Enumerations on polyominoes determined by Fuss-Catalan words

Toufik Mansour
Department of Mathematics, University of Haifa
3498838 Haifa, Israel
tmansour@univ.haifa.ac.il
José L. Ramírez
Departamento de Matemáticas
Universidad Nacional de Colombia, Bogotá
Colombia
jlramirezr@unal.edu.co

Abstract

In this paper we introduce the concept of s-Fuss-Catalan words. This new family of words generalizes the Catalan words (taking $s=1$), which are a particular case of growth-restricted words. Here we enumerate the polyominoes or bargraphs associated with the s-Fuss-Catalan words according to the semiperimeter and area statistics. Additionally, we obtain combinatorial formulas to count the s-Fuss-Catalan bargraphs according of these statistics.

1 Introduction

Given a positive integer s, an s-Fuss-Catalan path of length $(s+1) n$ is a lattice path in the first quadrant of the $x y$-plane from $(0,0)$ to the point $((s+1) n, 0)$ using up-steps $U_{s}=(1, s)$ and down-steps $D=(1,-1)$. For $s=1$ we recover the concept of the classical Dyck path of length $2 n$ enumerated by the famous Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. The number of s-Fuss-Catalan paths of length $(s+1) n$ is given by the Fuss-Catalan numbers $C_{n, s}=\frac{1}{s n+1}\binom{(s+1) n}{n}$. There are several combinatorial interpretations for both the Catalan numbers and for Fuss-Catalan numbers (see, for example, [14] and [9]).

For an s-Fuss-Catalan path of length $(s+1) n$, we associate the word formed by the subtraction $s-1$ from the y-coordinate of each final point of the U_{s} steps. This family of words is called s-Fuss-Catalan words. See Figure 1 for an example.

Figure 1: The 3-Dyck path corresponding to the 3-Fuss-Catalan word 1453512.

The s-Fuss-Catalan words can be characterized as the words $w=w_{1} w_{2} \cdots w_{n}$ over the set of positive integers satisfying $w_{1}=1$ and $1 \leq w_{i} \leq w_{i-1}+s$ for $i=2, \ldots, n$. Denote by $\mathcal{C}_{n}^{(s)}$ the set of s-Fuss-Catalan words of length n. It is clear that the cardinality of $\mathcal{C}_{n}^{(s)}$ is given by the Fuss-Catalan number $C_{n, s}$. An s-Fuss-Catalan word $w=w_{1} w_{2} \cdots w_{n}$ can be represented as a polyomino P of n columns, also called a bargraph, whose i-th column contains w_{i} cells for $1 \leq i \leq n$. See Figure 2 for an example.

Figure 2: Polyomino corresponding to the 3-Fuss-Catalan word 1453512.
The s-Fuss-Catalan words generalize the concept of Catalan words (taking $s=$ 1). Catalan words have been studied in the context of exhaustive generation of Gray codes for growth-restricted words [12]. Recently, Baril et al. [2, 3] studied the distribution of descents on the set of Catalan words avoiding a pattern of length at most three and pair of patterns of length three. Callan and the two authors of this paper [7] started the study of the combinatorial properties of the polyominoes associated with the Catalan words. For example, in [7] it is possible to find formulas for the generating functions enumerating area and semiperimeter. Additionally, the authors in [11] study the number of interior lattice vertices lying strictly within the polygon determined by the polyomino. We remark that polyominoes provide a rich source of combinatorial ideas and have been studied in connection with several discrete structures such as words, set partitions, polyominoes, permutations, graphs, among others (see for example $[4,5,6,8,10]$ and references contained therein).

The goal of this paper is to enumerate the area and semiperimeter of the family of polyominoes determined by the s-Fuss-Catalan words. So a property that is true in this generalization immediately holds for the polyominoes associated to Catalan words (taking $s=1$). The results given in this paper were found using generating functions and the kernel method. In particular, we give a functional equation satisfied
by the generating function of the polyominoes determined by s-Fuss-Catalan words according to the area and the semiperimeter statistics. Then we can derive generating functions to the total distribution of both statistics and give some combinatorial expressions.

2 Area and Semiperimeter Statistics

A bargraph is a self-avoiding lattice path in the first quadrant with steps up $u=(0,1)$, horizontal $h=(1,0)$, and down $d=(0,-1)$ that starts at the origin and ends on the x-axis. The bargraphs are a particular family of polyominoes (cf. [8]). We define the area of a bargraph as the number of cells. The semiperimeter of a bargraph is the sum of the number of up and horizontal steps. Let P_{w} be the bargraph associated with the s-Fuss-Catalan word w. We denote by area $\left(P_{w}\right)$ and $\operatorname{sper}\left(P_{w}\right)$ the area and semiperimeter of P_{w}, respectively. Hence, for the bargraphs in Figure 2, $\operatorname{area}\left(P_{w}\right)=21$ and $\operatorname{sper}\left(P_{w}\right)=15$.

Let $\mathcal{C}_{n}^{(s)}$ denote the set of s-Fuss-Catalan words of length n, and $\mathcal{C}^{(s)}=\bigcup_{n \geq 0} \mathcal{C}_{n}^{(s)}$. Let $\mathcal{C}_{n, i}^{(s)}$ denote the set of words in $\mathcal{C}_{n}^{(s)}$ having last letter equal to i, and let $c_{s}(n, i)=$ $\left|\mathcal{C}_{n, i}^{(s)}\right|$. Yang and Wang [15] studied the sequence $c_{s}(n, i)$ in the context of the Enumerating Combinatorial Objects (ECO) method. The sequence $c_{s}(n, j)$ satisfies the recurrence relation
$c_{s}(n, i)=c_{s}(n-1, i-(s+1)+1)+c_{s}(n-1, i-(s+1)+2)+\cdots+c_{s}(n-1,(n-1) s)$,
for all $n, i \geq 1$, with the initial conditions $c_{s}(1,1)=1$ and $c_{s}(1, i)=0$ for all $i>1$. For example, the first few rows for the matrix $\left[c_{2}(n, i)\right]_{n, i \geq 1}$ are

$$
\left[c_{2}(n, i)\right]_{n, i \geq 1}=\left(\begin{array}{ccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 3 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
12 & 12 & 12 & 9 & 6 & 3 & 1 & 0 & 0 & 0 & 0 \\
55 & 55 & 55 & 43 & 31 & 19 & 10 & 4 & 1 & 0 & 0 \\
273 & 273 & 273 & 218 & 163 & 108 & 65 & 34 & 15 & 5 & 1
\end{array}\right) .
$$

We introduce the following generating functions according to the above parameters:

$$
A_{i}^{(s)}(x ; p, q):=\sum_{n \geq 1} x^{n} \sum_{w \in \mathcal{C}_{n, i}^{(s)}} p^{\operatorname{sper}\left(P_{w}\right)} q^{\operatorname{area}\left(P_{w}\right)}
$$

That is $A_{i}(x ; p, q)$ is the generating function for the s-Fuss-Catalan words (or Catalan bargraphs) ending in i with respect to the area and semiperimeter. Moreover, define the multivariate generating function

$$
A^{(s)}(x ; p, q ; v):=\sum_{i \geq 1} A_{i}^{(s)}(x ; p, q) v^{i-1}
$$

In Theorem 2.1 we give a functional expression for the generating function $A^{(s)}(x$; $p, q ; v)$.

Theorem 2.1. The generating function $A^{(s)}(x ; p, q ; v)$ satisfies the functional equation

$$
\begin{align*}
A^{(s)}(x ; p, q ; v)=p^{2} q x+\frac{p q x}{1-q v} & A^{(s)}(x ; p, q ; 1) \\
& +\left(\frac{p q^{2} x v\left(1-(p q v)^{s}\right)}{1-p q v}-\frac{p q^{2} x v}{1-q v}\right) A^{(s)}(x ; p, q ; q v) . \tag{1}
\end{align*}
$$

Proof. From the definition of an s-Fuss-Catalan word, we have, for $i=1$, the following relation:

$$
\begin{equation*}
A_{1}^{(s)}(x ; p, q)=p^{2} q x+p q x \sum_{j \geq 1} A_{j}^{(s)}(x ; p, q) . \tag{2}
\end{equation*}
$$

See Figure 2 for a graphical representation of this decomposition.

Figure 3: Decomposition of the s-Fuss-Catalan words in $\mathcal{C}_{n, 1}^{(s)}$.

For $2 \leq i \leq s$ we have (see Figure 4)

$$
\begin{equation*}
A_{i}^{(s)}(x ; p, q)=\sum_{k=1}^{i-1} p^{i-k+1} q^{i} x A_{k}^{(s)}(x ; p, q)+p q^{i} x \sum_{\ell \geq i} A_{\ell}^{(s)}(x ; p, q) ; \tag{3}
\end{equation*}
$$

Figure 4: Decomposition of the s-Fuss-Catalan words in $\mathcal{C}_{n, i}^{(s)}$, for $2 \leq i \leq s$.
and for $i>s$ we obtain the recursion

$$
\begin{equation*}
A_{i}^{(s)}(x ; p, q)=p q^{i} x \sum_{k=0}^{s-1} p^{s-k} A_{i-s+k}^{(s)}(x ; p, q)+p q^{i} x \sum_{\ell \geq i} A_{\ell}^{(s)}(x ; p, q) . \tag{4}
\end{equation*}
$$

Multiplying (4) by v^{i-1}, summing over $i \geq s+1$ and using (2) and (3), we have

$$
\begin{aligned}
& A_{1}^{(s)}(x ; p, q)=p^{2} q x+p q x A^{(s)}(x ; p, q ; 1), \\
& A_{i}^{(s)}(x ; p, q)=\sum_{k=0}^{i-2} p^{i-k} q^{i} x A_{k+1}^{(s)}(x ; p, q)+p q^{i} x\left(A^{(s)}(x ; p, q, 1)-\sum_{k=1}^{i-1} A_{k}^{(s)}(x ; p, q)\right), \\
& 2 \leq i \leq s
\end{aligned}
$$

and

$$
\begin{aligned}
& A^{(s)}(x ; p, q ; v)- \sum_{k=1}^{s} A_{k}^{(s)}(x ; p, q) v^{k-1} \\
&=\left(x \sum_{k=1}^{s}(p q)^{k+1} v^{k}-\frac{p q^{2} x v}{1-q v}\right) A^{(s)}(x ; p, q ; q v) \\
&-\left(x \sum_{k=1}^{s-1} p^{k+1} q^{k+1} v^{k}+\frac{p q^{s+1} x v^{s}}{1-q v}-\frac{p q^{2} x v}{1-q v}\right) A_{1}^{(s)}(x ; p, q) \\
&-\left(x \sum_{k=1}^{s-2} p^{k+1} q^{k+2} v^{k+1}+\frac{p q^{s+1} x v^{s}}{1-q v}-\frac{p q^{3} x v^{2}}{1-q v}\right) A_{2}^{(s)}(x ; p, q) \\
&-\cdots-\left(p^{2} q^{s} x v^{s-1}+\frac{p q^{s+1} x v^{s}}{1-q v}-\frac{p q^{s} x v^{s-1}}{1-q v}\right) A_{s-1}^{(s)}(x ; p, q) \\
&+\frac{p q^{s+1} x v^{s}}{1-q v} A^{(s)}(x ; p, q ; 1) .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \sum_{k=1}^{s} A_{k}^{(s)}(x ; p, q) v^{k-1}=p^{2} q x+\sum_{k=1}^{s} p q^{k} x v^{k-1} A^{(s)}(x ; p, q ; 1) \\
& +A_{1}^{(s)}(x ; p, q) \sum_{k=1}^{s-1}\left(p^{k+1} q^{k+1}-p q^{k+1}\right) x v^{k}+A_{2}^{(s)}(x ; p, q) \sum_{k=1}^{s-2}\left(p^{k+1} q^{k+2}-p q^{k+2}\right) x v^{k+1} \\
& +\cdots+A_{s-1}^{(s)}(x ; p, q)\left(p^{2} q^{s}-p q^{s}\right) x v^{s-1}
\end{aligned}
$$

which leads to

$$
\begin{aligned}
A^{(s)}(x ; p, q ; v)=p^{2} q x+\frac{p q x}{1-q v} A^{(s)}(& x ; p, q ; 1) \\
& +\left(\sum_{k=1}^{s}(p q)^{k+1} x v^{k}-\frac{p q^{2} x v}{1-q v}\right) A^{(s)}(x ; p, q ; q v) .
\end{aligned}
$$

3 The Area Statistic

The goal of this section is to analyze the area statistic. By setting $p=1$ in Theorem 2.1 we obtain the functional equation

$$
\begin{equation*}
A^{(s)}(x ; 1, q ; v)=q x+\frac{q x}{1-q v} A^{(s)}(x ; 1, q ; 1)-\frac{q^{s+2} x v^{s+1}}{1-q v} A^{(s)}(x ; 1, q ; q v) . \tag{5}
\end{equation*}
$$

Let $T_{s}(v):=-\frac{q^{s+2} x v^{s+1}}{1-q v}$; then by iterating this equation an infinite number of times (here, we may assume $|x|<1$ or $|q|<1$), we obtain the equality

$$
A^{(s)}(x ; 1, q ; v)=q x\left(1+\sum_{i \geq 0} \prod_{\ell=0}^{i} T_{s}\left(q^{\ell} v\right)\right)+\sum_{i \geq 1} \frac{q x}{1-q^{i} v} \prod_{\ell=1}^{i-1} T_{s}\left(q^{\ell-1} v\right) A^{(s)}(x ; 1, q, 1) .
$$

By setting $v=1$, and solving for $A^{(s)}(x ; 1, q ; 1)$, we may state the following result.
Theorem 3.1. The generating function enumerating the polyominoes associated with the nonempty s-Fuss-Catalan words according to their length and area is given by

$$
A^{(s)}(x ; 1, q ; 1)=\frac{q x+q x \sum_{i \geq 1} \frac{(-1)^{i} q^{i((s+1) i+s+3) / 2} x^{i}}{\prod_{\ell=1}^{i}\left(1-q^{\ell}\right) / 2}}{1-q x \sum_{i \geq 0} \frac{(-1)^{i} q^{i(s+1) i+s+3) / 2 x^{i}}}{\prod_{\ell=1}^{i+1}\left(1-q^{\ell}\right)}} .
$$

For example, for $s=2,3$ we have the series

$$
\begin{aligned}
A^{(2)}(x ; 1, q ; 1)= & q x+\left(q^{4}+q^{3}+q^{2}\right) x^{2}+\left(q^{9}+q^{8}+2 q^{7}+2 q^{6}+3 q^{5}+2 q^{4}+q^{3}\right) x^{3} \\
& +\left(q^{16}+q^{15}+2 q^{14}+3 q^{13}+4 q^{12}+5 q^{11}+7 q^{10}+7 q^{9}+8 q^{8}\right. \\
& \left.+7 q^{7}+6 q^{6}+3 q^{5}+q^{4}\right) x^{4}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
& A^{(3)}(x ; 1, q ; 1)=q x+q^{2}\left(q^{3}+q^{2}+q+1\right) x^{2} \\
& \quad+q^{3}\left(q^{9}+q^{8}+2 q^{7}+2 q^{6}+3 q^{5}+3 q^{4}+4 q^{3}+3 q^{2}+2 q+1\right) x^{3} \\
& +q^{4}\left(q^{18}+q^{17}+2 q^{16}+3 q^{15}+4 q^{14}+5 q^{13}+7 q^{12}+8 q^{11}+10 q^{10}+12 q^{9}+13 q^{8}\right. \\
& \left.\quad+14 q^{7}+14 q^{6}+14 q^{5}+12 q^{4}+10 q^{3}+6 q^{2}+3 q+1\right) x^{4}+\cdots .
\end{aligned}
$$

Figure 5 shows the weights of the polyominoes associated with the 2-Fuss-Catalan words members of $\mathcal{C}_{3}^{(2)}$. Notice that the sum of the weights of this example corresponds to the coefficient $\left[x^{3}\right] A^{(2)}(x ; 1, q ; 1)$.

Define $A_{u}^{(s)}(v)=\frac{d}{d u} A^{(s)}(x ; 1, q ; v)$ with $u \in\{q, v\}$ and $A^{(s)}(v)=A^{(s)}(x ; 1, q ; v)$. Then from (5), we have

$$
\begin{aligned}
\left.\left(1+\frac{x v^{s+1}}{1-v}\right) A_{q}^{(s)}(v)\right|_{q=1}= & x+\left.\frac{x}{(1-v)^{2}} A^{(s)}(1)\right|_{q=1}+\left.\frac{x}{1-v} A_{q}^{(s)}(1)\right|_{q=1} \\
- & \left.\frac{(s+2) x v^{s+1}-(s+1) x v^{s+2}}{(1-v)^{2}} A^{(s)}(v)\right|_{q=1} \\
& -\left.\frac{x v^{s+2}}{1-v} A_{v}^{(2)}(v)\right|_{q=1} .
\end{aligned}
$$

Figure 5: Weights for the polyominoes associated with the words in $\mathcal{C}_{3}^{(2)}$.

This type of functional equation can be solved systematically using the kernel method (see [1]). Let $v_{0}=\sum_{n \geq 0} \frac{1}{s n+1}\binom{(s+1) n}{n} x^{n}$ be the root of the equation $v_{0}=1+x v_{0}^{s+1}$, which is the generating function for the sequence $\left|\mathcal{C}_{n}^{(s)}\right|$. Note that $A^{(s)}(x ; 1,1 ; 1)=$ $v_{0}-1$. Thus, by taking $v=v_{0}$, then we have

$$
\begin{equation*}
\left.A_{q}^{(s)}(1)\right|_{q=1}=v_{0}+\left.\frac{v_{0}^{s+1}\left(s+2-(s+1) v_{0}\right)}{1-v_{0}} A^{(s)}\left(v_{0}\right)\right|_{q=1}+\left.v_{0}^{s+2} A_{v}^{(s)}(v)\right|_{q=1, v=v_{0}} . \tag{6}
\end{equation*}
$$

Note that from (5) we have

$$
\begin{equation*}
\left.A^{(s)}\left(v_{0}\right)\right|_{q=1}=\frac{x}{1-(s+1) x v_{0}^{s}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.A_{v}^{(s)}(v)\right|_{q=1, v=v_{0}}=\frac{\binom{s+1}{2} x^{2} v_{0}^{s-1}}{\left(1-(s+1) x v_{0}^{s}\right)^{2}} . \tag{8}
\end{equation*}
$$

Hence, by (6), (7), (8), and the fact that $v_{0}=1+x v_{0}^{s+1}$, we obtain the following result.

Theorem 3.2. The generating function for the total area over the polyominoes associated with the members of $\mathcal{C}_{n}^{(s)}$ is given by

$$
\begin{aligned}
\left.A_{q}^{(s)}(1)\right|_{q=1} & =v_{0}-\frac{s+2-(s+1) v_{0}}{1-(s+1) x v_{0}^{s}}+\frac{\binom{s+1}{2}\left(v_{0}-1-x v_{0}^{s}\right)}{\left(1-(s+1) x v_{0}^{s}\right)^{2}} \\
& =x \frac{d v_{0}}{d x}+\binom{s+1}{2} \frac{1}{v_{0}}\left(x \frac{d v_{0}}{d x}\right)^{2},
\end{aligned}
$$

where $v_{0}=\sum_{n \geq 0} \frac{1}{s n+1}\binom{(s+1) n}{n} x^{n}$.

Note that if $v_{0}=\sum_{n \geq 0} \frac{1}{s n+1}\binom{(s+1) n}{n} x^{n}$ (solution of $v_{0}=1+x v_{0}^{s+1}$), then $\frac{1}{v_{0}}=1-\sum_{n \geq 0} \frac{1}{n+1}\left({ }_{n}^{(s+1) n+s-1}\right) x^{n+1}$. Hence, by Theorem 3.2

$$
\begin{aligned}
& \left.A_{q}^{(s)}(1)\right|_{q=1}=\sum_{j \geq 0} \frac{j}{s j+1}\binom{(s+1) j}{j} x^{j} \\
& +\binom{s+1}{2}\left(1-\sum_{j \geq 0} \frac{1}{j+1}\binom{(s+1) j+s-1}{j} x^{j+1}\right)\left(\sum_{j \geq 0} \frac{j}{s j+1}\binom{(s+1) j}{j} x^{j}\right)^{2},
\end{aligned}
$$

from which, by comparing the coefficient of x^{n} on both sides, we obtain the following result.

Theorem 3.3. The total area over the polyominoes associated with the members of $\mathcal{C}_{n}^{(s)}$ is given by

$$
\begin{aligned}
\frac{n}{s n+1}\binom{(s+1) n}{n}+\binom{s+1}{2} & \sum_{j=0}^{n} \frac{j(n-j)}{(s j+1)(s(n-j)+1)}\binom{(s+1) j}{j}\binom{(s+1)(n-j)}{n-j} \\
-\binom{s+1}{2} & \sum_{j=0}^{n-1} \sum_{i=0}^{j} \frac{i(j-i)}{(s i+1)(s(j-i)+1)(n-j)} \\
& \times\binom{(s+1) i}{i}\binom{(s+1)(j-i)}{j-i}\binom{(s+1)(n-j)-2}{n-1-j} .
\end{aligned}
$$

Let $a_{s}(n)$ denote the total area of the polyominoes associated with the members of $\mathcal{C}_{n}^{(s)}$. For $s=1$ the combinatorial formula given in Theorem 3.3 can be simplified to just (see [7, Corollary 12])

$$
a_{1}(n)=\frac{1}{2}\left(4^{n}-\binom{2 n}{n}\right) .
$$

Table 1 gives the first few values of the sequence $a_{s}(n)$ for $s=1,2,3,4$. Notice that the sequence $a_{s}(n)$ was studied by Merlini et al. [13] in the context of the Tennis Ball Problem.

$s \backslash n$	1	2	3	4	5	6	7	8	9
$s=1$	1	5	22	93	386	1586	6476	26333	106762
$s=2$	1	9	69	502	3564	24960	173325	1196748	8229849
$s=3$	1	14	156	1622	16347	161970	1588176	15465222	149866020
$s=4$	1	20	295	4000	52290	670316	8491720	106740640	1334461075

Table 1: Values of the total area.

4 The Semiperimeter of the Polyominoes

By setting $q=1$ in (1) we obtain the functional equation

$$
\begin{equation*}
A^{(s)}(x ; p, 1 ; v)=p^{2} x+\frac{p x}{1-v} A^{(s)}(x ; p, 1 ; 1)+\left(x \sum_{k=1}^{s} p^{k+1} v^{k}-\frac{p x v}{1-v}\right) A^{(s)}(x ; p, 1 ; v) . \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(1-x \sum_{k=1}^{s} p^{k+1} v^{k}+\frac{p x v}{1-v}\right) A^{(s)}(x ; p, 1 ; v)=p^{2} x+\frac{p x}{1-v} A^{(s)}(x ; p, 1 ; 1) . \tag{10}
\end{equation*}
$$

Define the function

$$
K(v)=1-x \sum_{k=1}^{s} p^{k+1} v^{k}+\frac{p x v}{1-v}=1-\frac{p^{2} x v\left(1-(p v)^{s}\right)}{1-p v}+\frac{p x v}{1-v} .
$$

Let $v_{0}=v_{0}(x, p)$ be a root of $K(v)=0$. This functional equation can be solved again by the kernel method. In this case, if we assume that $v=v_{0}$, where v_{0} satisfies $K\left(v_{0}\right)=0$, we obtain

$$
A^{(s)}(x ; p, 1 ; 1)=p\left(v_{0}-1\right) .
$$

Note that the equation $K\left(v_{0}\right)=0$ can be written as

$$
w_{0}=p x\left(w_{0}+1\right) \frac{1-p-p^{s+1} w_{0}\left(w_{0}+1\right)^{s}}{(1-p)\left(1-\frac{p w_{0}}{1-p}\right)}
$$

where $w_{0}=v_{0}-1$. Using the Lagrange inversion formula we obtain that the coefficient of x^{n} in w_{0} (here, we assume that $|p|<1$) is given by

$$
\left[x^{n}\right] w_{0}=\frac{1}{n} \sum_{0 \leq i+j \leq n-1} \frac{(-1)^{j} p^{n+1+i+(s+1) j}}{(1-p)^{i+j}}\binom{n-1+i}{i}\binom{n}{j}\binom{n+s j}{n-1-i-j}
$$

Hence, we can state the following result.
Theorem 4.1. The coefficient of $x^{n}, n \geq 1$, in $A^{(s)}(x ; p, 1 ; 1)$ is given by

$$
\operatorname{Per}_{n}^{(s)}(p):=\frac{1}{n} \sum_{0 \leq i+j \leq n-1} \frac{(-1)^{j} p^{n+1+i+(s+1) j}}{(1-p)^{i+j}}\binom{n-1+i}{i}\binom{n}{j}\binom{n+s j}{n-1-i-j} .
$$

For example, $\operatorname{Per}_{3}^{(2)}(p)=p^{4}+3 p^{5}+5 p^{6}+2 p^{7}+p^{8}$. Figure 6 shows the weights of the polyominoes corresponding to this term.
Corollary 4.2. The total semiperimeter over the polyominoes associated with the members of $\mathcal{C}_{n}^{(s)}$ is given by

$$
\left.\frac{\partial \operatorname{Per}_{n}^{(s)}(p)}{\partial p}\right|_{p=1}
$$

Table 2 gives the first few values of the total semiperimeter sequence for $s=$ $1,2,3,4$.

Figure 6: Weights for the polyominoes associated with the words in $\mathcal{C}_{3}^{(2)}$.

$s \backslash n$	1	2	3	4	5	6	7	8	9
$s=1$	2	7	25	91	336	1254	4719	17875	68068
$s=2$	2	12	71	430	2652	16576	104652	665874	4263050
$s=3$	2	18	150	1275	11033	96768	857440	7658001	68827440
$s=4$	2	33	439	5900	80535	1113273	15541258	218637585	3094921424

Table 2: Values of the total semiperimeter.

Acknowledgements

The authors would like to thank the anonymous referees for carefully reading the paper and giving helpful comments and suggestions.

References

[1] C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and
D. Gouyou-Beauchamps, Generating functions for generating trees, Discrete Math. 246 (2002), 29-55.
[2] J.-L. Baril, S. Kirgizov and V. Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, Discrete Math. 341 (2018), 2608-2615.
[3] J.-L. Baril, C. Khalil and V. Vajnovszki, Catalan words avoiding pairs of length three patterns, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 22(2) (2021), 1-19.
[4] A. Blecher, C. Brennan and A. Knopfmacher, Levels in bargraphs, Ars Math. Contemp. 9 (2015), 287-300.
[5] A. Blecher, C. Brennan and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. S. Afr. 71 (2016), 97-103.
[6] A. Blecher, C. Brennan and A. Knopfmacher, Combinatorial parameters in bargraphs, Quaest. Math. 39 (2016), 619-635.
[7] D. Callan, T. Mansour and J. L. Ramírez, Statistics on bargraphs of Catalan words, J. Autom. Lang. Comb., accepted.
[8] A. J. Guttmann (Ed.), Polygons, Polyominoes and Polycubes, Lec. Notes in Physics 775, Springer, Heidelberg, Germany, 2009.
[9] S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math. 308 (2008), 5954-5964.
[10] T. Mansour and A. Sh. Shabani, Enumerations on bargraphs, Discrete Math. Lett. 2 (2019), 65-94.
[11] T. Mansour, J. L. Ramírez and D. Toquica, Counting lattice points on bargraphs of Catalan words, Math. Comput. Sci. 15 (2021), 701-713.
[12] T. Mansour and V. Vajnovszki, Efficient generation of restricted growth words, Inform. Process. Lett. 113 (2013), 613-616.
[13] D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory Ser. A 99 (2002), 307-344.
[14] R. Stanley, Catalan Numbers, Cambridge University Press, 2015.
[15] S.-L. Yang and L. J. Wang, Taylor expansions for the m-Catalan numbers, Australas. J. Combin. 64(3) (2016), 420-431.

