easy to see the

asymptotic relation, that for each 1 ≤ a < b ≤ r, we have

P(rooks a, b are placed in the same row as each other) ∼ 4

3n
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(see Equation (21)), hence, if r, n → ∞, by the linearity of expectation we have

EWRR ∼ 2r2

3n
.

The same considerations hold for WCC, the number of pairs of rooks placed in the
same column as each other.

For any t ∈ (0,∞), for the regime in which n, k → ∞ with

r ∼ t
√
n, (3)

the net result of the above is that the expected numbers of attacks have nonzero
limits, given by

E(WRR +WCC) → 4

3
t2, EWCC → 2

3
t2. (4)

Not surprisingly, Poisson approximations for the situation of (3) are valid, im-
plying that

P(WRR +WCC = 0) → exp

(
−4

3
t2
)
, P(WCC = 0) → exp

(
−2

3
t2
)
.

Combining this with the bijections for set partitions counted by S(n, k), and per-
mutations counted by |s(n, k)|, and the placement of r non-attacking rooks on the
board Bn, the result is that in the regime given by (3), asymptotics for the Stirling
numbers are given by

S(n, k) ∼ 1

(n− k)!

(
n

2

)n−k

exp

(
−4

3
t2
)
,

|s(n, k)| ∼ 1

(n− k)!

(
n

2

)n−k

exp

(
−2

3
t2
)
.

(5)

Indeed, [12, 13] and [10, 11] provide asymptotics for Stirling numbers, but fail to
provide quantitative bounds for the regime in (3), while [2] gives a version of (5),
including preasymptotic bounds, by using the Chen–Stein method for Poisson ap-
proximation.

The above considerations only involved the event of having no attacks, when r
rooks are placed independently and uniformly distributed over the board Bn; that
is, the only information extracted from the bijection for non-attacking rooks is equi-
numerosity. However, as was shown in Section 2.1, the bijection also determines the
entire block structure of the set partition, or cycle structure of the permutation. In
what follows, for the sake of uniform terminology, we will describe the cycle structure
of a permutation as its block structure. Conditional on there being no attacks, the
placement of r independent rooks determines the block structure via the indicators
of alignments: for set partitions, these are the CR and RC coincidences, and for
permutations, these are the RR, CR, and RC coincidences; see Figure 2. A single
alignment causes two blocks of size 2 to merge into a block of size 3. In general, an
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Figure 2: A block of size 3 is formed by two aligned rooks. For the case of set
partitions, this is a CR or RC alignment, with one rook in coordinate (i, j) and
another rook in coordinate (j, k), 1 ≤ i < j < k ≤ n. The situation illustrated has
i = 2, j = 4, k = 5, n = 6.

�-fold alignment involves �+ 1 rooks, and gives rise to a block of size �+ 2. We call
a 2-fold alignment a double alignment. For the regime given by (3), the expected
number of �-fold alignments, for � ≥ 2, tends to zero, so with high probability a
uniformly random set partition or permutation has no blocks of size 4 or larger.
Furthermore, in this situation, the number of blocks of size 3 is equal to the number
of pairs of rooks in alignment. The expected numbers of alignments for the two cases
are given by1

E(WRC +WCR) → 2

3
t2, E(WRR +WRC +WCR) → 4

3
t2, (6)

see Equation (22). Hence, for the regime given by (3), by proving a Poisson approx-
imation for the number of alignments, conditional on the event of having no attacks,
we are able to analyze the full block structure.

The conditional Poisson limit required above follows from a Poisson process limit,
and uses the full power of the process version of the Chen–Stein method, as given
by [3, Theorem 2].

3 Proofs

3.1 Statement of the main lemma

We define the rook coincidence process X = (Xα)α∈I , a dependent process of indicator
random variables, where the index set I = {α = ({a, b}, s)} consists of all unordered
pairs of rooks 1 ≤ a < b ≤ r := n − k, and a marking s ∈ {RR,CC,RC,CR, SS}.
Note that |I| = 5

(
r
2

)
. Here s = RR means Xα indicates whether rooks a and b are

in the same row (but not the same square), s = CC means Xα indicates whether

1There is a numerical coincidence which caused us much confusion in early versions: comparing
(4) with (6), the constants involved are 4

3 and 2
3 for attacks, but 2

3 and 4
3 for alignments; in each

display, the situation for set partitions is given first, and the situation for permutations is given
second.
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rooks a and b are in the same column (but not the same square), s = RC means Xα

indicates whether the column number of rook a is the same as the row number of
rook b, s = CR means Xα indicates whether the row number of rook a is the same
as the column number of rook b, and s = SS means that rooks a and b occupy the
same square.

Remark 3.1. For every α ∈ I, we define an index set, Dα, to consist of all indices
β ∈ I which share at least one rook with α. The collection of random variables of
the rook coincidence process {Xα}α∈I is dissociated with respect to the family {Dα},
where dissociation is defined as the requirement that Xα is independent of all Xβ for
β ∈ I \Dα.

The following theorem gives a quantitative bound on the total variation dis-
tance between the joint distribution of dependent Bernoulli random variables and
a joint distribution of independent Poisson random variables. We quote a version
below which is a corollary to [3, Theorem 2], applicable to a collection of dissociated
Bernoulli random variables.

Theorem 3.2 ([3]). Let I denote some index set. Let X := (Xα)α∈I denote a
joint distribution of dissociated indicator random variables. Define Y := (Yα)α∈I ,
a joint distribution of independent Poisson random variables, where EYα = EXα

for all α ∈ I. For each α, let Dα denote the dependency neighborhood of Xα. Let
pα := EXα, pαβ := EXαXβ, α, β ∈ I, and

b1 :=
∑
α∈I

∑
β∈Dα

pαpβ, b2 :=
∑
α∈I

∑
β �=α
β∈Dα

pαβ .

Then we have
dTV (L(X),L(Y)) ≤ 4(b1 + b2).

Let the index set I be partitioned into disjoint, non-empty subsets, say I1, I2, . . . , Iν,
and let

Wi :=
∑
α∈Ii

Xα, Si :=
∑
α∈Ii

Yα.

Then we have

dTV (L(W1,W2, . . . ,Wν), L(S1, S2, . . . , Sν)) ≤ 4(b1 + b2).

We now apply Theorem 3.2 to obtain an explicit and completely effective upper
bound on the total variation distance between the rook coincidence process and a
corresponding joint distribution of independent Poisson random variables.

Lemma 3.3. For each n ≥ 2 and k ≥ 1, let X denote the rook coincidence process,
and let Y denote a corresponding joint distribution of independent Poisson random
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variables with EY = EX. Define r := n− k, N :=
(
n
2

)
, and

d := 4

(
r

2

)
(2r − 3) ·

([
20 ·

(
n

3

)2

N−4

]
+ 6 ·

[(
n

3

)
N−2 ·

(
n

2

)
N−2

]
+

[(
n

2

)
N−2

]2)
+ 4

(
r

3

)
N−3

[
92

(
n

4

)
+ 36

(
n

3

)
5n− 7

4
+ 6

(
n

2

)]
.

(7)

Then we have

dTV (L(X),L(Y)) ≤ d = O

(
(n− k)3

n2

)
.

Furthermore, let SRR, SCC, SRC SCR, SSS denote independent Poisson random vari-
ables with expected values EWRR, EWCC, EWRC, EWCR, and EWSS, respectively.
We have

dTV (L(WRR,WCC,WRC,WCR,WSS),L(SRR, SCC, SRC, SCR, SSS)) ≤ d

= O

(
(n−k)3

n2

)
.

We prove Lemma 3.3 in the next section.

3.2 Proof of Lemma 3.3

Recall the index set I from Section 3.1, and we further partition set I into the
following four index sets

IRR := {({a, b},RR), 1 ≤ a < b ≤ r}
ICC := {({a, b},CC), 1 ≤ a < b ≤ r},
IRC := {({a, b},RC), 1 ≤ a < b ≤ r},
ICR := {({a, b},CR), 1 ≤ a < b ≤ r},
ISS := {({a, b}, SS), 1 ≤ a < b ≤ r},

where
I = IRR ∪ ICC ∪ ICR ∪ IRC ∪ ISS.

Recall, also from Section 3.1, the definition of the indicator random variables Xα,
α ∈ I.

Define

pα := EXα, pαβ := EXαXβ, α, β ∈ I;

bA1 :=
∑

α∈IRR∪ICC

∑
β

pαpβ, bA2 :=
∑

α∈IRR∪ICC

∑
α�=β

pαβ ,
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where the sum in β is over those indices β ∈ IRR ∪ ICC which share a rook with α;

bL1 :=
∑

α∈IRC∪ICR

∑
β

pαpβ, bL2 :=
∑

α∈IRC∪ICR

∑
α�=β

pαβ,

where the sum in β is over those indices β ∈ IRC ∪ ICR which share a rook with α;

bAL
1 := 2

∑
α∈IRR∪ICC

∑
β

pαpβ, bAL
2 := 2

∑
α∈IRR∪ICC

∑
α�=β

pαβ ,

where the sum in β is over those indices β ∈ IRC ∪ ICR which share a rook with α;

bSS1 :=
∑
α

∑
β

pαpβ, bSS2 :=
∑
α

∑
α�=β

pαβ,

where the sum is over those α, β ∈ I in which α, β share a rook, and at least one of
α, β ∈ ISS; and finally

b1 := bA1 + bL1 + bAL
1 + bSS1 ,

b2 := bA2 + bL2 + bAL
2 + bSS2 ,

d := 4(b1 + b2).

Lemma 3.4. Let N :=
(
n
2

)
and r := n− k. We have

pα = 2

(
n

3

)
N−2, for all α ∈ IRR ∪ ICC, (8)

pα =

(
n

3

)
N−2, for all α ∈ IRC ∪ ICR, (9)

pα =

(
n

2

)
N−2, for all α ∈ ISS, (10)

bA1 =

(
r

2

)
(2r − 3) · 2 ·

[
2

(
n

3

)
N−2

]2
, (11)

bL1 =

(
r

2

)
(2r − 3) · 4 ·

[(
n

3

)
N−2

]2
, (12)

bAL
1 =

(
r

2

)
(2r − 3) · 4 ·

[
2

(
n

3

)
N−2

] [(
n

3

)
N−2

]
, (13)

bSS1 =

(
r

2

)
(2r − 3)

(
6 ·
[(

n

3

)
N−2 ·

(
n

2

)
N−2

]
+

[(
n

2

)
N−2

]2)
, (14)

b1 =

(
r

2

)
(2r−3) ·

([
20 ·
(
n

3

)2

N−4

]
+ 6 ·

[(
n

3

)
N−2 ·

(
n

2

)
N−2

]
+

[(
n

2

)
N−2

]2)
,

(15)
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bA2 =

(
r

3

)
N−3 · 12 ·

[
6 ·
(
n

4

)
+

(
n

3

)
(5n− 11)/4

]
, (16)

bL2 =

(
r

3

)
N−3 · 20

(
n

4

)
, (17)

bAL
2 =

(
r

3

)
N−3 · 24

(
n

3

)
5n− 11

4
, (18)

bSS2 =

(
r

3

)
N−3 · 6

[
6

(
n

3

)
+

(
n

2

)]
, (19)

b2 =

(
r

3

)
N−3

[
92

(
n

4

)
+ 36

(
n

3

)
5n− 7

4
+ 6

(
n

2

)]
. (20)

Proof. We make repeated use of the following identity: for all positive integers m,n,
we have

n∑
j=0

(
j

m

)
=

(
n + 1

m+ 1

)
;

see, e.g., [8, Chapter 2, Section 12].
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(C) IRR ∪ IRC

7
6
5
4
3
2 a b
1 •

1 2 3 4 5 6 7

(D) IRR ∪ ICR
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Figure 3: Cases for combinations of two indices in I, holding rooks a < b fixed, and
each • denotes a possible placement of a third rook which satisfies the set in each
case, where b < •.

Let p1 denote the probability that two given rooks a and b lie in the same row
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(but not the same square). We have

p1 = N−2
n−1∑
�=2

� (�− 1) = 2

(
n

3

)
N−2 . (21)

By symmetry, p1 is also the probability that two given rooks a and b lie in the same
column. This establishes Equation (8).

Let p2 denote the probability that two given rooks a and b, with a < b, are such
that the column number of rook a is the row number of rook b. We have

p2 = N−2
n−1∑
�=1

n∑
c=�+1

(n− c) = N−2

(
n

3

)
. (22)

By symmetry, p2 is also the probability that two given rooks a and b, with a < b, are
such that the row number of rook a is the column number of rook b. This establishes
Equation (9).

Let p3 denote the probability that two given rooks a and b, with a < b, are such
that the two rooks lie in the same square. We have

p3 =

(
n

2

)
N−2 , (23)

which establishes Equation (10).

Consider next the term bA1 , which is the total contribution of terms involving two
pairs of attacking rooks. The outer sum for bA1 is over 2

(
r
2

)
pairs of rooks, one factor

of
(
r
2

)
for row-attacking and another factor of

(
r
2

)
for column-attacking, and the inner

sum is over all indices β ∈ IRR ∪ ICC which share at least one rook with α; that is,
2(r − 2) + 1 = 2r − 3 cases for overlapping rook(s). We have

bA1 =

(
r

2

)
(2r − 3)4p21,

where the factor of 4 comes from the cases

(α, β) ∈ (IRR, IRR), (ICC, ICC), (IRR, ICC), (ICC, IRR),

which establishes Equation (11). Similarly, we have

bL1 =

(
r

2

)
(2r − 3)4p22,

where the factor of 4 comes from the cases

(α, β) ∈ (IRC, IRC), (IRC, ICR), (ICR, IRC), (ICR, ICR),

which establishes Equation (12). Also, we have

bAL
1 =

(
r

2

)
(2r − 3)2 (p1(2p2) + p2(2p1)) ,



R. ARRATIA AND S. DESALVO/AUSTRALAS. J. COMBIN. 81 (1) (2021), 25–45 36

which covers the cases (α, β) ∈ (IRR, IRC), (IRR, ICR), (ICC, IRC), (ICC, ICR) and
(β, α) ∈ (IRR, IRC), (IRR, ICR), (ICC, IRC), (ICC, ICR), which establishes Equation (13).
Finally,

bSS1 =

(
r

2

)
(2r − 3)

(
2p1p3 + 2p2p3 + p23

)
,

which covers the cases (α, β) ∈ (IRR, ISS), (ICC, ISS), (IRC, ISS), (ICR, ISS), (ISS, ISS)
and (β, α) ∈ (IRR, ISS), (ICC, ISS), (IRC, ISS), (ICR, ISS), noting that (ISS, ISS) only ap-
pears once, which establishes Equation (14). Adding these three expressions together
gives the expression in Equation (15).

The expressions involving b2 are more complicated. We consider first

bA2 =
∑

α∈IRR

⎛
⎜⎜⎝ ∑

α�=β
β∈Dα∩IRR

pαβ +
∑
α�=β

β∈Dα∩ICC

pαβ

⎞
⎟⎟⎠+

∑
α∈ICC

⎛
⎜⎜⎝ ∑

α�=β
β∈Dα∩IRR

pαβ +
∑
α�=β

β∈Dα∩ICC

pαβ

⎞
⎟⎟⎠ ,

where Dα ⊂ I refers to the set of all indices β for which α and β share at least one
rook. By symmetry, the two outer summations are the same, and so we consider
only the first sum since this implies that also

bA2 = 2
∑

α∈IRR

⎛
⎜⎜⎝ ∑

α�=β
β∈Dα∩IRR

pαβ +
∑
α�=β

β∈Dα∩ICC

pαβ

⎞
⎟⎟⎠ .

We first consider α, β ∈ IRR, where β shares exactly one rook with α, as depicted
in Figure 3A. We have

pαβ = N−3 ·
n−3∑
�=1

6

(
n− �

3

)
= N−3 · 6 ·

n−1∑
�=3

(
�

3

)
= N−3 · 6 ·

(
n

4

)
. (24)

The summation is now over all
(
r
2

) · (2(r − 2)) = (r)3 ways of selecting an unorderd
pair of distinct rooks, followed by selecting another unordered pair of distinct rooks
which share exactly one rook.

Next, the probability that two rooks share a row and a third rook shares one of
their columns, i.e., α ∈ IRR and β ∈ ICC, or vice versa, as depicted in Figure 3B, is
given by

pαβ = 2 ·N−3

n−2∑
�=1

n−1∑
c1=�+1

n∑
c2=c1+1

[(c1 − 2) + (c2 − 2)] = 2 ·N−3

[(
n

3

)
(5n− 11)

4

]
.

The outer factor of 2 is due to swapping the locations of the two rooks which share
the same row. The summation is now over all

(
r
2

)
(r − 2) = (r)3/2 ways of selecting

an unordered pair of distinct rooks, followed by selecting another distinct rook which
will share either the same column as the first rook (via the factor c1−2) or the second
rook (via the factor c2 − 2).
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Summing over these two cases, we have

bA2 = (r)3 ·N−3 · 2 ·
[
6 ·
(
n

4

)
+

(
n

3

)
5n− 11

4

]
, (25)

where the outer factor of 2 is from exchanging the roles of RR and CC. This estab-
lishes Equation (16).

Next, for alignments, there are two main cases, as depicted in Figure 3E and
Figure 3F, which rely on the assumption that a < b < •. We start with α ∈ IRC and
β ∈ IRC, which corresponds to Figure 3E. Let us consider first a 2-fold (i.e., double)
alignment; that is, three rooks, say a < b < c, where the row number of a is equal to
the column number of b, and the row number of b is equal to the column number of
c. In this case, none of the rooks are attacking, and all lie on distinct squares. We
have

pαβ = N−3
n−3∑
�=1

n−2∑
c1=�+1

n−1∑
c2=c1+1

(n− c2) = N−3

(
n

4

)
.

The number of such unordered triplets of rooks which satisfy 1 ≤ a < b < c ≤ r is(
r
3

)
.

The next case is when there are two alignments (but not a double alignment) due
to rooks b and c being in the same row, both aligned with rook a, with a < b and
a < c. We have

pαβ = N−3

n−3∑
�=1

n−2∑
c1=�+1

(n− c1) (n− c1 − 1) = N−3 2

(
n

4

)
.

The number of such triplets of distinct rooks which satisfy a < b and a < c is given
by

r−1∑
r1=1

r∑
r2=r1+1

(r − r1 − 1) = 2

(
r

3

)
.

Combining these we have

bRC,RC :=
∑

α∈IRC

∑
α�=β

β∈Dα,β∈IRC

pαβ =

(
n

4

)(
r

3

)
N−3 + 2

(
n

4

)
2

(
r

3

)
N−3 = 5

(
n

4

)(
r

3

)
N−3.

We next consider α ∈ IRC and β ∈ ICR, which corresponds to Figure 3F. A
similar calculation (or argument by symmetry) yields

bRC,CR :=
∑

α∈IRC

∑
β∈Dα,β∈ICR

pαβ = 5

(
n

4

)(
r

3

)
N−3.

All remaining cases for the summands in bL2 follow by symmetry, as substituting RC
with CR and vice versa in both summands does not change the value. It follows that

bL2 =
∑

α∈IRC∪ICR

∑
α�=β

pαβ = 2 bRC,RC + 2 bRC,CR = 20

(
r

3

)(
n

4

)
N−3. (26)
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The cases for both an attack and alignment are depicted in Figure 3C and
Figure 3D. For α ∈ IRR, β ∈ IRC, we consider the case where a < b < c and
β = {a, c} ∈ IRC, then we have

pαβ =
n−2∑
�=1

n∑
c1=�+1

(n− �− 1)(n− c1) =

(
n

3

)
3n− 5

4
,

with the summations extending over
(
r
3

)
terms.

Continuing with α ∈ IRR, β ∈ IRC, in the case β = {b, c} ∈ IRC, then we have the
same value of pαβ but with a summation extending over 2

(
r
3

)
terms. In the case where

β = {a, c} and c < a, this is the same as having two alignments that is not a double
alignment, and so pαβ = 2

(
n
4

)
, with

(
r
3

)
summands. In the case where β = {b, c} and

c < b, pαβ = 2
(
n
4

)
similarly, with 2

(
r
3

)
summands.

Summing over these cases, we have

bAL
2 = 2

∑
α∈IRR∪ICC

∑
α�=β

β∈Dα∩(IRC∪ICR)

pαβ = 4
∑

α∈IRR∪ICC

∑
β �=α

β∈Dα∩IRC

pαβ

= 8
∑

α∈IRR

∑
α�=β

β∈Dα∩IRC

pαβ = 8×
[
3

(
r

3

)(
n

3

)
3n− 5

4
N−3 + 3

(
r

3

)
2

(
n

4

)
N−3

]

= 24

(
r

3

)(
n

3

)
5n− 11

4
N−3. (27)

Finally, the summands in bSS2 are easily seen to be equivalent to the previous
cases involving one pair of rooks, as in

bSS2 = 2 (r − 2)

[ ∑
α∈IRR

pα/N +
∑

α∈ICC

pα/N +
∑

α∈IRC

pα/N +
∑

α∈ICR

pα/N +
∑
α∈ISS

N/N3

]

= (r)3N
−3

[
2

(
n

3

)
+ 2

(
n

3

)
+

(
n

3

)
+

(
n

3

)
+

(
n

2

)]

= (r)3N
−3

[
6

(
n

3

)
+

(
n

2

)]
. (28)

Adding equations (25), (26), (27), and (28), we obtain the expression for b2, which
establishes Equation (20).

Thus, Lemma 3.3 follows from equations (15) and (20) via d = 4(b1 + b2), which
is an upper bound on the total variation distance by Theorem 3.2.

3.3 Proof of Theorems 1.1 and 1.2

To prove our main theorems we must condition on the event that there are no pairs
of attacking rooks.
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We start with the joint distribution governing random set partitions. Define

W2 := WRC +WCR,

which is the sum of indicators for pairwise occurrence of an alignment; and define

R2 :=
∑

α∈ICR∪ICR

∑
α�=β

XαXβ ,

where the sum in β is over those indices β ∈ IRC ∪ ICR which share at least one rook
with α. Since R2 is defined as the sum of indicators, the event {R2 = 0} also implies
that there are no triple alignments, etc. We therefore have

dTV (D, (n− 2r +W2, r − 2W2,W2, 0, . . .) |WCC +WRR +WSS = 0)

= dTV (L(R2 |WRR +WCC +WSS = 0), 0),

where the right hand side is simply P(R2 > 0|WRR +WCC +WSS = 0). We have

P(R2 > 0|WRR +WCC +WSS = 0) =
P(R2 > 0,WRR +WCC +WSS = 0)

P(WRR +WCC +WSS = 0)

≤ ER2

e−λR−λC−λSS − d
,

where d is given in Equation (7),

λR = λC =

(
r

2

)
pα =

2
(
r
2

)(
n
3

)
(
n
2

)2 ,

where pα is given in Equation (8), and λSS =
(
r
2

)
/
(
n
2

)
, as long as e−λR−λC−λSS−d > 0.

By combining these expressions with Equation (17) for ER2, we have

P(R2 > 0|WRR +WCC +WSS = 0) ≤ 20
(
r
3

)(
n
4

)
/
(
n
2

)3
exp (−λR − λC − λSS)− d

,

with
20
(
r
3

)(
n
4

)
/
(
n
2

)3
exp (−λR − λC − λSS)− d

= O

(
exp

(
4

3

r2

n

)
r3

n2

)
whenever r = O(

√
n). This completes the proof of Theorem 1.2.

For random permutations, we define similarly

W1 := WRC +WCR +WRR

and
R1 :=

∑
α∈IRR

∑
α�=β

XαXβ +
∑

α∈IRC∪ICR

∑
α�=β

XαXβ,

where in the first term the sum in β is over those indices β ∈ IRR ∪ IRC ∪ ICR which
share at least one rook with α, and in the second term the sum in β is over those
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indices β ∈ IRC ∪ ICR which share at least one rook with α; i.e., R1 is the sum of all
indicator random variables of the event that three rooks form a double alignment in
the corresponding bijection for permutations. We have similarly,

dTV (C, (n− 2r +W1, r − 2W1,W1, 0, . . .) |WCC +WSS = 0) =

dTV (L(R0 |WCC +WSS = 0), 0),

where

P(R1 > 0 |WCC +WSS = 0) ≤ d/2

exp (−λC − λSS)− d
,

and where similarly as before, the inequality holds as long as e−λC−λSS − d > 0, with

d/2

exp (−λC − λSS)− d
= O

(
exp

(
2

3

r2

n

)
r3

n2

)

whenever r = O(
√
n).

This completes the proof of Theorem 1.1.

4 Applications

The total variation distance bounds in Lemma 3.3 can also be used to obtain in-
equalities for the Stirling numbers. See also [2] for similar bounds, and [1] for similar
bounds in a more general setting. We have

P(WRR +WCC +WSS = 0) =
(n− k)!S(n, k)(

n
2

)n−k
,

P(WCC +WSS = 0) =
(n− k)! |s(n, k)|(

n
2

)n−k
.

From Lemma 3.3 it follows that for n−k = O(
√
n), WCC, WRR, and WSS are approx-

imately Poisson distributed, with quantitative bounds provided for all finite values
of parameters. We prove in Theorem 4.2 completely effective bounds on Stirling
numbers using a sharper inequality especially optimized for the point probability at
0, presented in Theorem 4.1 below.

Theorem 4.1 ([3]). Under the assumptions and notation of Theorem 3.2, with W :=∑
α∈I Xα and λ := EW , we have∣∣P(W = 0)− e−λ

∣∣ ≤ min(1, λ−1)(b1 + b2).

Note that for this application of Poisson approximation, we use the smaller index
set IRR ∪ ICC ∪ ISS for Stirling numbers of the second kind, and smaller still index
set ICC ∪ ISS for Stirling numbers of the first kind.

Theorem 4.2. Let N =
(
n
2

)
,

λ1(n, r) :=
2
(
r
2

)(
n
3

)
(
n
2

)2 +

(
r
2

)(
n
2

) , λ2(n, r) :=
4
(
r
2

)(
n
3

)
(
n
2

)2 +

(
r
2

)(
n
2

) ,
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f1(n, r) :=

(
r

2

)
(2r − 3)N−4

(
4

(
n

3

)2

+ 4

(
n

3

)(
n

2

)
+

(
n

2

)2
)
,

f2(n, r) := (r)3N
−3

(
6

(
n

4

)
+ 4

(
n

3

)
+

(
n

2

))
,

h1(n, r) :=

(
r

2

)
(2r − 3)N−4

(
16

(
n

3

)2

+ 8

(
n

3

)(
n

2

)
+

(
n

2

)2
)
,

h2(n, r) := (r)3N
−3

[
12

(
n

4

)
+

(
n

3

)
5n− 3

2
+

(
n

2

)]
.

Define λ ≡ λ(n, n − k), f1 ≡ f1(n, n − k), f2 ≡ f2(n, n − k), h1 ≡ h1(n, n − k),
h2 ≡ h2(n, n− k). Then for each n ≥ 2 and 1 ≤ k ≤ n, we have

(
n
2

)n−k

(n− k)!
e−λ1

(
1− eλ1(f1 + f2)

) ≤ |s(n, k)| ≤
(
n
2

)n−k

(n− k)!
e−λ1

(
1 + eλ1(f1 + f2)

)
;

(
n
2

)n−k

(n− k)!
e−λ2

(
1− eλ2(h1 + h2)

) ≤ S(n, k) ≤
(
n
2

)n−k

(n− k)!
e−λ2

(
1 + eλ2(h1 + h2)

)
.

Proof. For Stirling numbers of the first kind, we use index set ICC ∪ ISS. Recalling
the notation from the proof of Lemma 3.3, we have

b1 =
∑

α∈ICC∪ISS

∑
β∈Dα∩(ICC∪ISS)

pαpβ

=
∑

α∈ICC

∑
β∈Dα∩ICC

pαpβ +
∑

α∈ICC

∑
β∈Dα∩ISS

pαpβ

+
∑
α∈ISS

∑
β∈Dα∩ICC

pαpβ +
∑
α∈ISS

∑
β∈Dα∩ISS

pαpβ

=

(
r

2

)
(2r − 3)

(
p21 + 2p1p3 + p23

)

=

(
r

2

)
(2r − 3)

(
4

(
n

3

)2

N−4 + 4

(
n

3

)(
n

2

)
N−4 +

(
n

2

)2

N−4

)
.

For b2 we have similarly (see Equations (24) and (28))

b2 =
∑

α∈ICC∪ISS

∑
β �=α

β∈Dα∩(ICC∪ISS)

pαβ

=
∑

α∈ICC

∑
β �=α

β∈Dα∩ICC

pαβ + 2
∑

α∈ICC

∑
β �=α

β∈Dα∩ISS

pαβ +
∑
α∈ISS

∑
β �=α

β∈Dα∩ISS

pαβ

= (r)3

(
6 ·
(
n

4

)
N−3 + 2 ·

(
2

(
n

3

)
N−3

)
+

(
n

2

)
N−3

)
.
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For Stirling numbers of the second kind, we use index set IRR ∪ ICC ∪ ISS. A
similar calculation as the above yields

b1 = 4p21 + 4p1p3 + p23,

and

b2 = bA2 + 2 (r − 2)

[ ∑
α∈IRR

pα/N +
∑

α∈ICC

pα/N +
∑
α∈ISS

N/N3

]

= (r)3 ·N−3 · 2 ·
[
6 ·
(
n

4

)
+

(
n

3

)
5n− 11

4

]
+ (r)3N

−3

[
2

(
n

3

)
+ 2

(
n

3

)
+

(
n

2

)]
.

Applying Theorem 4.1 and rearranging the terms completes the proof.

Another approach for obtaining preasymptotic lower and upper bounds for the
sum of dissociated indicator random variables is by using the Lovász local lemma [7]
for the lower bound (see also [15]), and Suen’s inequality [16] for the upper bound
(see also [9]). See for example [6, 14] for applications involving pattern-avoidance in
random permutations. First we state the theorems in terms of dependency graphs
and apply them below.

Theorem 4.3 (Lovász local lemma [15]). Let {Ei}mi=1 be a collection of events in
some probability space, and let {xi}mi=1 be a sequence of numbers in (0, 1). Let H
denote the dependency graph for {Ei}mi=1, which is a graph with vertex set {1, . . . , m}
such that for disjoint subsets A and B of {1, . . . , m}, no edges in H implies that
{Ei}i∈A and {Ei}i∈B are independent. Suppose for each � = 1, . . . , m we have for
real-valued xi ∈ (0, 1) that

P (E�) ≤ x�

∏
i∼j

(1− xi). (29)

Then we have

P

(
m⋂
i=1

Ac
i

)
≥

m∏
i=1

(1− xi). (30)

Theorem 4.4 (Suen’s inequality [9, Theorem 2]). Let {Ii}i∈I denote a finite family
of indicator random variables defined on a common probability space. Let H denote
the dependency graph for {Ii}i∈I, which is a graph with vertex set I such that for
disjoint subsets A and B of I, no edges in H implies that {Ii}i∈A and {Ii}i∈B are
independent. Define random variable N :=

∑m
i=1 Ii, and let μi := E Ii, i = 1, . . . , m.

Finally, define

Δ =
∑

{i,j}:i∼j

EIiIj , δ = max
i

∑
j∼i

EIj .

Then

P(N = 0) ≤ exp

(
−
∑
i∈I

μi +Δe2δ

)
.
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Theorem 4.5. Let N =
(
n
2

)
. Let p2 ≡ p2(n) =

4(n3)
N2 + 1

N
be the probability that

two rooks are attacking or lie on the same square, and let p1 ≡ p1(n) =
2(n3)
N2 + 1

N
be

the probability that two rooks lie in the same column, possibly the same square, as
computed in Equation (21). We define

λ1 ≡ λ1(n, r) := p1(n)

(
r

2

)
, λ2 ≡ λ2(n, r) := p2(n)

(
r

2

)
,

g1(n, r) :=
1

2

(
1− p1 −

√
1− (4 (2r − 2)− 2) p1 + p21

)
,

g2(n, r) :=
1

2

(
1− p2 −

√
1− (4 (2r − 2)− 2) p2 + p22

)
,

λ1 ≡ λ1(n, n− k), λ2 ≡ λ2(n, n− k), g1 ≡ g1(n, n− k), g2 ≡ g2(n, n− k), and recall
f2 and h2 from Theorem 4.2.

For all n ≥ 2 and 1 ≤ k ≤ n such that p1 e
g1 ∈ (0, 1), we have

(
n
2

)n−k

(n− k)!
(1− p1 e

g1)(
n−k
2 ) ≤ |s(n, k)| ≤

(
n
2

)n−k

(n− k)!
e−λ1 exp (f2 exp(2 p1 (2(n− k)− 3)) .

Also, for all k and n such that p2 e
g2(n,n−k) ∈ (0, 1), we have

(
n
2

)n−k

(n− k)!
(1− p2 e

g2)(
n−k
2 ) ≤ S(n, k) ≤

(
n
2

)n−k

(n− k)!
e−λ2 exp (h2 exp(2 p2 (2(n− k)− 3)) .

Proof. First we prove the upper bounds using Suen’s inequality. Recall from Sec-
tion 3.1 the random variables Xα, for α ∈ I, where Xα is the indicator of some event,
which we now denote by Eα. Using the notation from Section 3.2, note that event Eα

depends on whether α is in IRR, ICC, ISS. We write Ec
α to denote the complementary

event. Define E1 := {Eα}α∈ICC∪ISS, and E2 := {Eα}α∈IRR∪ICC∪ISS. We next define the
dependency graph H1 of E1 to be the graph with vertex set V (H1) = ICC ∪ ISS, and
edge set E(H1), where edges occur inH1 if the nodes corresponding to α, β ∈ ICC∪ISS
share a rook. We similarly define the dependency graph H2 of E2 to be the graph
with vertex set V (H2) = ICC ∪ IRR ∪ ISS, and edge set E(H2), where edges occur in
H2 if the nodes corresponding to α, β ∈ ICC ∪ IRR ∪ ISS share a rook.

For j = 1, 2, we define

Δj :=
∑

{α,β}∈E(Hj)

P(Eα ∩ Eβ),

and
δj := max

α∈V (Hj)

∑
β:{α,β}∈E(Hj)

P(Eβ).

It is easy to see that Δ1 =
∑

α∈ICC∪ISS
∑

α�=β∈Dα∩(ICC∪ISS) pαβ, and hence is equal to
f2 computed in the proof of Theorem 4.2; similarly, Δ2 is equal to h2. Finally, δj is
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the sum over all overlapping sets of rooks of the probability that two rooks will be
attacking, which is the same for all rooks and hence the maximum does not impact
the value. We are thus able to apply Theorem 4.4 separately to the two cases.

The lower bounds follow from the approach in the proof of [6, Proposition 7.7].

We performed a numerical comparison on four different methods:

1. Permutation coupling [2, Theorem 5];

2. Independence coupling [2, Theorem 6];

3. Theorem 4.2;

4. Theorem 4.5.

Based on numerical calculations using a few large values of n, using r = 1, 2, . . ., the
Lovász local lemma appears to outperform the other methods for accuracy of the
lower bound, with the method in Theorem 4.2 coming in a distant second. For the
upper bound, in each of the examples investigated, the method in Theorem 4.2 was
more accurate than the other competing methods.
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