On the Wiener index of Cohen-Macaulay and very well-covered graphs

Roya Moghimipor
Department of Mathematics
Safadasht Branch, Islamic Azad University
Tehran, Iran
roya_moghimipour@yahoo.com

Abstract

In this paper, we obtain some lower bounds for the Wiener index of Cohen-Macaulay graphs. We also give a lower bound for the Wiener index of very well-covered graphs.

1 Introduction

In a molecule, if we represent atoms by vertices and bonds by edges, we obtain a molecular graph $[16,18]$. Graph theoretic invariants of molecular graphs, which predict properties of the corresponding molecule, are known as topological indices. The oldest topological index is the Wiener index [26], which was introduced in 1947 as the path number.

At first the Wiener index was used for predicting the boiling points of paraffins [26], but later a strong correlation between the Wiener index and the chemical properties of a compound was found. Nowadays this index is a tool used for preliminary screening of drug molecules [1]. The Wiener index also predicts binding energy of protein-ligand complex at a preliminary stage. A great deal of knowledge on the Wiener index is accumulated in several survey papers $[5,6,11]$.

In this paper, a graph is assumed to be finite and simple. Denote by $G=$ $(V(G), E(G))$ the graph with vertex set $V(G)$ and edge set $E(G)$. The distance between the vertices u and v of G is denoted by $d_{G}(u, v)$ or $d(u, v)$ which is defined as the length of a shortest path between u and v in G. The Wiener index of a graph G, denoted by $W(G)$, is the sum of the distances between all (unordered) pairs of vertices of G,

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) .
$$

Let \mathbb{K} be a field and let $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over \mathbb{K} with each x_{i} of degree 1 . Let $I \subset S$ be a monomial ideal and $G(I)$ its unique minimal monomial generators.

We consider the polynomial ring $\mathbb{K}[V(G)]$ whose variables are $x_{v}, v \in V(G)$. The ideal of $\mathbb{K}[V(G)]$ generated by quadratic squarefree monomial ideals $x_{u} x_{v},\{u, v\} \in$ $E(G)$ is called the edge ideal of G and is denoted by $I(G)$. A graph G is called Cohen-Macaulay over the field \mathbb{K} if $\mathbb{K}[V(G)] / I(G)$ is a Cohen-Macaulay ring (see [2, 24]). A subset F of $V(G)$ is a stable set or independent set if $e \nsubseteq F$ for each $e \in E(G)$. The cardinality of the maximum stable set is denoted by $\beta(G)$. Here G is called well-covered if every maximal stable set has the same cardinality. On the other hand, a subset D of $V(G)$ is a vertex cover of G if $D \cap e \neq \emptyset$ for every $e \in E(G)$. The number of vertices in a minimum vertex cover of G is called the covering number of G and is denoted by $\alpha(G)$. This number coincides with height $(I(G))$, the height of $I(G)$. If the minimal vertex covers have the same cardinality, then G is called an unmixed graph. The Stanley-Reisner complex of $I(G)$, denoted by Δ_{G}, is the simplicial complex whose faces are the stable sets of G. Recall that a simplicial complex Δ is called pure if every facet has the same number of elements. Thus, Δ_{G} is pure if and only if G is well-covered.

Some properties of G, Δ_{G} and $I(G)$ allow an interaction between commutative algebra and combinatorial theory. Examples of these properties are: CohenMacaulayness, shellability, vertex decomposability and well-coveredness. These properties have been studied in $[2,7,12,20,22,23,24]$.

The present paper is organized as follows. In Section 1 we connect the Wiener index with some homological and algebraic invariants, such as projective dimension and regularity. In Theorem 2.4, we give a lower bound for the Wiener index of general Cohen-Macaulay graphs in terms of projective dimension of the graphs. We use this result to obtain a lower bound for the Wiener index of a Cohen-Macaulay graph G by using the regularity of $J(G)=I(G)^{\vee}$, see Corollary 2.6.

In Section 2 we consider a class of graphs G such that the height of the edge ideal $I(G)$ is half of the number $|V(G)|$ of the vertices. Such a class of graphs is rich, because it includes all the unmixed bipartite graphs and all the grafted graphs. In Theorem 3.2, we obtain a lower bound for the Wiener index of very well-covered graphs. In the last section we give a lower bound for the Wiener index of Boolean graphs, see Theorem 4.1.

2 Cohen-Macaulay graphs

In this section we give some lower bounds for the Wiener index of Cohen-Macaulay graphs. Since calculating the Wiener index of a graph can be computationally expensive, it is of some interest to know the extreme values of the Wiener index.

Let $S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over a field \mathbb{K} in the variables x_{1}, \ldots, x_{n}, and let $I \subset S$ be a monomial ideal. Let G be a finite simple graph on the vertex set $V(G)$ with edge set $E(G)$. In other words, $|V(G)|<\infty$ and $E(G) \subset V(G) \times V(G) \backslash\{\{v, v\}: v \in V(G)\}$. All graphs considered in this paper are finite simple graphs, which henceforth will simply be called graphs. Let $\mathbb{K}[V(G)]$ be the polynomial ring over a field \mathbb{K} whose variables are vertices of G. The empty
graph on n vertices is denoted by E_{n}.
A vertex cover of a graph G on $V(G)$ is a subset $D \subset V(G)$ such that $\{u, v\} \cap D \neq$ \emptyset for all $\{u, v\} \in E(G)$. A vertex cover D is called minimal if D is a vertex of G, and no proper subset of D is a vertex cover of G. We denote by $\alpha(G)$ the set of minimal vertex covers of G.

An independent set of G is a set $F \subset V(G)$ such that $\{u, v\} \notin E(G)$ for all $u, v \in F$. Obviously, F is an independent set of G if and only if $V(G) \backslash F$ is a vertex cover of G. Thus the maximal independent sets of G correspond to the minimal vertex covers of G. The vertex independence number, denoted by $\beta(G)$, is the number of vertices in any largest independent set of vertices.

Consider the minimal free graded resolution of $M=\mathbb{K}[V(G)] / I(G)$ as a $\mathbb{K}[V(G)]$ module.

$$
0 \rightarrow \oplus_{j \in \mathbf{Z}} \mathbb{K}[V(G)](-j)^{\beta_{p j}}(M) \rightarrow \cdots \rightarrow \oplus_{j \in \mathbf{Z}} \mathbb{K}[V(G)](-j)^{\beta_{0 j}}(M) \rightarrow M \rightarrow 0
$$

The Castelnuovo-Mumford regularity (or simply the regularity) of $M=$ $\mathbb{K}[V(G)] / I(G)$ is defined as

$$
\operatorname{reg}(\mathbb{K}[V(G)] / I(G)):=\max \left\{j-i: \beta_{i, j} \neq 0\right\}
$$

Also, the projective dimension of M is defined as

$$
\operatorname{pd}(M):=\max \left\{i: \beta_{i, j} \neq 0 \text { for some } j\right\} .
$$

We define $\operatorname{pd}(G):=\operatorname{pd}(\mathbb{K}[V(G)] / I(G))$.
G is said to be a Cohen-Macaulay graph over \mathbb{K} if

$$
\operatorname{depth}(\mathbb{K}[V(G)] / I(G))=\operatorname{dim}(\mathbb{K}[V(G)] / I(G))
$$

Remark 2.1. The edge ideal $I(G)$ is Cohen-Macaulay if and only if $\mathbb{K}[V(G)] / I(G)$ is Cohen-Macaulay, that is,

$$
\operatorname{depth}(\mathbb{K}[V(G)] / I(G))=\operatorname{dim}(\mathbb{K}[V(G)] / I(G))
$$

A finite graph G is called unmixed if all minimal vertex covers of G have the same cardinality.

Let G_{1} and G_{2} be graphs on the vertex sets $V\left(G_{1}\right)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $V\left(G_{2}\right)=$ $\left\{y_{1}, \ldots, y_{m}\right\}$, respectively. Then the join of G_{1} and G_{2}, denoted by $G_{1} * G_{2}$, is a graph on the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set

$$
E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{\left\{x_{i}, y_{j}\right\}: 1 \leq i \leq n, 1 \leq j \leq m\right\} .
$$

Example 2.2. Let E_{m} be the empty graph on the vertex set $\left\{y_{1}, \ldots, y_{m}\right\}$ and let $K_{n} * E_{m}$ be the join of complete graph K_{n} and E_{m}. It is easy to see that $K_{1} * E_{n} \cong S_{n}$ and $K_{n} * E_{1} \cong K_{n}$, where S_{n} is the star graph on $n+1$ vertices.

In the following, we compute the minimal prime ideals of joins of graphs.
Proposition 2.3. Let G_{1} and G_{2} be graphs on the vertex sets $V\left(G_{1}\right)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $V\left(G_{2}\right)=\left\{y_{1}, \ldots, y_{m}\right\}$, respectively. Suppose that $R=\mathbb{K}\left[V\left(G_{1} * G_{2}\right)\right]$.
i) If $n+\operatorname{height}\left(I\left(G_{2}\right)\right)=m+\operatorname{height}\left(I\left(G_{1}\right)\right)$ then

$$
\left|\operatorname{Min}\left(I\left(G_{1} * G_{2}\right)\right)\right|=\left|\operatorname{Min}\left(I\left(G_{1}\right)\right)\right|+\left|\operatorname{Min}\left(I\left(G_{2}\right)\right)\right| .
$$

ii) If $n+\operatorname{height}\left(I\left(G_{2}\right)\right)>m+\operatorname{height}\left(I\left(G_{1}\right)\right)$ then

$$
\left|\operatorname{Min}\left(I\left(G_{1} * G_{2}\right)\right)\right|=\left|\operatorname{Min}\left(I\left(G_{1}\right)\right)\right| .
$$

iii) If $n+\operatorname{height}\left(I\left(G_{2}\right)\right)<m+\operatorname{height}\left(I\left(G_{1}\right)\right)$ then

$$
\left|\operatorname{Min}\left(I\left(G_{1} * G_{2}\right)\right)\right|=\left|\operatorname{Min}\left(I\left(G_{2}\right)\right)\right| .
$$

Proof. For a graph G, it is well-known that the minimal prime ideals of $I(G)$ correspond to the minimal vertex covers of G. Note that if $\mathbf{p} \in \operatorname{Min}\left(I\left(G_{1} * G_{2}\right)\right)$, then either $\mathbf{p}=p_{1}+\left(y_{1}, \ldots, y_{m}\right)$ or $\mathbf{p}=p_{2}+\left(x_{1}, \ldots, x_{n}\right)$, where $p_{1} \in \operatorname{Min}\left(I\left(G_{1}\right)\right)$ and $p_{2} \in \operatorname{Min}\left(I\left(G_{2}\right)\right)$. Hence the assertion follows.

A simplicial complex Δ on the vertex set $V=\left\{x_{1}, \ldots, x_{n}\right\}$ is a collection of subsets of V such that (i) $x_{i} \in \Delta$ for all $x_{i} \in V$ and (ii) $F \in \Delta$ and $G \subseteq F$ imply $G \in \Delta$. An element $F \in \Delta$ is called a face of Δ. For $F \subset V$, we define the dimension of F by $\operatorname{dim} F=|F|-1$. Let $d=\max \{|F|: F \in \Delta\}$ and define the dimension of Δ to be $\operatorname{dim} \Delta=d-1$. A maximal face of Δ with respect to inclusion is called a facet of Δ. If all facets of Δ have the same dimension, then Δ is called pure.

If I is an ideal of S generated by squarefree monomials, the Stanley-Reisner simplicial complex Δ_{I} associated to I has vertex set $V=\left\{x_{i} \mid x_{i} \notin I\right\}$ and its faces are defined by

$$
\Delta_{I}=\left\{\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\} \mid i_{1}<\cdots<i_{k}, x_{i_{1}} \cdots x_{i_{k}} \notin I\right\} .
$$

Conversely if Δ is a simplicial complex with vertex set V contained in $\left\{x_{1}, \ldots, x_{n}\right\}$, the Stanley-Reisner ideal I_{Δ} is defined as

$$
I_{\Delta}=\left(\left\{x_{i_{1}} \cdots x_{i_{r}} \mid i_{1}<\cdots<i_{r},\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\} \notin \Delta\right\}\right),
$$

and its Stanley-Reisner ring $\mathbb{K}[\Delta]$ is defined as the quotient ring S / I_{Δ}.
A simplicial complex Δ is said to be Cohen-Macaulay over \mathbb{K} if the StanleyReisner ring $\mathbb{K}[\Delta]$ is a Cohen-Macaulay ring.

Note that the Stanley-Reisner complex of $I(G)$ is given by $\Delta_{I(G)}=\Delta_{G}$, where Δ_{G} is the simplicial complex whose faces are the independent vertex sets of G. Thus

$$
\mathbb{K}\left[\Delta_{G}\right]=\mathbb{K}[V(G)] / I(G),
$$

where $\mathbb{K}\left[\Delta_{G}\right]$ is the Stanley-Reisner ring of Δ_{G}. The simplicial complex Δ_{G} whose faces are the independent vertex sets of G is called the independence complex of G.

Let $I \subset S$ be a monomial ideal and $G(I)$ its unique minimal monomial generators. The Auslander and Buchsbaum Theorem says that depth $S / I=\operatorname{dim} S-\operatorname{pd} S / I$, see for example [2].

Since height $(I)=\operatorname{dim} S-\operatorname{dim} S / I$, and since S / I is Cohen-Macaulay if and only if $\operatorname{dim} S / I=\operatorname{depth} S / I$, it follows that

$$
\begin{equation*}
S / I \text { is Cohen-Macaulay } \Longleftrightarrow \operatorname{height}(I)=\operatorname{pd} S / I \tag{1}
\end{equation*}
$$

As the main result of this section we have the following.
Theorem 2.4. Let G be a Cohen-Macaulay graph on N vertices. Then

$$
W(G) \geq N^{2}+(1+\operatorname{pd}(G))\left(\frac{1}{2} \operatorname{pd}(G)-N\right)
$$

and the equality holds if and only if $\operatorname{pd}(G)=N-1$.
Proof. Let G be a Cohen-Macaulay graph on the vertex set $V(G)$. We set $|V(G)|=$ N. Then [12, Lemma 9.1.10] implies that G is unmixed, i.e., all of its associated primes have the same height. According to [12, Lemma 9.1.4] we have that the associated primes of an edge ideal correspond to the minimal vertex covers of G. Then [25, Corollary 7.2.5] implies that

$$
\text { height } I(G)=\operatorname{dim}(\mathbb{K}[V(G)])-\operatorname{dim}(\mathbb{K}[V(G)] / I(G))=N-\operatorname{dim}(\mathbb{K}[V(G)] / I(G)) \text {. }
$$

The complement of a vertex cover is an independent set, that is, a face of Δ_{G}. It follows from [19, Theorem 1.3] that

$$
\operatorname{dim}(\mathbb{K}[V(G)] / I(G))=\operatorname{dim}\left(\mathbb{K}[V(G)] / I_{\Delta_{G}}\right)=\operatorname{dim} \Delta_{G}+1=\beta(G)-1+1=\beta(G)
$$

Since all the minimal vertex covers have the same cardinality, so do the facets of Δ_{G}, that is, Δ_{G} is pure and $\operatorname{dim}\left(\Delta_{G}\right)=N-\operatorname{height}(I(G))-1$. Hence, by applying [2, Theorem 1.3.3] we obtain:

$$
\operatorname{pd}(G)=\operatorname{dim}(\mathbb{K}[V(G)])-\operatorname{depth}(\mathbb{K}[V(G)] / I(G))=N-\operatorname{dim}(\mathbb{K}[V(G)] / I(G))
$$

Suppose that $F \in \Delta_{G}$ is a maximum independent set of G. Thus [25, Corollary 6.3.5], [25, Corollary 7.2.5] together with (1) yield

$$
\begin{aligned}
W(G) & =\sum_{u, v \in G \backslash F} d(u, v)+\sum_{u, v \in F} d(u, v)+\sum_{u \in G \backslash F, v \in F} d(u, v) \\
& \geq\binom{ N-\beta(G)}{2}+2\binom{\beta(G)}{2}+\beta(G)(N-\beta(G)) \\
& =\frac{1}{2}(N-\beta(G))(N-\beta(G)-1)+\beta(G)(N-1) \\
& =\frac{1}{2}\left(N-\operatorname{dim} \Delta_{G}-1\right)\left(N-\operatorname{dim} \Delta_{G}-2\right)+\left(\operatorname{dim} \Delta_{G}+1\right)(N-1) \\
& =\frac{1}{2} \operatorname{pd}(G)(\operatorname{pd}(G)-1)+(N-\operatorname{pd}(G))(N-1) \\
& =N^{2}+(1+\operatorname{pd}(G))\left(\frac{1}{2} \operatorname{pd}(G)-N\right) .
\end{aligned}
$$

If the equality holds, then for every $u, v \in V(G) \backslash F$ the edge $\{u, v\} \in E(G)$ and every vertex of F is adjacent to all vertices of $V(G) \backslash F$. This implies

$$
G \cong K_{\text {height }(I(G))} * E_{N-\operatorname{height}(I(G))} .
$$

One can see that if C is a minimal vertex cover of $K_{\text {height }(I(G))} * E_{N-\operatorname{height}(I(G))}$, then either $C=A \cup V\left(E_{N-\operatorname{height}(I(G))}\right)$ or $C=V\left(K_{\text {height }(I(G))}\right) \cup B$, where A and B are minimal vertex covers of $K_{\text {height }(I(G))}$ and $E_{N-\operatorname{height}(I(G))}$, respectively. Then by [2, Proposition 1.2.9] we have

$$
\operatorname{depth}\left(\mathbb{K}\left[V\left(K_{\text {height }(I(G))} * E_{N-\operatorname{height}(I(G))}\right)\right] / I\left(K_{\operatorname{height}(I(G))} * E_{N-\operatorname{height}(I(G))}\right)\right)=1
$$

Since G is a Cohen-Macaulay graph, by Lemma 2.3 together with (1) we have

$$
N-\operatorname{pd}\left(K_{\operatorname{pd}(G)} * E_{N-\operatorname{pd}(G)}\right)=1
$$

Thus $\operatorname{pd}(G)=N-1$.
Conversely, suppose that $\operatorname{pd}(G)=N-1$; then it is obvious that

$$
W(G)=N^{2}+(1+\operatorname{pd}(G))\left(\frac{1}{2} \operatorname{pd}(G)-N\right)
$$

and the proof is complete.
For a monomial ideal $I=\left(x_{11} \ldots x_{1 n_{1}}, \ldots, x_{t 1} \ldots x_{t n_{t}}\right)$ of the polynomial ring S, the Alexander dual ideal of I, denoted by I^{\vee}, is defined as

$$
I^{\vee}:=\left(x_{11}, \ldots, x_{1 n_{1}}\right) \cap \cdots \cap\left(x_{t 1}, \ldots, x_{t n_{t}}\right) .
$$

The cover ideal associated to a graph G is the monomial ideal

$$
J(G):=I(G)^{\vee}=\bigcap_{\{i, j\} \in E(G)}\left(x_{i}, x_{j}\right)
$$

The following theorem, which was proved in [21], is one of our main tools in the study of the regularity of the ring $\mathbb{K}[V(G)] / I(G)$.

Theorem 2.5. [21, Theorem 2.1] Let $I \subset S=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a squarefree monomial ideal. Then $\operatorname{pd}\left(I^{\vee}\right)=\operatorname{reg}(S / I)$.

By using Theorems 2.4 and 2.5, we have the following corollary.
Corollary 2.6. Let G be a Cohen-Macaulay graph on N vertices. Then

$$
W(G) \geq N^{2}+(1+\operatorname{reg}(J(G)))\left(\frac{1}{2} \operatorname{reg}(J(G))-N\right)
$$

and the equality holds if and only if $\operatorname{reg}(J(G))=N-1$.

Example 2.7. Consider the class $\mathcal{S Q C}$ of well-covered graphs from [17]. A vertex v of a graph G is said to be simplicial if the induced subgraph of G on the set $N[v]$ is a complete graph and we say this complete graph is a simplex of G.

A 5 -cycle C_{5} of a graph G is called basic if C_{5} does not contain two adjacent vertices of degree 3 or more in G; a 4 -cycle is called basic if it contains two adjacent vertices of degree 2, and the remaining two vertices belong to a complete subgraph or a basic 5-cycle of G.

A graph is in the class $\mathcal{S Q C}$ if there are simplicial vertices x_{1}, \ldots, x_{m}; basic 5 -cycles C^{1}, \ldots, C^{s}; and basic 4 -cycles Q^{1}, \ldots, Q^{t} such that

$$
V(G)=\bigcup_{j=1}^{m} N\left[x_{j}\right] \cup \bigcup_{j=1}^{s} V\left(C_{j}\right) \cup \bigcup_{j=1}^{t} B\left(Q^{j}\right)
$$

and this forms a partition of $V(G)$, where $B\left(Q^{j}\right)$ is the set of two vertices of degree 2 of the basic 4 -cycle Q^{j}. Such a graph is Cohen-Macaulay [13, Theorem 2.3]. Therefore by Theorem 2.4 and [17, Theorem 3.1], we have

$$
\begin{aligned}
W(G) & \geq|V(G)|^{2}+(|V(G)|-m-2 s-t+1)\left(\frac{1}{2}(|V(G)|-m-2 s-t)-|V(G)|\right) \\
& =|V(G)|^{2}+(|V(G)|-m-2 s-t+1)\left(-\frac{1}{2}|V(G)|-m-2 s-t\right) \\
& =\frac{1}{2}(|V(G)|)(|V(G)|-1)+(-m-2 s-t)\left(\frac{1}{2}|V(G)|-m-2 s-t+1\right)
\end{aligned}
$$

and the equality holds if and only if $m+2 s+t=1$.

3 Wiener index of very well-covered graphs

In [9], Gitler and Valencia proved that if G is a well-covered graph without isolated vertices, then $h(I(G)) \geq \frac{|V(G)|}{2}$.

A graph G is called very well-covered if it is unmixed without isolated vertices and with $h(I(G))=\frac{|V(G)|}{2}$. Since the class of very well-covered graphs contains unmixed bipartite graphs, whiskered graphs and grafted graphs (see [4, 8]), it is interesting in the algebraic sense as well.

The main goal of this section is to study the Wiener index of very well-covered graphs. The following is a useful result on very well-covered graphs that allows us to assume a certain order on their vertices and edges.

Lemma 3.1. [10, Corollary 3.2] Let G be a very well-covered graph with $2 n$ vertices. Then there is a relabeling of vertices $V(G)=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ such that the following two conditions hold:
(1) $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a minimal vertex cover of G and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ is a maximal independent set of G;
(2) for all $1 \leq i \leq n,\left\{x_{i}, y_{i}\right\} \in E(G)$.

Theorem 3.2. Let G be a very well-covered graph with $2 n$ vertices. Then

$$
W(G) \geq \frac{1}{2} n(5 n-3)
$$

and the equality holds if and only if $G \cong K_{n} * E_{n}$.
Proof. Let G be a very well-covered graph with $2 n$ vertices, and let Δ_{G} be its independence complex. By [25, Corollary 6.3.5] together with [25, Corollary 7.2.5] it follows that

$$
\begin{aligned}
2 n=\operatorname{height}(I(G))+\beta(G) & =\operatorname{height}(I(G))+\operatorname{dim}(\mathbb{K}[V(G)] / I(G)) \\
& =\operatorname{height}(I(G))+\operatorname{dim}\left(\mathbb{K}[V(G)] / I_{\Delta_{G}}\right) \\
& =\operatorname{height}(I(G))+\operatorname{dim} \Delta_{G}+1
\end{aligned}
$$

Therefore, Lemma 3.1 yields $\operatorname{dim}\left(\Delta_{G}\right)=n-1$ and hence $\beta(G)=n$. Suppose that $F \in \Delta_{G}$ is a maximum independent set of G. Then

$$
\begin{aligned}
W(G) & =\sum_{u, v \in G \backslash F} d(u, v)+\sum_{u, v \in F} d(u, v)+\sum_{u \in G \backslash F, v \in F} d(u, v) \\
& \geq\binom{ N-\beta(G)}{2}+2\binom{\beta(G)}{2}+\beta(G)(N-\beta(G)) \\
& =\frac{1}{2}(2 n-\beta(G))(2 n-\beta(G)-1)+\beta(G)(2 n-1) \\
& =\frac{1}{2}(2 n-n)(2 n-n-1)+n(2 n-1) \\
& =\frac{1}{2} n(5 n-3) .
\end{aligned}
$$

If the equality holds, then for every $u, v \in V(G) \backslash F$ the edge $\{u, v\} \in E(G)$ and every vertex of F is adjacent to all vertices of $V(G) \backslash F$. This implies $G \cong K_{n} * E_{n}$. Conversely, suppose that $G \cong K_{n} * E_{n}$. Then

$$
\begin{aligned}
W\left(K_{n} * E_{n}\right) & =\sum_{u, v \in K_{n}} d(u, v)+\sum_{u, v \in E_{n}} d(u, v)+\sum_{u \in K_{n}, v \in E_{n}} d(u, v) \\
& =\frac{1}{2} n(n-1)+n(n-1)+n^{2} \\
& =\frac{1}{2} n(5 n-3),
\end{aligned}
$$

and the assertion follows.
Example 3.3. In [4], the authors introduced B-grafted graphs, which are a generalization of grafted graphs introduced by Faridi [8]. Let H_{0} be a graph with the labeled vertices $1,2, \ldots, q$. For every $i=1, \ldots, q$, let B_{i} be a bipartite graph with labeled partition X_{i} and Y_{i} such that $\left|X_{i}\right|=\left|Y_{i}\right|=n_{i}$. (We do not give a label to
each vertex of B_{i}, but we distinguish the partition X_{i} and Y_{i}). We assume that B_{i} has no isolated vertex for every $i=1, \ldots, q$. Let

$$
G=G\left(H_{0} ; B_{1}, \ldots, B_{q}\right)
$$

be a B-grafted graph with the vertex set $V(G):=X \cup Y$, where $X=X_{1} \cup \cdots \cup X_{q}$ and $Y=Y_{1} \cup \cdots \cup Y_{q}$.

The edge set $E(G)$ of G is $x y \in E(G)$ if and only if either there exist i, j such that $x \in X_{i}, y \in X_{j}$, and $i j \in E\left(H_{0}\right)$ or there exists i such that $x \in X_{i}, y \in Y_{i}$, and $x y \in E\left(B_{i}\right)$.

Note that X is a minimal vertex cover of G and that Y is a maximal independent set of G. If G is an unmixed B-grafted graph, then by Theorem 3.2 we have

$$
\begin{aligned}
W(G) & \geq \frac{1}{2}\left(2\left(\sum_{i=1}^{q} n_{i}\right)-\sum_{i=1}^{q} n_{i}\right)\left(2\left(\sum_{i=1}^{q} n_{i}\right)-\sum_{i=1}^{q} n_{i}-1\right)+\left(\sum_{i=1}^{q} n_{i}\right)\left(2\left(\sum_{i=1}^{q} n_{i}\right)-1\right) \\
& =\frac{1}{2}\left(\sum_{i=1}^{q} n_{i}\right)\left(5\left(\sum_{i=1}^{q} n_{i}\right)-3\right)
\end{aligned}
$$

and the equality holds if and only if $G \cong K_{\sum_{i=1}^{q} n_{i}} * E_{\sum_{i=1}^{q} n_{i}}$.

4 Wiener index of Boolean graphs

In this section we obtain a lower bound for the Wiener index of Boolean graphs. Let $[n]=\{1, \ldots, n\}$ and let $2^{[n]}$ denote the power set of $[n]$. Recall from [15] that a finite Boolean graph, denoted by B_{n}, is a graph defined on the vertex set $2^{n} \backslash\{[n], \emptyset\}$, in which two vertices u and v are adjacent if $u \cap v=\emptyset$. Clearly, B_{n} is also the zero-devisor graph of the finite Boolean ring $\prod_{i=1}^{n} \mathbb{Z}_{2}$. Note that a finite or infinite Boolean graph has a unique corresponding zero-divisor commutative semigroup.

Theorem 4.1. For any $n \geq 1$, let $G=B_{n}$ be the Boolean graph. Then

$$
W(G) \geq \frac{5}{8} 2^{2 n}-\frac{13}{4} 2^{n}+4
$$

Proof. Suppose that $G=B_{n}$ is a Boolean graph for all $n \geq 1$. A subset $\Upsilon=$ $\left\{b_{1}, \ldots, b_{t}\right\}$ of $V(G)$ is an independent vertex set if and only if $b_{i} \cap b_{j} \neq \emptyset$ holds for any distinct b_{i}, b_{j} in Υ. By [14, Theorem 2.1] all maximal independent vertex sets Υ of $V(G)$ have the same cardinality $2^{n-1}-1$ and for any $b_{i} \in V(G)$, only one of $\left\{b_{i}, b_{i}^{c}\right\}$ is in Υ, where $b_{i}^{c}=[n] \backslash b_{i}$. Thus the edge ideal of the graph B_{n} has height $2^{n-1}-1$. Hence, by applying (1) and [14, Theorem 2.4] we obtain

$$
\operatorname{pd}\left(B_{n}\right)=2^{n-1}-1 .
$$

Therefore, Theorem 2.4 yields

$$
\begin{aligned}
W(G) & \geq \frac{1}{2}\left(2^{n-1}-1\right)\left(2^{n-1}-2\right)+\left(2^{n}-2^{n-1}-1\right)\left(2^{n}-3\right) \\
& =\left(2^{n}-2\right)^{2}+\left(1+2^{n-1}-1\right)\left(\frac{1}{2}\left(2^{n-1}-1\right)-\left(2^{n}-2\right)\right) \\
& =\frac{5}{8} 2^{2 n}-\frac{13}{4} 2^{n}+4
\end{aligned}
$$

Then the desired conclusion follows.
Example 4.2. Let $G=B_{4}$ be a Boolean graph. The edge ideal of B_{4} is

$$
\begin{aligned}
I\left(B_{4}\right)= & \left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{1} x_{8}, x_{1} x_{9}, x_{1} x_{10}, x_{1} x_{14},\right. \\
& x_{2} x_{3}, x_{2} x_{4}, x_{2} x_{6}, x_{2} x_{7}, x_{2} x_{10}, x_{2} x_{13}, x_{3} x_{4}, \\
& x_{3} x_{5}, x_{3} x_{7}, x_{3} x_{9}, x_{3} x_{12}, x_{4} x_{5}, x_{4} x_{6}, x_{4} x_{8}, \\
& \left.x_{4} x_{11}, x_{5} x_{10}, x_{6} x_{9}, x_{7} x_{8}\right) .
\end{aligned}
$$

We calculate the primary decomposition of $I\left(B_{4}\right)$ by CoCoA [3] as follows:

$$
\begin{aligned}
I\left(B_{4}\right)= & \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{7}, x_{9}, x_{10}\right) \cap\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{7}, x_{9}, x_{12}\right) \\
& \cap\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{8}, x_{11}\right) \cap\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{6}, x_{8}, x_{9}\right) \\
& \cap\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \cap\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{6}, x_{7}, x_{10}\right) \\
& \cap\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{6}, x_{8}, x_{10}\right) \cap\left(x_{1}, x_{3}, x_{4}, x_{6}, x_{7}, x_{10}, x_{13}\right) \\
& \cap\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{8}, x_{9}, x_{10}\right) \cap\left(x_{2}, x_{3}, x_{4}, x_{8}, x_{9}, x_{10}, x_{14}\right) .
\end{aligned}
$$

Hence by (1) we have height $\left(I\left(B_{4}\right)\right)=\operatorname{pd}\left(I\left(B_{4}\right)\right)=7$. Therefore, Theorem 4.1 yields

$$
W(G) \geq \frac{5}{8} 2^{8}-\frac{13}{4} 2^{4}+4=112 .
$$

References

[1] V. K. Agrawal, S. Bano, K. C. Mathur and P. V. Khadikar, Novel application of Wiener vis-à-vis Szeged indices: Antitubercular activities of quinolones, Proc. Indian Acad. Sci. (Chem. Sci.) 112 (2000), 137-146.
[2] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge Univ. Press, 1993.
[3] CoCoA Team, CoCoA: a system for doing computations in commutative algebra, Available at http: //cocoa.dima.unige.it.
[4] M. Crupi, G. Rinaldo and N. Terai, Cohen-Macaulay edge ideal whose height is half of the number of vertices, Nagoya Math. J. 201 (2011), 117-131.
[5] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (3) (2001), 211-249.
[6] A. A. Dobrynin and L. S. Melnikov, Wiener index of line graphs, in: Distance in Molecular Graphs - Theory, (EDs.: I. Gutman, B. Furtula), Univ. Kragujevac, Kragujevac (2012), 85-121.
[7] M. Estrada and R. H. Villarreal, Cohen-Macaulay bipartite graphs, Arch. Math. 68 (2) (1997), 124-128.
[8] S. Faridi, Cohen-Macaulay properties of square-free monomial ideals, J. Combin. Theory Ser. A 109 (2) (2005), 299-329.
[9] I. Gitler and C.E. Valencia, Bounds for invariants of edge-rings, Comm. Algebra 33 (5) (2005), 1603-1616.
[10] I. Gitler and C.E. Valencia, On bounds for some graph invariants, Bol. Soc. Mat. Mexicana (3) 16 (2) (2010), 73-94.
[11] A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991), 53-62.
[12] J. Herzog and T. Hibi, Monomial Ideals, GTM 260, Springer 2010.
[13] D. T. Hoang, N. C. Minh and T. N Trung, Cohen-Macaulay graphs with large girth, J. Algebra Appl. 14 (7) (2015), 1550112.
[14] A. M. Liu and T. Wu, Boolean graphs are Cohen-Macaulay, Commun. Algebra 46 (10) (2018), 4498-4510.
[15] D. Lu and T. Wu, The zero-divisor graphs which are uniquley determined by neighborhoods, Commun. Algebra 35 (12) (2007), 3855-3864.
[16] L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors, Chemical Reviews $\mathbf{1 0 0}$ (2000), 3827-3858.
[17] B. Randerath and L. Volkmann, A characterization of well covered block-cactus graphs, Australas. J. Combin. 9 (1994), 307-314.
[18] M. Randić, Aromaticity of Polycyclic Conjugated Hydrocarbons, Chemical Reviews 103 (2003), 3449-3606.
[19] A. Simis, W. V. Vasconcelos and R. H. Villarreal, On the ideal theory of graphs, J. Algebra 167 (1994), 135-142.
[20] R. P. Stanley, Combinatorics and Commutative Algebra, Second ed., Progress in Mathematics 41, Birkhauser Boston, Inc., Boston, MA, 1996.
[21] N. Terai, Alexander duality theorem and Stanley-Reisner rings, Free resolutions of coordinate rings of projective varieties and related topics (Japanese) (Kyoto, 1998), Surikaisekikenkyusho Kokyuroku no. 1078 (1999), 174-184.
[22] A. Van Tuyl, Sequentially Cohen-Macaulay bipartite graphs: vertex decomposability and regularity, Arch. Math. 93 (2009), 451-459.
[23] A. Van Tuyl and R.H. Villarreal, Shellable graphs and sequentially CohenMacaulay bipartite graphs, J. Combin. Theory Ser. A 115 (5) (2008), 799-814.
[24] R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66 (1990), 277293.
[25] H. Villareal, Monomial algebras, Second Ed., Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, 2015.
[26] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.
(Received 15 Feb 2020; revised 7 June 2021)

