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Abstract

In this paper, we obtain some lower bounds for the Wiener index of
Cohen-Macaulay graphs. We also give a lower bound for the Wiener
index of very well-covered graphs.

1 Introduction

In a molecule, if we represent atoms by vertices and bonds by edges, we obtain
a molecular graph [16, 18]. Graph theoretic invariants of molecular graphs, which
predict properties of the corresponding molecule, are known as topological indices.
The oldest topological index is the Wiener index [26], which was introduced in 1947
as the path number.

At first the Wiener index was used for predicting the boiling points of paraffins
[26], but later a strong correlation between the Wiener index and the chemical prop-
erties of a compound was found. Nowadays this index is a tool used for preliminary
screening of drug molecules [1]. The Wiener index also predicts binding energy of
protein-ligand complex at a preliminary stage. A great deal of knowledge on the
Wiener index is accumulated in several survey papers [5, 6, 11].

In this paper, a graph is assumed to be finite and simple. Denote by G =
(V (G), E(G)) the graph with vertex set V (G) and edge set E(G). The distance
between the vertices u and v of G is denoted by dG(u, v) or d(u, v) which is defined
as the length of a shortest path between u and v in G. The Wiener index of a graph
G, denoted by W (G), is the sum of the distances between all (unordered) pairs of
vertices of G,

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

Let K be a field and let S = K[x1, . . . , xn] be the polynomial ring in n variables over
K with each xi of degree 1. Let I ⊂ S be a monomial ideal and G(I) its unique
minimal monomial generators.
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We consider the polynomial ring K[V (G)] whose variables are xv, v ∈ V (G). The
ideal of K[V (G)] generated by quadratic squarefree monomial ideals xuxv, {u, v} ∈
E(G) is called the edge ideal of G and is denoted by I(G). A graph G is called
Cohen-Macaulay over the field K if K[V (G)]/I(G) is a Cohen-Macaulay ring (see
[2, 24]). A subset F of V (G) is a stable set or independent set if e � F for each
e ∈ E(G). The cardinality of the maximum stable set is denoted by β(G). Here G
is called well-covered if every maximal stable set has the same cardinality. On the
other hand, a subset D of V (G) is a vertex cover of G if D∩e �= ∅ for every e ∈ E(G).
The number of vertices in a minimum vertex cover of G is called the covering number
of G and is denoted by α(G). This number coincides with height(I(G)), the height
of I(G). If the minimal vertex covers have the same cardinality, then G is called
an unmixed graph. The Stanley-Reisner complex of I(G), denoted by ΔG, is the
simplicial complex whose faces are the stable sets of G. Recall that a simplicial
complex Δ is called pure if every facet has the same number of elements. Thus, ΔG

is pure if and only if G is well-covered.

Some properties of G, ΔG and I(G) allow an interaction between commuta-
tive algebra and combinatorial theory. Examples of these properties are: Cohen-
Macaulayness, shellability, vertex decomposability and well-coveredness. These prop-
erties have been studied in [2, 7, 12, 20, 22, 23, 24].

The present paper is organized as follows. In Section 1 we connect the Wiener
index with some homological and algebraic invariants, such as projective dimension
and regularity. In Theorem 2.4, we give a lower bound for the Wiener index of
general Cohen-Macaulay graphs in terms of projective dimension of the graphs. We
use this result to obtain a lower bound for the Wiener index of a Cohen-Macaulay
graph G by using the regularity of J(G) = I(G)∨, see Corollary 2.6.

In Section 2 we consider a class of graphs G such that the height of the edge
ideal I(G) is half of the number |V (G)| of the vertices. Such a class of graphs is
rich, because it includes all the unmixed bipartite graphs and all the grafted graphs.
In Theorem 3.2, we obtain a lower bound for the Wiener index of very well-covered
graphs. In the last section we give a lower bound for the Wiener index of Boolean
graphs, see Theorem 4.1.

2 Cohen-Macaulay graphs

In this section we give some lower bounds for the Wiener index of Cohen-Macaulay
graphs. Since calculating the Wiener index of a graph can be computationally ex-
pensive, it is of some interest to know the extreme values of the Wiener index.

Let S = K[x1, . . . , xn] be the polynomial ring over a field K in the variables
x1, . . . , xn, and let I ⊂ S be a monomial ideal. Let G be a finite simple graph
on the vertex set V (G) with edge set E(G). In other words, |V (G)| < ∞ and
E(G) ⊂ V (G) × V (G) \ {{v, v} : v ∈ V (G)}. All graphs considered in this paper
are finite simple graphs, which henceforth will simply be called graphs. Let K[V (G)]
be the polynomial ring over a field K whose variables are vertices of G. The empty
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graph on n vertices is denoted by En.

A vertex cover of a graph G on V (G) is a subset D ⊂ V (G) such that {u, v}∩D �=
∅ for all {u, v} ∈ E(G). A vertex cover D is called minimal if D is a vertex of G, and
no proper subset of D is a vertex cover of G. We denote by α(G) the set of minimal
vertex covers of G.

An independent set of G is a set F ⊂ V (G) such that {u, v} /∈ E(G) for all
u, v ∈ F . Obviously, F is an independent set of G if and only if V (G)\F is a vertex
cover ofG. Thus the maximal independent sets ofG correspond to the minimal vertex
covers of G. The vertex independence number, denoted by β(G), is the number of
vertices in any largest independent set of vertices.

Consider the minimal free graded resolution ofM = K[V (G)]/I(G) as a K[V (G)]-
module.

0 → ⊕j∈ZK[V (G)](−j)βpj (M) → · · · → ⊕j∈ZK[V (G)](−j)β0j (M) → M → 0

The Castelnuovo-Mumford regularity (or simply the regularity) of M =
K[V (G)]/I(G) is defined as

reg(K[V (G)]/I(G)) := max{j − i : βi,j �= 0}.

Also, the projective dimension of M is defined as

pd(M) := max{i : βi,j �= 0 for some j}.

We define pd(G) := pd(K[V (G)]/I(G)).

G is said to be a Cohen-Macaulay graph over K if

depth(K[V (G)]/I(G)) = dim(K[V (G)]/I(G)).

Remark 2.1. The edge ideal I(G) is Cohen-Macaulay if and only if K[V (G)]/I(G)
is Cohen-Macaulay, that is,

depth(K[V (G)]/I(G)) = dim(K[V (G)]/I(G)).

A finite graph G is called unmixed if all minimal vertex covers of G have the same
cardinality.

Let G1 and G2 be graphs on the vertex sets V (G1) = {x1, . . . , xn} and V (G2) =
{y1, . . . , ym}, respectively. Then the join of G1 and G2, denoted by G1 ∗ G2, is a
graph on the vertex set V (G1) ∪ V (G2) and edge set

E(G1) ∪ E(G2) ∪ {{xi, yj} : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Example 2.2. Let Em be the empty graph on the vertex set {y1, . . . , ym} and let
Kn∗Em be the join of complete graph Kn and Em . It is easy to see thatK1∗En

∼= Sn

and Kn ∗ E1
∼= Kn, where Sn is the star graph on n + 1 vertices.
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In the following, we compute the minimal prime ideals of joins of graphs.

Proposition 2.3. Let G1 and G2 be graphs on the vertex sets V (G1) = {x1, . . . , xn}
and V (G2) = {y1, . . . , ym}, respectively. Suppose that R = K[V (G1 ∗G2)].

i) If n+ height(I(G2)) = m+ height(I(G1)) then

|Min(I(G1 ∗G2))| = |Min(I(G1))|+ |Min(I(G2))|.

ii) If n+ height(I(G2)) > m+ height(I(G1)) then

|Min(I(G1 ∗G2))| = |Min(I(G1))|.

iii) If n + height(I(G2)) < m+ height(I(G1)) then

|Min(I(G1 ∗G2))| = |Min(I(G2))|.

Proof. For a graph G, it is well-known that the minimal prime ideals of I(G) corre-
spond to the minimal vertex covers of G. Note that if p ∈ Min(I(G1 ∗ G2)), then
either p = p1 + (y1, . . . , ym) or p = p2 + (x1, . . . , xn), where p1 ∈ Min(I(G1)) and
p2 ∈ Min(I(G2)). Hence the assertion follows. �

A simplicial complex Δ on the vertex set V = {x1, . . . , xn} is a collection of
subsets of V such that (i) xi ∈ Δ for all xi ∈ V and (ii) F ∈ Δ and G ⊆ F imply
G ∈ Δ. An element F ∈ Δ is called a face of Δ. For F ⊂ V , we define the dimension
of F by dimF = |F | − 1. Let d = max{|F | : F ∈ Δ} and define the dimension of Δ
to be dimΔ = d− 1. A maximal face of Δ with respect to inclusion is called a facet
of Δ. If all facets of Δ have the same dimension, then Δ is called pure.

If I is an ideal of S generated by squarefree monomials, the Stanley-Reisner
simplicial complex ΔI associated to I has vertex set V = {xi | xi /∈ I} and its faces
are defined by

ΔI = {{xi1 , . . . , xik} | i1 < · · · < ik, xi1 · · ·xik /∈ I}.
Conversely if Δ is a simplicial complex with vertex set V contained in {x1, . . . , xn},
the Stanley-Reisner ideal IΔ is defined as

IΔ = ({xi1 · · ·xir | i1 < · · · < ir, {xi1, . . . , xir} /∈ Δ}),
and its Stanley-Reisner ring K[Δ] is defined as the quotient ring S/IΔ.

A simplicial complex Δ is said to be Cohen-Macaulay over K if the Stanley-
Reisner ring K[Δ] is a Cohen-Macaulay ring.

Note that the Stanley-Reisner complex of I(G) is given by ΔI(G) = ΔG, where
ΔG is the simplicial complex whose faces are the independent vertex sets of G. Thus

K[ΔG] = K[V (G)]/I(G),

where K[ΔG] is the Stanley-Reisner ring of ΔG. The simplicial complex ΔG whose
faces are the independent vertex sets of G is called the independence complex of G.
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Let I ⊂ S be a monomial ideal and G(I) its unique minimal monomial generators.
The Auslander and Buchsbaum Theorem says that depthS/I = dimS−pdS/I, see
for example [2].

Since height(I) = dimS−dimS/I, and since S/I is Cohen-Macaulay if and only
if dimS/I = depthS/I, it follows that

S/I is Cohen–Macaulay ⇐⇒ height(I) = pdS/I. (1)

As the main result of this section we have the following.

Theorem 2.4. Let G be a Cohen-Macaulay graph on N vertices. Then

W (G) ≥ N2 + (1 + pd(G))(
1

2
pd(G)−N)

and the equality holds if and only if pd(G) = N − 1.

Proof. Let G be a Cohen-Macaulay graph on the vertex set V (G). We set |V (G)| =
N . Then [12, Lemma 9.1.10] implies that G is unmixed, i.e., all of its associated
primes have the same height. According to [12, Lemma 9.1.4] we have that the
associated primes of an edge ideal correspond to the minimal vertex covers of G.
Then [25, Corollary 7.2.5] implies that

height I(G) = dim(K[V (G)])− dim(K[V (G)]/I(G)) = N − dim(K[V (G)]/I(G)).

The complement of a vertex cover is an independent set, that is, a face of ΔG. It
follows from [19, Theorem 1.3] that

dim(K[V (G)]/I(G)) = dim(K[V (G)]/IΔG
) = dimΔG + 1 = β(G)− 1 + 1 = β(G).

Since all the minimal vertex covers have the same cardinality, so do the facets of ΔG,
that is, ΔG is pure and dim(ΔG) = N − height(I(G)) − 1. Hence, by applying [2,
Theorem 1.3.3] we obtain:

pd(G) = dim(K[V (G)])− depth(K[V (G)]/I(G)) = N − dim(K[V (G)]/I(G)).

Suppose that F ∈ ΔG is a maximum independent set of G. Thus [25, Corollary
6.3.5], [25, Corollary 7.2.5] together with (1) yield

W (G) =
∑

u,v∈G\F
d(u, v) +

∑
u,v∈F

d(u, v) +
∑

u∈G\F,v∈F
d(u, v)

≥
(
N − β(G)

2

)
+ 2

(
β(G)

2

)
+ β(G)(N − β(G))

=
1

2
(N − β(G))(N − β(G)− 1) + β(G)(N − 1)

=
1

2
(N − dimΔG − 1)(N − dimΔG − 2) + (dimΔG + 1)(N − 1)

=
1

2
pd(G)(pd(G)− 1) + (N − pd(G))(N − 1)

= N2 + (1 + pd(G))(
1

2
pd(G)−N).
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If the equality holds, then for every u, v ∈ V (G) \ F the edge {u, v} ∈ E(G) and
every vertex of F is adjacent to all vertices of V (G) \ F . This implies

G ∼= Kheight(I(G)) ∗ EN−height(I(G)).

One can see that if C is a minimal vertex cover of Kheight(I(G)) ∗EN−height(I(G)), then
either C = A ∪ V (EN−height(I(G))) or C = V (Kheight(I(G))) ∪ B, where A and B are
minimal vertex covers of Kheight(I(G)) and EN−height(I(G)), respectively. Then by [2,
Proposition 1.2.9] we have

depth(K[V (Kheight(I(G)) ∗ EN−height(I(G)))]/I(Kheight(I(G)) ∗ EN−height(I(G)))) = 1.

Since G is a Cohen-Macaulay graph, by Lemma 2.3 together with (1) we have

N − pd(Kpd(G) ∗ EN−pd(G)) = 1.

Thus pd(G) = N − 1.

Conversely, suppose that pd(G) = N − 1; then it is obvious that

W(G) = N2 + (1 + pd(G))(
1

2
pd(G)−N),

and the proof is complete. �
For a monomial ideal I = (x11 . . . x1n1 , . . . , xt1 . . . xtnt) of the polynomial ring S,

the Alexander dual ideal of I, denoted by I∨, is defined as

I∨ := (x11, . . . , x1n1) ∩ · · · ∩ (xt1, . . . , xtnt).

The cover ideal associated to a graph G is the monomial ideal

J(G) := I(G)∨ =
⋂

{i,j}∈E(G)

(xi, xj).

The following theorem, which was proved in [21], is one of our main tools in the
study of the regularity of the ring K[V (G)]/I(G).

Theorem 2.5. [21, Theorem 2.1] Let I ⊂ S = K[x1, . . . , xn] be a squarefree mono-
mial ideal. Then pd(I∨) = reg(S/I).

By using Theorems 2.4 and 2.5, we have the following corollary.

Corollary 2.6. Let G be a Cohen-Macaulay graph on N vertices. Then

W (G) ≥ N2 + (1 + reg(J(G)))(
1

2
reg(J(G))−N)

and the equality holds if and only if reg(J(G)) = N − 1.
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Example 2.7. Consider the class SQC of well-covered graphs from [17]. A vertex v
of a graph G is said to be simplicial if the induced subgraph of G on the set N [v] is
a complete graph and we say this complete graph is a simplex of G.

A 5-cycle C5 of a graph G is called basic if C5 does not contain two adjacent
vertices of degree 3 or more in G; a 4-cycle is called basic if it contains two adjacent
vertices of degree 2, and the remaining two vertices belong to a complete subgraph
or a basic 5-cycle of G.

A graph is in the class SQC if there are simplicial vertices x1, . . . , xm; basic
5-cycles C1, . . . , Cs; and basic 4-cycles Q1, . . . , Qt such that

V (G) =

m⋃
j=1

N [xj ] ∪
s⋃

j=1

V (Cj) ∪
t⋃

j=1

B(Qj)

and this forms a partition of V (G), where B(Qj) is the set of two vertices of degree
2 of the basic 4-cycle Qj. Such a graph is Cohen-Macaulay [13, Theorem 2.3].
Therefore by Theorem 2.4 and [17, Theorem 3.1], we have

W (G) ≥ |V (G)|2 + (|V (G)| −m− 2s− t + 1)(
1

2
(|V (G)| −m− 2s− t)−|V (G)|)

= |V (G)|2 + (|V (G)| −m− 2s− t + 1)(−1

2
|V (G)| −m− 2s− t)

=
1

2
(|V (G)|)(|V (G)| − 1) + (−m− 2s− t)(

1

2
|V (G)| −m− 2s− t+ 1)

and the equality holds if and only if m+ 2s+ t = 1.

3 Wiener index of very well-covered graphs

In [9], Gitler and Valencia proved that if G is a well-covered graph without isolated

vertices, then h(I(G)) ≥ |V (G)|
2

.

A graph G is called very well-covered if it is unmixed without isolated vertices and
with h(I(G)) = |V (G)|

2
. Since the class of very well-covered graphs contains unmixed

bipartite graphs, whiskered graphs and grafted graphs (see [4, 8]), it is interesting in
the algebraic sense as well.

The main goal of this section is to study the Wiener index of very well-covered
graphs. The following is a useful result on very well-covered graphs that allows us
to assume a certain order on their vertices and edges.

Lemma 3.1. [10, Corollary 3.2] Let G be a very well-covered graph with 2n vertices.
Then there is a relabeling of vertices V (G) = {x1, . . . , xn, y1, . . . , yn} such that the
following two conditions hold:

(1) X = {x1, . . . , xn} is a minimal vertex cover of G and Y = {y1, . . . , yn} is a
maximal independent set of G;

(2) for all 1 ≤ i ≤ n, {xi, yi} ∈ E(G).
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Theorem 3.2. Let G be a very well-covered graph with 2n vertices. Then

W (G) ≥ 1

2
n(5n− 3)

and the equality holds if and only if G ∼= Kn ∗ En.

Proof. Let G be a very well-covered graph with 2n vertices, and let ΔG be its in-
dependence complex. By [25, Corollary 6.3.5] together with [25, Corollary 7.2.5] it
follows that

2n = height(I(G)) + β(G) = height(I(G)) + dim(K[V (G)]/I(G))

= height(I(G)) + dim(K[V (G)]/IΔG
)

= height(I(G)) + dimΔG + 1.

Therefore, Lemma 3.1 yields dim(ΔG) = n − 1 and hence β(G) = n. Suppose that
F ∈ ΔG is a maximum independent set of G. Then

W (G) =
∑

u,v∈G\F
d(u, v) +

∑
u,v∈F

d(u, v) +
∑

u∈G\F,v∈F
d(u, v)

≥
(
N − β(G)

2

)
+ 2

(
β(G)

2

)
+ β(G)(N − β(G))

=
1

2
(2n− β(G))(2n− β(G)− 1) + β(G)(2n− 1)

=
1

2
(2n− n)(2n− n− 1) + n(2n− 1)

=
1

2
n(5n− 3).

If the equality holds, then for every u, v ∈ V (G) \ F the edge {u, v} ∈ E(G) and
every vertex of F is adjacent to all vertices of V (G) \ F . This implies G ∼= Kn ∗En.
Conversely, suppose that G ∼= Kn ∗ En. Then

W (Kn ∗ En) =
∑

u,v∈Kn

d(u, v) +
∑

u,v∈En

d(u, v) +
∑

u∈Kn,v∈En

d(u, v)

=
1

2
n(n− 1) + n(n− 1) + n2

=
1

2
n(5n− 3),

and the assertion follows. �

Example 3.3. In [4], the authors introduced B-grafted graphs, which are a gener-
alization of grafted graphs introduced by Faridi [8]. Let H0 be a graph with the
labeled vertices 1, 2, . . . , q. For every i = 1, . . . , q, let Bi be a bipartite graph with
labeled partition Xi and Yi such that |Xi| = |Yi| = ni. (We do not give a label to
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each vertex of Bi, but we distinguish the partition Xi and Yi). We assume that Bi

has no isolated vertex for every i = 1, . . . , q. Let

G = G(H0;B1, . . . , Bq)

be a B-grafted graph with the vertex set V (G) := X ∪ Y , where X = X1 ∪ · · · ∪Xq

and Y = Y1 ∪ · · · ∪ Yq.

The edge set E(G) of G is xy ∈ E(G) if and only if either there exist i, j such
that x ∈ Xi, y ∈ Xj, and ij ∈ E(H0) or there exists i such that x ∈ Xi, y ∈ Yi, and
xy ∈ E(Bi).

Note that X is a minimal vertex cover of G and that Y is a maximal independent
set of G. If G is an unmixed B-grafted graph, then by Theorem 3.2 we have

W (G) ≥ 1

2
(2(

q∑
i=1

ni)−
q∑

i=1

ni)(2(

q∑
i=1

ni)−
q∑

i=1

ni − 1) + (

q∑
i=1

ni)(2(

q∑
i=1

ni)− 1)

=
1

2
(

q∑
i=1

ni)(5(

q∑
i=1

ni)− 3)

and the equality holds if and only if G ∼= K∑q
i=1 ni

∗ E∑q
i=1 ni

.

4 Wiener index of Boolean graphs

In this section we obtain a lower bound for the Wiener index of Boolean graphs.
Let [n] = {1, . . . , n} and let 2[n] denote the power set of [n]. Recall from [15] that a
finite Boolean graph, denoted by Bn, is a graph defined on the vertex set 2n\{[n], ∅},
in which two vertices u and v are adjacent if u ∩ v = ∅. Clearly, Bn is also the
zero-devisor graph of the finite Boolean ring

∏n
i=1 Z2. Note that a finite or infinite

Boolean graph has a unique corresponding zero-divisor commutative semigroup.

Theorem 4.1. For any n ≥ 1, let G = Bn be the Boolean graph. Then

W (G) ≥ 5

8
22n − 13

4
2n + 4.

Proof. Suppose that G = Bn is a Boolean graph for all n ≥ 1. A subset Υ =
{b1, . . . , bt} of V (G) is an independent vertex set if and only if bi ∩ bj �= ∅ holds for
any distinct bi, bj in Υ. By [14, Theorem 2.1] all maximal independent vertex sets
Υ of V (G) have the same cardinality 2n−1 − 1 and for any bi ∈ V (G), only one of
{bi, bci} is in Υ, where bci = [n] \ bi. Thus the edge ideal of the graph Bn has height
2n−1 − 1. Hence, by applying (1) and [14, Theorem 2.4] we obtain

pd(Bn) = 2n−1 − 1.
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Therefore, Theorem 2.4 yields

W (G) ≥ 1

2
(2n−1 − 1)(2n−1 − 2) + (2n − 2n−1 − 1)(2n − 3)

= (2n − 2)2 + (1 + 2n−1 − 1)(
1

2
(2n−1 − 1)− (2n − 2))

=
5

8
22n − 13

4
2n + 4.

Then the desired conclusion follows. �

Example 4.2. Let G = B4 be a Boolean graph. The edge ideal of B4 is

I(B4) = (x1x2, x1x3, x1x4, x1x8, x1x9, x1x10, x1x14,

x2x3, x2x4, x2x6, x2x7, x2x10, x2x13, x3x4,

x3x5, x3x7, x3x9, x3x12, x4x5, x4x6, x4x8,

x4x11, x5x10, x6x9, x7x8).

We calculate the primary decomposition of I(B4) by CoCoA [3] as follows:

I(B4) = (x1, x2, x3, x4, x7, x9, x10) ∩ (x1, x2, x4, x5, x7, x9, x12)

∩(x1, x2, x3, x5, x6, x8, x11) ∩ (x1, x2, x4, x5, x6, x8, x9)

∩(x1, x2, x3, x4, x5, x6, x7) ∩ (x1, x2, x3, x4, x6, x7, x10)

∩(x1, x2, x3, x4, x6, x8, x10) ∩ (x1, x3, x4, x6, x7, x10, x13)

∩(x1, x2, x3, x4, x8, x9, x10) ∩ (x2, x3, x4, x8, x9, x10, x14).

Hence by (1) we have height(I(B4)) = pd(I(B4)) = 7. Therefore, Theorem 4.1 yields

W (G) ≥ 5

8
28 − 13

4
24 + 4 = 112.
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