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Abstract

In this paper, we extend the concept of the strict order polynomial Ω◦P (n),
which enumerates strictly order-preserving maps φ : P → n for a poset
P , to the extended strict order polynomial E◦P (n, z) =

∑
Q⊂P Ω◦Q(n)z|Q|,

which enumerates analogous maps for all induced subposets of P . Richard
Stanley showed that the strict order polynomial Ω◦P (n) can be expressed
as the sum Ω◦P (n) =

∑
w∈L(P )

(
n+des(w)

p

)
, where L(P ) is the set of linear

extensions of P , des(w) is the number of descents of w, and p is the
number of elements of P . This reduces the computation of E◦P (n, z) to
the enumeration of linear extensions of subposets of P by descents. We
show that every linear extension v of every induced subposet of P can
be associated with a linear extension w of P . The number of linear
extensions of subposets of size k associated with a given linear extension
w of P is

(
p−fixP (w)
k−fixP (w)

)
, where fixP (w) is the number of fixed elements of w

defined in the text. Consequently, the extended strict order polynomial
E◦P (n, z) can be represented as

E◦P (n, z) =
∑

w∈L(P )

p∑
k=0

(
p− fixP (w)

k − fixP (w)

)(
n+ des(w)

k

)
zk.

1 Notation and Definitions

1.1 Standard terminology

The current communication closely follows the poset terminology introduced in
Stanley’s book [19]. The reader familiar with the terminology can jump directly
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to Subsection 1.2. A partially ordered set P , or poset for short, is a set together
with a binary relation <P . In this manuscript, we are concerned with finite posets P
consisting of p elements and with strict partial orders, meaning that the relation
<P is irreflexive, transitive and asymmetric. An induced subposet Q ⊂ P is a
subset of P together with the order <Q inherited from P which is defined by
s <P t ⇐⇒ s <Q t. The symbol < shall denote the usual relation “larger than”
in N. The symbol [n ] stands for the set {1, 2, . . . , n}, and (n,m) stands for the set
{n+ 1, n+ 2, . . . ,m− 1}. The symbol n represents the chain 1 < 2 < 3 < ... < n. A
map φ : P → N is a strictly order-preserving map if it satisfies s <P t⇒ φ(s) < φ(t).
A natural labeling of a poset P is an order-preserving bijection ω : P → [ p ]. A linear
extension of P is an order-preserving bijection σ : P → p. A linear extension σ can
be represented as a permutation ω ◦ σ−1 expressed as a sequence w = w1w2 . . . wp of
labels wi = ω(σ−1(i)); the sequence w shall also be referred to as a linear extension
in the following. The set of all such sequences w is denoted by L (P ) and is referred
to as the Jordan-Hölder set of P . If two subsequent labels wi and wi+1 in w stand in
the relation wi > wi+1, then the index i is called a descent of w. The total number
of descents of w is denoted by des(w). The strict order polynomial Ω◦P (n) of a poset
P [19, 20, 21] enumerates the strictly order-preserving maps φ : P → [n ]. Stanley
showed (in [20, 21], see also [19, Sections 3.15.8 and 3.15.12]) that the strict order
polynomial can be expressed as a sum over the set of linear extensions of P :

Ω◦P (n) =
∑

w∈L(P )

(
n+ des(w)

p

)
(1)

The idea behind the proof of Eq. (1) is to associate every strictly order-preser-
ving map φ : P → [n ] with a compatible linear extension w ∈ L(P ). Here, φ
and w are compatible if φ(ω−1(wi)) ≤ φ(ω−1(wi+1)) whenever i is a descent in
w, and φ(ω−1(wi)) < φ(ω−1(wi+1)) otherwise. Thus, for every linear extension
w ∈ L(P ), there are

(
n+des(w)

p

)
strictly order-preserving maps φ : P → [n ], and

Ω◦P (n) is given by Eq. (1).

1.2 Non-standard terminology

We will often construct—by a slight abuse of notation—a subposet of P by specifying
a set of labels S ⊂ [ p ]: The expression P \ S stands for the induced subposet
with the elements {p ∈ P |ω(p) /∈ S}; and P ∩ S stands for the induced subposet
with the elements {p ∈ P |ω(p) ∈ S}. Clearly the subposet P ∩ S constructed in
this way has |S| elements; and the set P(P ) of subposets of P stands in a direct
correspondence to the power set of [ p ]: P(P ) = {P ∩ S |S ∈ P([ p ])}. Similarly,
if w is a sequence in L (P ) and S ⊂ [ p ] is a set of labels, let us denote by w \ S
the subsequence obtained by deleting all the labels of S from w, and by w ∩ S
the subsequence obtained by deleting all the labels that are not in S from w. For
example, 13245 \ {1, 4} = 13245 ∩ {2, 3, 5} = 325. Clearly, deleting some arbitrary
set S from two different sequences may produce the same subsequence: for example,
13245 \ {1, 4} = 325 = 32154 \ {1, 4}. We will later (in Def. 6) classify the labels in
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each linear extension into fixed and deletable labels, and show (in Lemma 10) that
deleting deletable labels from two distinct sequences always results in two distinct
subsequences.

Further, let us slightly modify the standard representation of linear extensions of
subposets: Normally, one would assign to each subposet Q = P ∩ S a new natural
labeling ωQ : Q → [ q ], and then express the linear extensions of Q as sequences of
the elements of [ q ]. Instead, we avoid re-labeling each subposet, and use instead the
labeling ω : Q→ S inherited from P . Then, a linear extension σ of Q is represented
by a sequence w = w1 . . . wq defined in the usual way: wi = ω(σ−1(i)). The set of
such sequences shall still be denoted by L(Q). Using this notation, it is now easy
to see (with a proper demonstration coming later in Lemma 12) that if w is a linear
extension of P , then w ∩ S is a linear extension of P ∩ S.

2 Main results

In this paper we extend the concept of the strict order polynomial Ω◦P (n) to the
extended strict order polynomial E◦P (n, z) given by Eq. (2), which enumerates and
classifies the totality of strictly order-preserving maps φ : Q → n with Q ⊂ P .
We show below in Theorem 2 that there exists a compact combinatorial expression
characterizing E ◦P (n, z). In the following, we shall always assume that P is a poset
with p elements, a strict order <P , and a natural labeling ω. Subposets of P are
always assumed to be induced.

Definition 1. The extended strict order polynomial E◦P (n, z) of a poset P is defined
as

E◦P (n, z) =
∑
Q⊂P

Ω◦Q(n)z|Q|, (2)

where the sum runs over all the induced subposets Q of P .

A compact expression for E◦P (n, z) can be obtained directly by applying the
following theorem.

Theorem 2. The extended strict order polynomial is given by

E◦P (n, z) =
∑

w∈L(P )

p∑
k=0

(
p− fixP (w)

k − fixP (w)

)(
n+ des(w)

k

)
zk, (3)

where fixP (w) denotes the number of fixed labels in w.

Theorem 2 is based on the fact that every element v of
⋃

Q⊂P L(Q) can be uniquely
associated with some element w of L(P ). We construct a partition of the set

⋃
Q⊂P LQ

into blocks Bw indexed by the elements of L(P ) such that each block Bw contains w
but no other element of L(P ). The elements within Bw have des(w) descents, and
can be obtained from w by deleting some of its deletable labels, while retaining all
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fixed labels in the same order. We will see that each Bw contains
(
p−fixP (w)
k−fixP (w)

)
elements

of length k, which leads directly to Eq. (3). This concept is illustrated below in
Examples 3 and 4. One may notice that the specific linear extension w ∈ L(P )
associated with each v ∈

⋃
Q⊂P L(Q), and thus also the partitioning into blocks Bw,

depends on the choice of the natural labeling ω. However, the number of blocks of
each size, and thus the final result given in Theorem 2, is unaffected by the choice of
ω. The proof of Theorem 2 will be given at the end of this paper after formalizing
the concept of fixed and deletable labels and proving some technical lemmata.

Example 3. Let us consider the lattice P = 2×2 together with the labeling specified
in Fig. 2. We find L(P ) = {1234, 1324} and⋃
Q⊂P
L(Q) = {∅, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 32, 123, 124, 134, 234, 324, 132, 1234, 1324} .

Our results allow us to partition the set
⋃

Q⊂P L(Q) of linear extensions into two
blocks B1234 and B1324:

1234 1324

123 324 132124 134 234

12 13 14 23 3224 34

1 2 3 4

Â

desP(w)P=P1
fixP(w)P=P2

desP(w)P=P0
fixP(w)P=P0

The first block originates from the linear extension 1234, which has zero descents
(des(w) = 0) and an empty set of fixed labels FixP (w) = ∅, meaning that fixP (w) =
0. Therefore, the first block B1234 contains

(
4−0
k−0

)
sequences of each length k. The

second block originates from the linear extension 1324, which has one descent (des(w)
= 1) and the set of fixed labels FixP (w) = {2,3}, meaning that fixP (w) = 2.
Therefore, the second block B1234 contains

(
4−2
k−2

)
sequences of each length k. Conse-

quently, the extended strict order polynomial is given by

E◦P (n, z) =
4∑

k=0

((
4− 0

k − 0

)(
n

k

)
+

(
4− 2

k − 2

)(
n+ 1

k

))
zk.

Example 4. Let us consider the poset P = {a, b, c} of three non-comparable elem-
ents. We have L(P ) = {123, 132, 213, 231, 312, 321} and⋃

Q⊂P

L(Q) = {∅, 1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321} .
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Our results allow us to classify the linear extensions in
⋃

Q⊂P L(Q) into six blocks

123

12 13 23

1 2 3

Â

132

32

213

21

132

32

231

31

312 321

3£ desP(w)P=P1
fixP(w)P=P2

desP(w)P=P1
fixP(w)P=P3

desP(w)P=P2
fixP(w)P=P3

desP(w)P=P0
fixP(w)P=P0

each of which is associated with a pair of numbers (des(w), fixP (w)) specified above.
The extended strict order polynomial is given by

E◦P (n, z)=
3∑

k=0

((
3

k

)(
n

k

)
+3

(
3−2
k−2

)(
n+1

k

)
+

(
3−3
k−3

)(
n+1

k

)
+

(
3−3
k−3

)(
n+2

k

))
zk.

The introduced concept of the extended strict order polynomial E◦P (n, z) can be
used for solving the following combinatorial problem:

Example 5. Consider a family of three shepherds: Fiadh, Fiadh’s father Aidan,
and Aidan’s father Lorcan. Every day, some of the shepherds go out and each herds
a flock of at least one and at most n sheep. Aidan always herds more sheep than
Fiadh, and Lorcan always herds more sheep than both Fiadh and Aidan. How many
possible ways are there of assigning flock sizes to the shepherds?

Fiadh

Aidan

Lorcan

n1 = 1

n2 = 2

n3 = 3

(b)

n1 = 2

n2 = 3

(c)(a)

Figure 1: The poset formed by the three shepherds, shown in (a), is isomorphic to the
chain 3. Situations such as the one depicted in (b), where all three shepherds herd
a flock of sheep, are counted by the strict order polynomial Ω◦P (n). The extended
strict order polynomial E◦P (n, z) also counts situations such as the one shown in (c),
where only a subset of the shepherds are present.

The three shepherds together with the seniority relation form a poset P isomor-
phic to the chain 3: Fiadh <P Aidan <P Lorcan, see Fig. 1 (a). Let us denote the
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number of sheep in Fiadh’s flock by n1, the size of Aidan’s flock by n2 and the size
of Lorcan’s flock by n3; then the above conditions tell us that 1 ≤ n1 < n2 < n3 ≤ n.
On a day when all three shepherds go to work, such as depicted in Fig. 1 (b), the
numbers n1, n2 and n3 can be chosen in Ω◦P (n) =

(
n
3

)
ways. Assume now that k

of the three shepherds go to work, such as depicted in Fig. 1 (c) for the subposet
Q = {Fiadh,Aidan}. We may choose the working shepherds in

(
3
k

)
ways, and their

respective flock sizes in
(
n
k

)
ways. Therefore, the extended strict order polynomial

E◦P (n, z) has the form

E◦P (n, z) =
3∑

k=0

(
3

k

)(
n

k

)
zk.

3 Classification of linear extensions

Within every sequence in L(Q), we distinguish between fixed and deletable labels:

Definition 6. Consider a sequence w = w1w2 . . . wp which represents a linear exten-
sion σ of P . A label wi is fixed in w if

(1) i− 1 or i is a descent, or

(2) the set of positions of preceding larger labels i L(wi) := {l | l < i, wl > wi} and
the set of positions of necessarily preceding labels J(wi) := {j |ω−1(wj) <P

ω−1(wi)} satisfy L(wi) 6= ∅ and max(L(wi)) > max(J(wi)).

A label wi is deletable from w if it is not fixed. The set of fixed labels of w is denoted
by FixP (w), and its cardinality by fixP (w) = |FixP (w)|.

Removing a deletable label wi from w and reinserting it at any earlier position
cannot result in a linear extension with the same labels involved in the descent
pairs; in this sense deletable labels appear in w “as early as possible”. This concept
constitutes the main idea behind associating a linear extension v ∈

⋃
Q⊂P L(Q) with

a unique linear extension w ∈ L(P ) developed in detail later in this communication.
Let us now demonstrate how Definition 6 can be used in a direct manner to

distinguish between deletable and fixed labels in linear extensions.

Example 7. Consider again the poset P = 2× 2 shown in Fig. 2 and its two linear
extensions w = 1234 and w′ = 1324. Let us first determine which of the labels are
deletable from 1234. We have no descents in 1234, so condition (1) of Definition 6
is not satisfied for any of the labels. None of the labels are preceded by any larger
labels, meaning that L(wi) = ∅ and condition (2) is not satisfied for any of the labels.
Therefore, all four labels in the linear extension 1234 are deletable: FixP (1234) = ∅
and fixP (1234) = 0. This is not the case for the linear extension 1324. The labels 3
and 2 are fixed by condition (1) since the position i = 2 is a descent. The labels 1
and 4 are deletable due to L(1) = L(4) = ∅. Consequently, the set of fixed labels of
1324 is FixP (1324) = {2, 3} and thus fixP (1324) = 2.
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1

2

3

4

5

6

7

8

9

1

2 3

4

Figure 2: Hasse diagram of two posets P = 2 × 2 and P = 3 × 3 together with
(natural) labelings ω.

Example 8. Consider the linear extension w = 124753689 of the poset P = 3 × 3
shown in Fig. 2. By condition (1) of Definition 6, the labels 3, 5 and 7 are fixed;
the remaining labels might be fixed if they satisfy condition (2) of Definition 6.
For the labels wi = 1, 2, 4, 8, 9 we find L(wi) = ∅, thus they are deletable. The
only remaining label for which the deletability (or fixedness) is not immediately
obvious—and hence the machinery of Definition 6 must be fully put to work—is
w7 = 6. The only larger, preceding label is w4 = 7, thus L(w7) = {4}. Inspection
of Fig. 2 shows that the labels that necessarily precede w7 = 6 are w1 = 1, w2 = 2,
w3 = 4, w5 = 5 and w6 = 3, and therefore J(w7) = {1, 2, 3, 5, 6}. Since max(J(w7)) =
6 > 4 = max(L(w7)), condition (2) is not satisfied and w7 = 6 is deletable. Thus,
FixP (w) = {3, 5, 7} and fixP (w) = 3.

We are now ready to investigate formally the relation between the linear extens-
ions of P and the linear extensions of its subposets.

3.1 Correspondence between linear extensions of a poset and of its
subposets

Deleting deletable labels does not affect the number of descents:

Lemma 9. Consider a linear extension w ∈ L(P ) and a set F ⊂ [ p ] such that
FixP (w) ⊂ F . Then the subsequence v = w ∩ F satisfies des(w) = des(v).

Proof. Let us augment the linear extension w with two auxiliary fixed labels w0 = 0
and wp+1 = p+ 1. Then any deletable label of w is located between two fixed labels
wi and wj, which can be selected in such a way that all the labels wi+1, . . . , wj−1
in between are deletable. If there is any k ∈ (i, j) such that wk > wk+1, k would
be a descent in w and wk and wk+1 would be fixed according to condition 1) of
Def. 6, contradicting the choice of wi and wj. Therefore, we have wi < wi+1 <
. . . < wj−1 < wj. Every deletable label belongs to such an interval containing
monotonically increasing deletable labels flanked by two fixed labels. Therefore,
constructing v = w ∩ F by deleting only deletable labels from w does not remove or
introduce any descents.
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The following two lemmata establish the correspondence between the elements of
L(P ∩ F ) and the elements of L(P ).

Lemma 10. Let F ⊂ [ p ], and let Q = P ∩ F be a subposet of P . For every linear
extension v of Q, there exists exactly one linear extension w of P such that v = w∩F
and FixP (w) ⊂ F .

Proof. Since the following considerations are more transparent in terms of deletable
rather than fixed labels, let us denote by DelP (w) the set of deletable labels [ p ] \
FixP (w), and by D the complement [ p ] \ F of F . Clearly, FixP (w) ⊂ F if and
only if D ⊂ DelP (w) and w ∩ F = w \ D for all w ∈ L(P ). In the following, let
q = |Q| = |F | = p − |D|, the length of v. For the sake of brevity of the following
exposition, assume during this proof that v0 = 0 and vq+1 = p + 1. Let us attempt
to construct a sequence w of the labels in [ p ] such that

(a) v = w \D,

(b) w ∈ L(P ),

(c) D ⊂ DelP (w).

A sequence w can only satisfy condition (a) if it contains the labels v1, . . . , vq appearing
in the same order as in v, preceded, interleaved, and/or succeeded by the elements
of D. Let us denote by D0 the set of elements of D appearing in w before v1, by D1

the set of elements appearing between v1 and v2, and so on. Clearly, D is a disjoint
union of the subsets D0, D1, . . . , Dq. We can thus construct a sequence w in two
steps:

Step 1: Partition D into q+1 (possibly empty) subsets D0, D1, . . . , Dq containing
m0,m1, . . . ,mq elements, respectively.

Step 2: Arrange the elements of each subset Di into a subsequence di1di2 . . . dimi

and form a sequence w by concatenating the labels in v and the consecut-
ive subsequences d01d02 . . . d0m0

, . . . , dq1d
q
2 . . . d

q
mq

in the following way:

w = d01d
0
2 . . . d

0
m0
v1d

1
1d

1
2 . . . d

1
m1
v2 . . . vqd

q
1d

q
2 . . . d

q
mq
.

Obviously, many different sequences w can be constructed in this way by choosing
different partitionings of D and by selecting distinct orders of the elements in each
Di; we show during the following construction process that the conditions (b) and
(c) restrict this abundance to a single, unique sequence w.

Every d ∈ D must be inserted in such a way that that wi−1 < wi ≡ d < wi+1,
otherwise, d would (by condition (1) of Definition 6) be fixed in w, thus violating
condition (c). Therefore, the subsequence di1di2 . . . dimi

inserted between vi and vi+1

must satisfy vi < di1 < di2 < . . . < dimi
< vi+1. This shows that, in Step 2, when

we augment v with the elements of a subset Di, the only choice is to arrange these



J. LANGNER AND H.A. WITEK/AUSTRALAS. J. COMBIN. 81 (1) (2021), 187–207 195

elements into a monotonically increasing sequence before doing so. Moreover, this
requirement seriously reduces the number of allowed partitions of D into subsets Di,
as each d ∈ Di needs to satisfy the condition vi < d < vi+1.

Consider a label d ∈ D. Let us now narrow down the family of subsets Di into
which d may be placed. Let jd = max {j ∈ [ q ] |ω−1(vj) <P ω

−1(d)}, or jd = 0 if this
set is empty. In order to not violate condition (b), d must be in some Di with jd ≤ i.
Denote by Id = {i | i ≥ jd, vi < d < vi+1} the set of possible choices for i limited by
the so far derived conditions i ≥ jd and vi < d < vi+1. The set Id is nonempty: It
follows from the order-preserving nature of ω that vjd < d < vq+1, so there must be
at least one value of i with jd ≤ i ≤ q such that vi < d < vi+1. Let id = min Id.

We will now show by reductio ad absurdum that placing d into a subset other than
Did leads to a violation of condition (c). (Recollect that every deletable label appears
in w “as early as possible”.) Assume that d ∈ Di with i ∈ Id and i > id. Then, by
definition of Id, we know that d < vid+1. Consider now the sets L(d) and J(d) from
Definition 6. Since d < vid+1 and vid+1 precedes d in w, we have σ(ω−1(vid+1)) ∈ L(d),
where σ denotes the map σ : P → p, wi 7→ i implied by w. Since L(d) 6= ∅, by
condition (2) of Definition 6, the only way for d to be deletable is if max(L(d)) ≥
σ(ω−1(vid+1)) ≯ max(J(d)), that is, if there is a label e ∈ [ p ] such that ω−1(e) <P

ω−1(d) which appears in w between vid+1 and d. Denote by E the set of such labels:
E = {e ∈ [ p ] |ω−1(e) <P ω

−1(d), σ(ω−1(vid+1)) < σ(ω−1(e)) < σ(ω−1(d))}. If there
is an e ∈ E with e /∈ D, then e must appear in v at some position k, e ≡ vk. Since
ω−1(e) <P ω

−1(d), according to the definitions of jd and id we find that k ≤ jd ≤ id, in
contradiction with the requirement that vid+1 precede e = vk in v. Therefore, e ∈ D
and thus E ⊂ D. Consider now the label c = min E. It follows from ω−1(c) <P

ω−1(d) that c < d < vid+1. In order for c to be deletable from the finished sequence
w, there must be a label e′ ∈ [ p ] such that J(c) 3 σ(ω−1(e′)) > σ(ω−1(vid+1)) ∈ L(c),
that is, a label e′ with ω−1(e′) <P ω−1(c) which appears in w between vid+1 and c.
Because ω−1(c) <p ω

−1(d), and since c must precede d in w, the aforementioned label
e′ must be in E, and therefore min E = c < e′. At the same time, since ω is a natural
labeling, ω−1(e′) <P ω−1(c) implies e′ < c. This contradiction shows that c cannot
be deletable from w, c /∈ DelP (w). However we have found before that c ∈ D, which
means that the assumption i > id leads to a violation of condition (c). Therefore,
we must have i ≤ id. Since id is defined as the minimum allowed value of i, we have
i = id.

To summarize, we have shown until now that the only way to construct a sequence
w in a way that does not contradict conditions (a)–(c) is to follow the construction
introduced above, which can be described in the following way:

Step 1: For every d ∈ D, let

jd = max
({
j ∈ [ q ] |ω−1(vj) <P ω

−1(d)
}
∪ {0}

)
(4)

and id = min ({i | jd ≤ i ≤ q, vi < d < vi+1}) , (5)

and assign d to the set Did .
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Step 2: For every 0 ≤ i ≤ q, insert between vi and vi+1 the elements of Di in
increasing order:

w = d01d
0
2 . . . d

0
m0
v1d

1
1d

1
2 . . . d

1
m1
v2 . . . vqd

q
1d

q
2 . . . d

q
mq
,

where diq ∈ Di and vi < di1 < di2 < . . . < dimi
< vi+1.

It remains to be demonstrated that the sequence w uniquely defined in this way
indeed satisfies all conditions (a)–(c). Condition (a) is satisfied by construction.

Next, let us verify that w satisfies condition (b). Consider two arbitrary elements
s, t ∈ P such that s <P t. Each of their labels ω(s) and ω(t) can be in D or in
F = [ p ] \D. For each case, we have to show that ω(s) precedes ω(t) in w.

• If ω(s), ω(t) ∈ F , then ω(s) ≡ vi and ω(t) ≡ vj for some i, j ∈ [ q ]. Since Q is
an induced subposet of P , we have s <Q t, and therefore we know that i < j,
i.e., vi ≡ ω(s) precedes vj ≡ ω(t) in v. Then, by construction, ω(s) precedes
ω(t) also in w.

• If ω(s) ∈ F and ω(t) ∈ D, then ω(s) ≡ vk for some k ∈ [ q ]. Step 1 defines two
numbers jω(t) and iω(t). Since s <P t, k is in {j ∈ [ q ] |ω−1(vj) <P t}, and thus
by Eq. (4) k ≤ jω(t). From Eq. (5) it is clear that jω(t) ≤ iω(t). Consequently,
the label ω(t) is assigned toDiω(t) with k ≤ iω(t), which means that ω(t) appears
in w after ω(s) ≡ vk.

• If ω(s) ∈ D and ω(t) ∈ F , then ω(t) ≡ vk for some k ∈ [ q ]. Any vl ∈ F with
ω−1(vl) <P s also satisfies ω−1(vl) <P s <P t = ω−1(vk), and therefore l < k.
Therefore, application of Step 1 to ω(s) results in jω(s) < k and, due to the fact
that ω(s) < ω(t), we have iω(s) < k. Thus, ω(s) is assigned to a Diω(s) with
iω(s) < k, and therefore it appears in w before ω(t).

• If ω(s), ω(t) ∈ D, then for any vk with ω−1(vk) <P s, it follows directly that
ω−1(vk) <P t. Therefore, in Step 1, we find jω(s) ≤ jω(t), and as a result, in
addition to jω(s) ≤ iω(s) (due to Eq. (5)) we also know that jω(s) ≤ iω(t). By
construction of jω(s) and iω(t) as well as the order-preserving nature of ω, we
find vjω(s)

< ω(s) < ω(t) < viω(t)+1. Therefore, there must be at least one value
of i in the interval jω(s), . . . , iω(t) such that vi < ω(s) < vi+1. It follows that
iω(s) ≤ iω(t). If iω(s) < iω(t), then obviously ω(s) appears in w before viω(t)

,
which in turn appears before ω(t). Finally, even if iω(s) = iω(t), in Step 2 the
elements of each Di are inserted into the sequence w in increasing order, so in
any case ω(s) will be inserted before ω(t).

We have shown that the constructed sequence w satisfies the condition (b), w ∈ L(P ).
Finally let us verify that w satisfies condition (c). Consider a label d ∈ D which

is inserted into w at some position k, thus d ≡ wk. We have to show that d is
not fixed, i.e. that it does not satisfy either of the conditions (1) and (2) of Def. 6.
The construction process ensures that wk−1 < d ≡ wk < wk+1, therefore condition
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(1) of Def. 6 is not satisfied. If the set L(wk) = {l | l < k and wl > wk} is empty,
then condition (2) of Def. 6 is trivially not satisfied. If L(wk) is nonempty, let
l = max L. If we can find a value of j ∈ (l, k) such that ω−1(wj) <P ω−1(wk), then
max(L(wk)) = l < j ≤ max(J(wk)), thus ensuring that condition (2) of Def. 6 is not
satisfied. We show below that this is indeed the case.

It follows directly from the definition of l that wl > wk. Since wk−1 < wk, it
is clear that l 6= k − 1, and thus l + 1 < k. Thus, we also have wk > wl+1 (since
l + 1 /∈ L(wk)); meaning that wl > wl+1, and l is a descent. We already have seen
that condition (1) of Def. 6 is not satisfied for any of the labels in D; therefore wl

and wl+1 are not in D, but appear somewhere in the original sequence v, in the form
wl ≡ vl̃ and wl+1 ≡ vl̃+1 for some l̃ ∈ [ q ]. Since l + 1 < k, during Step 1, d must
have been assigned to some Did with l̃ < id.

Let us assume that jd < l̃; we will see that this assumption leads to a contradic-
tion. From ω−1(vjd) <P ω

−1(d) it follows that vjd < d. By construction of l̃, we have
d < vl̃. Therefore, if jd < l̃, then there must be a i ∈ (jd−1, l̃) such that vi < d < vi+1.
Then, by definition of id, we would have id ≤ i < l̃, in contradiction with l̃ < id.
Therefore, the assumption jd < l̃ made at the beginning of this paragraph must be
wrong and we have l̃ ≤ jd. Since vl̃ > d, we find ω−1(vl̃) ≮P ω−1(d), and therefore
(by Eq. (4)) jd 6= l̃. This reasoning shows that l̃ < jd.

The entry vjd of v appears in w in the form vjd ≡ wj at some position j ∈ [ p ].
Since l̃ < jd ≤ id and labels in v appear in the same order in w, we find l < j < k.
By construction of l, we have wm < wk for all m ∈ (l, k) (and thus especially for all
m ∈ (j, k)); and by construction of j, we have ω−1(wj) <P ω−1(wk). Therefore, as
discussed above, condition (2) of Def. 6 is not satisfied. It follows that every d ∈ D
is deletable in w, meaning that D ⊂ DelP (w).

We have demonstrated that there is exactly one sequence w of labels of [ p ] that
satisfies conditions (a)–(c) given at the beginning of this proof. In other words, there
is exactly one linear extension w such that v = w \D = w ∩ F and D ⊂ DelP (w) if
and only if FixP (w) ⊂ F .

Example 11. Let us demonstrate the insertion process described in Steps 1 and 2
during the proof above. Consider the sequence v = 17536 ∈ L(P \D) with the poset
P = 3 × 3 shown in Fig. 2 and the set of deleted labels D = {2, 4, 8, 9}. For the
labels d = 2 and 4, we find for the set in Eq. (4) {j ∈ [ 5 ] |ω−1(vj) <P ω

−1(d)} =
{j ∈ [ 5 ] | vj ∈ {1}} = {1}, and thus j2 = j4 = 1. Since v1 = 1 < 2, 4 < v2 =
7, in Eq. (5) we find i2 = i4 = 1. Therefore, the labels 2 and 4 are assigned
to the subset D1, and will be inserted into the sequence v between v1 = 1 and
v2 = 7. For the label 8, we find that in Eq. (4), {j ∈ [ 5 ] |ω−1(vj) <P ω

−1(8)} =
{j ∈ [ 5 ] | vj ∈ {5, 7}} = {2, 3}, and thus j8 = 3. Since however the label 8 is larger
than any of the following labels in v, v3 = 5, v4 = 3 and v5 = 6, we find in Eq. (5) that
{i | j8 = 3 ≤ i ≤ 5, vi < 8 < vi+1} = {5} and therefore i8 = 5. Finally, for the label 9,
we find that in Eq. (4), {j ∈ [ 5 ] |ω−1(vj) <P ω

−1(9)} = {j ∈ [ 5 ] | vj ∈ {6, 8}} = {5},
and thus j9 = 5 and i9 = 5. To summarize, in Step 1, we split the set D = {2, 4, 8, 9}
into the subsetsD0 = ∅, D1 = {2, 4}, D2 = ∅, D3 = ∅, D4 = ∅ andD5 = {8, 9}. In
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Step 2, the elements of each subset are arranged into a growing sequence, specifically
d11d

1
2 = 24 and d51d52 = 89, and inserted into v:

v    =  1 7 5 3 6

D   0 = Â D   1 = f2, 4g D   5 = f8, 9gD   3 = Â D   4 = ÂD   2 = Â

w    =  1 7 5 3 62 4 8 9

Lemma 12. Let w be a linear extension of P with the set of fixed labels FixP (w).
For every set of labels F ⊃ FixP (w), the sequence w ∩ F is a linear extension of
P ∩ F .

Proof. Consider two elements s, t ∈ P ∩ F with s <P∩F t. In order to show that
w ∩F is a linear extension of P ∩F , we have to demonstrate that ω(s) appears in v
before ω(t). Since P ∩ F is an induced subposet of P , it follows from s <P∩F t that
s <P t, and since w is a linear extension, this implies that ω(s) precedes ω(t) in w.
Clearly then, by construction of v, ω(s) also precedes ω(t) in v.

By combining the previous two lemmata, we find that

Lemma 13. The (disjoint) union of the Jordan-Hölder sets of all subposets of P is
given by the disjoint union⊔

Q⊂P

L(Q) =
⊔

w∈L(P )

⊔
FixP (w)⊂F⊂[ p ]

{w ∩ F} .

Proof. Consider first a set F ⊂ [ p ] and the corresponding subposet of P given by
P ∩ F . It follows directly from Lemmata 10 and 12 that the collection of linear
extensions of P ∩ F can be written as

L(P ∩ F ) =
⊔

w∈L(P )
for which

F⊃FixP (w)

{w ∩ F} .

Therefore, the set of linear extensions of subposets of P is given by⊔
Q⊂P

L(Q) =
⊔

F⊂[ p ]

L(P ∩ F ) =
⊔

F⊂[ p ]

⊔
w∈L(P )
for which

F⊃FixP (w)

{w ∩ F} =
⊔

w∈L(P )

⊔
FixP (w)⊂F⊂[ p ]

{w ∩ F} .
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4 Proof of Theorem 2

We are now ready to combine the lemmata derived so far into the derivation of the
closed from of the extended strict order polynomial given in the first section.

Proof. (of Theorem 2) By application of Eqs. (1) and (2) as well as (in line 3)
Lemmata 9 and 13, we find

E◦P (n, z) =
∑
Q⊂P

Ω◦Q(n)z|Q|

=
∑
Q⊂P

∑
v∈L(Q)

(
n+ des(v)

|Q|

)
z|Q|

=
∑

w∈L(P )

∑
FixP (w)⊂F⊂[ p ]

(
n+ des(w)

|F |

)
z|F |

=
∑

w∈L(P )

p∑
k=0

∣∣∣{FixP (w) ⊂ F ⊂ [ p ]
∣∣∣ |F | = k

}∣∣∣ · (n+ des(w)

k

)
zk

=
∑

w∈L(P )

p∑
k=0

(
p− fixP (w)

k − fixP (w)

)
·
(
n+ des(w)

k

)
zk.

5 Perspectives

Our main motivation to develop the extended strict order polynomial E◦P (n, z) intro-
duced in the current communication is its close relation to the Zhang-Zhang poly-
nomial [26, 27, 28] (also known as Clar covering polynomial or ZZ polynomial)
enumerating Clar covers of benzenoid hydrocarbons [6], a topic to which we have
devoted feverish activity in our laboratory for almost a decade now [2, 5, 4, 25,
24, 11, 12]. A benzenoid is a finite 2-connected subgraph of the hexagonal grid
[7]; see for example Fig. 3 (a). A Clar cover of a benzenoid B is a spanning sub-
graph of B whose connected components are either edges (K2) or hexagons (C6)
[6]. Usually a Clar cover is displayed together with its underlying benzenoid, with
its hexagon components represented as circles in the corresponding hexagon of B,
see e.g. Fig. 3 (b). The Clar covers of a benzenoid can be enumerated using the
Zhang-Zhang polynomial

ZZ(B) =
Cl∑
k=0

ckx
k,

where the coefficient ck denotes the number of Clar covers with k hexagons, and Cl
is the maximum number of hexagons that can appear in the Clar covers of B.

Our recent contribution, introducing the interface theory of benzenoids [11, 12],
demonstrated that the enumeration of Clar covers of a benzenoid B can be efficiently
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performed by studying distributions of only the horizontal edges of its Clar covers
(assuming B is oriented such that some of its edges are horizontal). The Clar covers
of a benzenoid follow certain rules governing the number and the relative positions
of their horizontal edges. We may thus associate each such horizontal edge with
an element of a (Clar cover independent) poset S(B), whose partial order <S(B)

encodes the relative positions between these edges. The enumeration of Clar covers
becomes especially simple for a certain subclass of benzenoids, the so-called regular
benzenoid strips. These structures consist of fused columns of hexagons, each of
which is, at either end, only half a hexagon longer or shorter than its neighbouring
columns; and furthermore the first and last columns need to consist of the same
number n of hexagons. All examples of benzenoids shown in this subsection fall
into this category. For a regular strip B of length n, every strictly order-preserving
map σ from a subposet Q ⊂ S(B) to the chain n corresponds to a well-defined
set of (1 + x)|Q| Clar covers, which have horizontal edges in the positions specified
by σ. As a result, for any regular strip B that has a non-zero number of Clar
covers, there exists a corresponding poset S(B) such that the extended strict order
polynomial E◦S(B)(n, z) coincides with the Zhang-Zhang polynomial ZZ (B, x) of B
(with z = x+ 1). A detailed proof of this fact is given in [13], and it has been used
in [14, 15] to automatically and efficiently compute the Zhang-Zhang polynomials
for a large amount of benzenoids (and in the same breath, the extended strict order
polynomials for a large amount of posets, listed in [15]), a feat which was previously
impossible. The equivalence between the extended strict order polynomials E◦P (n, z)
developed in the current study and the Zhang-Zhang polynomials ZZ (B, x) of regular
benzenoid strips B allows us to recognize a large collection of facts about E◦P (n, z)
due to the previously discovered facts about the ZZ polynomials. Among others, the
following facts are easy to deduce:

(a) (b)

Figure 3: Example of (a) a benzenoid B, (b) a Clar cover of B.

1. The chain P = p corresponds to a parallelogram M (p, n) shown in Fig. 4.



J. LANGNER AND H.A. WITEK/AUSTRALAS. J. COMBIN. 81 (1) (2021), 187–207 201

M  a             (p,n)

p

n

p

P  = p

Figure 4: The extended strict order polynomial E◦P (n, z) of a chain P = p is
equivalent to the ZZ polynomial ZZ (M (m,n) , x) of a parallelogram M (p, n).

for which the ZZ polynomial is given by ZZ (M (m,n) , x) =
∑p

k=0

(
m
k

)(
n
k

)
(x +

1)k [8, 2, 3]; consequently, we have

E◦p(n, z) =

p∑
k=0

(
p

k

)(
n

k

)
zk. (6)

This result is also directly obvious from Theorem 2: The Jordan-Hölder set of
p consists of only one element, L(p) = {123 . . . p}, for which fixp(123 . . . p) = 0
and desp(123 . . . p) = 0. Thus, Eq. (3) immediately assumes the form of Eq. (6).

2. The poset P containing p non-comparable elements corresponds, according to
the interface theory of benzenoids, to a prolate rectangle Pr (p, n) shown in
Fig. 5 for which the ZZ polynomial is given by

ZZ (Pr (p, n) , x) = (1 + n (x+ 1))p

[28, 1]; consequently, we have

E◦[ p ](n, z) = (1 + nz)p .

Pr  a             (p,n)

2p   -1

n

p

P  = [ p ]

Figure 5: The extended strict order polynomial E◦P (n, z) of a poset P of p non-
comparable elements is equivalent to the ZZ polynomial ZZ (Pr (p, n) , x) of a
prolate rectangle Pr (p, n).

This result can also be derived directly from Eq. (2): Every subposet Q ⊂ [ p ]
is an antichain of |Q| incomparable elements, and thus has the strict order
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polynomial Ω◦Q(n) = n|Q|. It follows that E◦P (n, z) =
∑

Q⊂P Ω◦Q(n)z|Q| =∑
Q⊂P (nz)|Q| =

∑
k

(
p
k

)
(nz)k = (1 + nz)p.

3. The poset P = 2 ×m corresponds to a hexagonal graphene flake O (2,m, n)
shown in Fig. 6.

O  a             (2,m,n)

m

n

P  = 2 × m

m

Figure 6: The extended strict order polynomial E◦P (n, z) of a lattice P = 2 ×
m is equivalent to the ZZ polynomial ZZ (O (2,m, n) , x) of a hexagonal flake
O (2,m, n).

It follows from the ZZ polynomial ZZ (O (2,m, n) , x) [9, 10, 22] that the extend-
ed strict order polynomial has the form of a 2× 2 determinant

E◦2×m(n, z) =

∣∣∣∣∣∣∣∣∣∣

∑
k=0

(
m
k

) (
n
k

)
zk

∑
k=1

(
m+1
k+1

)(
n−1
k−1

)
zk

∑
k=1

(
m−1
k−1

)(
n+1
k+1

)
zk

∑
k=0

(
m
k

) (
n
k

)
zk

∣∣∣∣∣∣∣∣∣∣
. (7)

This determinantal formula for ZZ (O (2,m, n) , x) is a conjecture which has
been discovered and verified via extensive numerical tests inspired by the John-
Sachs Theorem [18]. The missing proof for this formula can likely be provided
using the relation to the extended strict order polynomial and Eq. (3); note
especially the similarity between Eq. (3) and the entries of the determinant in
Eq. (7).

4. The extended strict order polynomial for the lattice P = l ×m is unknown,
following the fact that this poset corresponds to the hexagonal flake O (l,m, n)
shown in Fig. 7. The ZZ polynomial ZZ (O (l,m, n) , x) of this structure const-
itutes the hardest unsolved problem in the theory of ZZ polynomials [1, 4, 9, 23].

5. The fence P = Q(1,m) with m elements corresponds to a multiple zigzag chain
Z(m,n) shown in Fig. 8.
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O  a             (l,m,n)

l

n

m

P  = l × m

l m

Figure 7: The extended strict order polynomial E◦P (n, z) of a lattice P = l ×
m is equivalent to the ZZ polynomial ZZ (O (l,m, n) , x) of a hexagonal flake
O (l,m, n).

Z  a             (m,n)

m

n

P   = Q              (1,m)

m

Figure 8: The extended strict order polynomial E◦P (n, z) of a fence P = Q(1,m)
is equivalent to the ZZ polynomial ZZ (Z (m,n) , x) of a multiple zigzag chain
Z(m,n).

The expression for ZZ (Z (m,n) , x), and consequently E◦P (n, z), is given by a
lengthy formula [1, 4, 16], but the associated generating function has the form
of a continued fraction [16].

n

(8)

An analogous generating function with respect to n is unknown. The generating
function for ZZ (Z (m,n) , x) was derived by utilizing certain recurrence rela-
tions between Zhang-Zhang polynomials of generalized multiple zigzag chains
Zk (m,n), i.e., multiple zigzag chains with one incomplete row of length k < n.
Finding the rather surprising result given in Eq. (8) through the preexisting
methods of poset theory would likely be difficult; however, further interesting
connections might be waiting to be discovered here.
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The extended strict order polynomial E◦P (n, z) can be also computed in an efficient
fashion directly from Eq. (3) through an algorithm based on a graph of “compatible”
antichains of P . Propagating weights through this graph in a certain way yields
the extended strict order polynomial without ever having to construct the entire set
L(P ). This algorithm has been implemented in Maple 16 [17] and will be reported
later. For the example of the poset P = 3 × 3 depicted in Fig. 2, we obtain in this
way

E◦3×3(n, z) =
9∑

k=0

((
9

k

)(
n

k

)
+

(
9

(
9− 2

k − 2

)
+

(
9− 3

k − 3

))(
n+ 1

k

)
(9)

+

((
9− 3

k − 3

)
+ 17

(
9− 4

k − 4

)
+ 2

(
9− 5

k − 5

))(
n+ 2

k

)
+

(
2

(
9−5

k−5

)
+ 7

(
9−6

k−6

)
+

(
9−7

k−7

))(
n+3

k

)
+

(
9−7

k−7

)(
n+4

k

))
zk.

We suspect that the coefficients el,j (P ) appearing in E◦P (n, z) in front of the terms(
p−2l−j
k−2l−j

)(
n+l
k

)
are #P-complete to compute, in close analogy to the coefficients e (P )

corresponding to the number of linear extensions of P . These coefficients are growing
very fast with the size of the poset P . The largest of the coefficients el,j (3× 3) is
only 17 (as can be easily seen from Eq. (9)), but larger P are characterized by
much greater coefficients, e.g., max (el,j (4× 4))=3765, max (el,j (4× 5))=200440,
max (el,j (5× 5))=61885401, and max (el,j (5× 6))=27950114975.

Stanley’s strict order polynomial Ω◦P (n) can be used to enumerate the linear
extensions of a poset P by their number of descents. We have

∞∑
n=0

Ω◦P (n)tn =

∑
w∈L(P ) t

p−des(w)

(1− t)p+1
. (10)

By computing the left-hand side of Eq. (10) and multiplying it by (1 − t)p+1, we
obtain a polynomial in t, whose coefficients give the number of linear extensions of
each type. This approach can be extended to the extended strict order polynomial
E◦P (n, z) in order to enumerate the linear extensions of a poset P simultaneously by
their number of descents and by their number of fixed labels. We have

∞∑
n=0

E◦P (n, z)tn =
(1− t+ zt)p

tp (1− t)p+1

∑
w∈L(P )

(
zt

1− t+ zt

)fixP (w)

tp−des(w). (11)

Now, by introducing a new variable y = zt
1−t+zt

, we have

(1− t) tp (1− y)p
∞∑
n=0

E◦P

(
n,
y (1− t)
t (1− y)

)
tn =

∑
w∈L(P )

yfixP (w) tp−des(w). (12)

Computing the left-hand side of Eq. (12) produces a bivariate polynomial in y and t,
whose coefficients give the number of linear extensions of each type. We anticipate
that the actual computation of the left-hand side of Eq. (12) can be a rather difficult
task but for the simplest posets.
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