# Enumerations on polyominoes determined by Fuss-Catalan words

## TOUFIK MANSOUR

Department of Mathematics, University of Haifa 3498838 Haifa, Israel tmansour@univ.haifa.ac.il

José L. Ramírez

Departamento de Matemáticas Universidad Nacional de Colombia, Bogotá Colombia jlramirezr@unal.edu.co

#### Abstract

In this paper we introduce the concept of s-Fuss-Catalan words. This new family of words generalizes the Catalan words (taking s = 1), which are a particular case of growth-restricted words. Here we enumerate the polyominoes or bargraphs associated with the s-Fuss-Catalan words according to the semiperimeter and area statistics. Additionally, we obtain combinatorial formulas to count the s-Fuss-Catalan bargraphs according of these statistics.

### 1 Introduction

Given a positive integer s, an s-Fuss-Catalan path of length (s + 1)n is a lattice path in the first quadrant of the xy-plane from (0,0) to the point ((s + 1)n, 0) using up-steps  $U_s = (1, s)$  and down-steps D = (1, -1). For s = 1 we recover the concept of the classical Dyck path of length 2n enumerated by the famous Catalan numbers  $C_n = \frac{1}{n+1} {2n \choose n}$ . The number of s-Fuss-Catalan paths of length (s + 1)n is given by the Fuss-Catalan numbers  $C_{n,s} = \frac{1}{sn+1} {(s+1)n \choose n}$ . There are several combinatorial interpretations for both the Catalan numbers and for Fuss-Catalan numbers (see, for example, [14] and [9]).

For an s-Fuss-Catalan path of length (s + 1)n, we associate the word formed by the subtraction s - 1 from the y-coordinate of each final point of the  $U_s$  steps. This family of words is called s-Fuss-Catalan words. See Figure 1 for an example.



Figure 1: The 3-Dyck path corresponding to the 3-Fuss-Catalan word 1453512.

The *s*-Fuss-Catalan words can be characterized as the words  $w = w_1 w_2 \cdots w_n$  over the set of positive integers satisfying  $w_1 = 1$  and  $1 \le w_i \le w_{i-1} + s$  for  $i = 2, \ldots, n$ . Denote by  $\mathcal{C}_n^{(s)}$  the set of *s*-Fuss-Catalan words of length *n*. It is clear that the cardinality of  $\mathcal{C}_n^{(s)}$  is given by the Fuss-Catalan number  $C_{n,s}$ . An *s*-Fuss-Catalan word  $w = w_1 w_2 \cdots w_n$  can be represented as a polyomino *P* of *n* columns, also called a bargraph, whose *i*-th column contains  $w_i$  cells for  $1 \le i \le n$ . See Figure 2 for an example.



Figure 2: Polyomino corresponding to the 3-Fuss-Catalan word 1453512.

The s-Fuss-Catalan words generalize the concept of Catalan words (taking s = 1). Catalan words have been studied in the context of exhaustive generation of Gray codes for growth-restricted words [12]. Recently, Baril et al. [2, 3] studied the distribution of descents on the set of Catalan words avoiding a pattern of length at most three and pair of patterns of length three. Callan and the two authors of this paper [7] started the study of the combinatorial properties of the polyominoes associated with the Catalan words. For example, in [7] it is possible to find formulas for the generating functions enumerating area and semiperimeter. Additionally, the authors in [11] study the number of interior lattice vertices lying strictly within the polygon determined by the polyomino. We remark that polyominoes provide a rich source of combinatorial ideas and have been studied in connection with several discrete structures such as words, set partitions, polyominoes, permutations, graphs, among others (see for example [4, 5, 6, 8, 10] and references contained therein).

The goal of this paper is to enumerate the area and semiperimeter of the family of polyominoes determined by the *s*-Fuss-Catalan words. So a property that is true in this generalization immediately holds for the polyominoes associated to Catalan words (taking s = 1). The results given in this paper were found using generating functions and the kernel method. In particular, we give a functional equation satisfied by the generating function of the polyominoes determined by *s*-Fuss-Catalan words according to the area and the semiperimeter statistics. Then we can derive generating functions to the total distribution of both statistics and give some combinatorial expressions.

### 2 Area and Semiperimeter Statistics

A bargraph is a self-avoiding lattice path in the first quadrant with steps up u = (0, 1), horizontal h = (1, 0), and down d = (0, -1) that starts at the origin and ends on the x-axis. The bargraphs are a particular family of polyominoes (cf. [8]). We define the area of a bargraph as the number of cells. The semiperimeter of a bargraph is the sum of the number of up and horizontal steps. Let  $P_w$  be the bargraph associated with the s-Fuss-Catalan word w. We denote by  $\operatorname{area}(P_w)$  and  $\operatorname{sper}(P_w)$ the area and semiperimeter of  $P_w$ , respectively. Hence, for the bargraphs in Figure 2,  $\operatorname{area}(P_w) = 21$  and  $\operatorname{sper}(P_w) = 15$ .

Let  $C_n^{(s)}$  denote the set of s-Fuss-Catalan words of length n, and  $C^{(s)} = \bigcup_{n\geq 0} C_n^{(s)}$ . Let  $C_{n,i}^{(s)}$  denote the set of words in  $C_n^{(s)}$  having last letter equal to i, and let  $c_s(n, i) = |\mathcal{C}_{n,i}^{(s)}|$ . Yang and Wang [15] studied the sequence  $c_s(n, i)$  in the context of the Enumerating Combinatorial Objects (ECO) method. The sequence  $c_s(n, j)$  satisfies the recurrence relation

$$c_s(n,i) = c_s(n-1,i-(s+1)+1) + c_s(n-1,i-(s+1)+2) + \dots + c_s(n-1,(n-1)s),$$

for all  $n, i \ge 1$ , with the initial conditions  $c_s(1, 1) = 1$  and  $c_s(1, i) = 0$  for all i > 1. For example, the first few rows for the matrix  $[c_2(n, i)]_{n,i\ge 1}$  are

We introduce the following generating functions according to the above parameters:

$$A_i^{(s)}(x;p,q) := \sum_{n \ge 1} x^n \sum_{w \in \mathcal{C}_{n,i}^{(s)}} p^{\operatorname{sper}(P_w)} q^{\operatorname{area}(P_w)}$$

That is  $A_i(x; p, q)$  is the generating function for the *s*-Fuss-Catalan words (or Catalan bargraphs) ending in *i* with respect to the area and semiperimeter. Moreover, define the multivariate generating function

$$A^{(s)}(x; p, q; v) := \sum_{i \ge 1} A_i^{(s)}(x; p, q) v^{i-1}.$$

In Theorem 2.1 we give a functional expression for the generating function  $A^{(s)}(x; p, q; v)$ .

**Theorem 2.1.** The generating function  $A^{(s)}(x; p, q; v)$  satisfies the functional equation

$$A^{(s)}(x;p,q;v) = p^2 q x + \frac{pqx}{1-qv} A^{(s)}(x;p,q;1) + \left(\frac{pq^2 xv(1-(pqv)^s)}{1-pqv} - \frac{pq^2 xv}{1-qv}\right) A^{(s)}(x;p,q;qv).$$
(1)

*Proof.* From the definition of an s-Fuss-Catalan word, we have, for i = 1, the following relation:

$$A_1^{(s)}(x;p,q) = p^2 q x + p q x \sum_{j \ge 1} A_j^{(s)}(x;p,q).$$
<sup>(2)</sup>

See Figure 2 for a graphical representation of this decomposition.



Figure 3: Decomposition of the s-Fuss-Catalan words in  $\mathcal{C}_{n,1}^{(s)}$ .

For  $2 \leq i \leq s$  we have (see Figure 4)

$$A_i^{(s)}(x;p,q) = \sum_{k=1}^{i-1} p^{i-k+1} q^i x A_k^{(s)}(x;p,q) + p q^i x \sum_{\ell \ge i} A_\ell^{(s)}(x;p,q);$$
(3)



Figure 4: Decomposition of the s-Fuss-Catalan words in  $\mathcal{C}_{n,i}^{(s)}$ , for  $2 \leq i \leq s$ .

and for i > s we obtain the recursion

$$A_i^{(s)}(x;p,q) = pq^i x \sum_{k=0}^{s-1} p^{s-k} A_{i-s+k}^{(s)}(x;p,q) + pq^i x \sum_{\ell \ge i} A_\ell^{(s)}(x;p,q).$$
(4)

Multiplying (4) by  $v^{i-1}$ , summing over  $i \ge s+1$  and using (2) and (3), we have

$$\begin{aligned} A_1^{(s)}(x;p,q) &= p^2 q x + p q x A^{(s)}(x;p,q;1), \\ A_i^{(s)}(x;p,q) &= \sum_{k=0}^{i-2} p^{i-k} q^i x A_{k+1}^{(s)}(x;p,q) + p q^i x \left( A^{(s)}(x;p,q,1) - \sum_{k=1}^{i-1} A_k^{(s)}(x;p,q) \right), \\ 2 &\leq i \leq s \end{aligned}$$

and

$$\begin{split} A^{(s)}(x;p,q;v) &- \sum_{k=1}^{s} A_{k}^{(s)}(x;p,q)v^{k-1} \\ &= \left(x\sum_{k=1}^{s} (pq)^{k+1}v^{k} - \frac{pq^{2}xv}{1-qv}\right)A^{(s)}(x;p,q;qv) \\ &- \left(x\sum_{k=1}^{s-1} p^{k+1}q^{k+1}v^{k} + \frac{pq^{s+1}xv^{s}}{1-qv} - \frac{pq^{2}xv}{1-qv}\right)A_{1}^{(s)}(x;p,q) \\ &- \left(x\sum_{k=1}^{s-2} p^{k+1}q^{k+2}v^{k+1} + \frac{pq^{s+1}xv^{s}}{1-qv} - \frac{pq^{3}xv^{2}}{1-qv}\right)A_{2}^{(s)}(x;p,q) \\ &- \dots - \left(p^{2}q^{s}xv^{s-1} + \frac{pq^{s+1}xv^{s}}{1-qv} - \frac{pq^{s}xv^{s-1}}{1-qv}\right)A_{s-1}^{(s)}(x;p,q) \\ &+ \frac{pq^{s+1}xv^{s}}{1-qv}A^{(s)}(x;p,q;1). \end{split}$$

Notice that

$$\sum_{k=1}^{s} A_k^{(s)}(x;p,q) v^{k-1} = p^2 q x + \sum_{k=1}^{s} p q^k x v^{k-1} A^{(s)}(x;p,q;1) + A_1^{(s)}(x;p,q) \sum_{k=1}^{s-1} (p^{k+1} q^{k+1} - p q^{k+1}) x v^k + A_2^{(s)}(x;p,q) \sum_{k=1}^{s-2} (p^{k+1} q^{k+2} - p q^{k+2}) x v^{k+1} + \dots + A_{s-1}^{(s)}(x;p,q) (p^2 q^s - p q^s) x v^{s-1},$$

which leads to

$$A^{(s)}(x;p,q;v) = p^2 q x + \frac{pqx}{1-qv} A^{(s)}(x;p,q;1) + \left(\sum_{k=1}^{s} (pq)^{k+1} x v^k - \frac{pq^2 x v}{1-qv}\right) A^{(s)}(x;p,q;qv).$$

#### The Area Statistic 3

The goal of this section is to analyze the area statistic. By setting p = 1 in Theorem 2.1 we obtain the functional equation

$$A^{(s)}(x;1,q;v) = qx + \frac{qx}{1-qv}A^{(s)}(x;1,q;1) - \frac{q^{s+2}xv^{s+1}}{1-qv}A^{(s)}(x;1,q;qv).$$
(5)

Let  $T_s(v) := -\frac{q^{s+2}xv^{s+1}}{1-qv}$ ; then by iterating this equation an infinite number of times (here, we may assume |x| < 1 or |q| < 1), we obtain the equality

$$A^{(s)}(x;1,q;v) = qx \left(1 + \sum_{i \ge 0} \prod_{\ell=0}^{i} T_s(q^\ell v)\right) + \sum_{i \ge 1} \frac{qx}{1 - q^i v} \prod_{\ell=1}^{i-1} T_s(q^{\ell-1} v) A^{(s)}(x;1,q,1).$$

By setting v = 1, and solving for  $A^{(s)}(x; 1, q; 1)$ , we may state the following result.

**Theorem 3.1.** The generating function enumerating the polyominoes associated with the nonempty s-Fuss-Catalan words according to their length and area is given by

$$A^{(s)}(x;1,q;1) = \frac{qx + qx \sum_{i \ge 1} \frac{(-1)^{i} q^{i((s+1)i+s+3)/2} x^{i}}{\prod_{\ell=1}^{i} (1-q^{\ell})}}{1 - qx \sum_{i \ge 0} \frac{(-1)^{i} q^{i((s+1)i+s+3)/2} x^{i}}{\prod_{\ell=1}^{i+1} (1-q^{\ell})}}$$

For example, for s = 2, 3 we have the series

$$A^{(2)}(x;1,q;1) = qx + (q^4 + q^3 + q^2) x^2 + (q^9 + q^8 + 2q^7 + 2q^6 + 3q^5 + 2q^4 + q^3) x^3 + (q^{16} + q^{15} + 2q^{14} + 3q^{13} + 4q^{12} + 5q^{11} + 7q^{10} + 7q^9 + 8q^8 + 7q^7 + 6q^6 + 3q^5 + q^4) x^4 + \cdots$$

and

$$A^{(3)}(x; 1, q; 1) = qx + q^{2} (q^{3} + q^{2} + q + 1) x^{2}$$
  
+  $q^{3} (q^{9} + q^{8} + 2q^{7} + 2q^{6} + 3q^{5} + 3q^{4} + 4q^{3} + 3q^{2} + 2q + 1) x^{3}$   
+  $q^{4} (q^{18} + q^{17} + 2q^{16} + 3q^{15} + 4q^{14} + 5q^{13} + 7q^{12} + 8q^{11} + 10q^{10} + 12q^{9} + 13q^{8}$   
+  $14q^{7} + 14q^{6} + 14q^{5} + 12q^{4} + 10q^{3} + 6q^{2} + 3q + 1)x^{4} + \cdots$ 

Figure 5 shows the weights of the polyominoes associated with the 2-Fuss-Catalan words members of  $\mathcal{C}_3^{(2)}$ . Notice that the sum of the weights of this example corresponds to the coefficient  $[x^3]A^{(2)}(x; 1, q; 1)$ .

Define  $A_u^{(s)}(v) = \frac{d}{du}A^{(s)}(x;1,q;v)$  with  $u \in \{q,v\}$  and  $A^{(s)}(v) = A^{(s)}(x;1,q;v)$ . Then from (5), we have

$$\left(1 + \frac{xv^{s+1}}{1-v}\right) A_q^{(s)}(v) \mid_{q=1} = x + \frac{x}{(1-v)^2} A^{(s)}(1) \mid_{q=1} + \frac{x}{1-v} A_q^{(s)}(1) \mid_{q=1} - \frac{(s+2)xv^{s+1} - (s+1)xv^{s+2}}{(1-v)^2} A^{(s)}(v) \mid_{q=1} - \frac{xv^{s+2}}{1-v} A_v^{(2)}(v) \mid_{q=1} .$$

452



Figure 5: Weights for the polyominoes associated with the words in  $\mathcal{C}_3^{(2)}$ .

This type of functional equation can be solved systematically using the kernel method (see [1]). Let  $v_0 = \sum_{n\geq 0} \frac{1}{sn+1} \binom{(s+1)n}{n} x^n$  be the root of the equation  $v_0 = 1 + x v_0^{s+1}$ , which is the generating function for the sequence  $|\mathcal{C}_n^{(s)}|$ . Note that  $A^{(s)}(x; 1, 1; 1) = v_0 - 1$ . Thus, by taking  $v = v_0$ , then we have

$$A_{q}^{(s)}(1)|_{q=1} = v_{0} + \frac{v_{0}^{s+1}(s+2-(s+1)v_{0})}{1-v_{0}}A^{(s)}(v_{0})|_{q=1} + v_{0}^{s+2}A_{v}^{(s)}(v)|_{q=1,v=v_{0}}.$$
 (6)

Note that from (5) we have

$$A^{(s)}(v_0)|_{q=1} = \frac{x}{1 - (s+1)xv_0^s}$$
(7)

and

$$A_v^{(s)}(v) \mid_{q=1, v=v_0} = \frac{\binom{s+1}{2} x^2 v_0^{s-1}}{(1-(s+1)xv_0^s)^2}.$$
(8)

Hence, by (6), (7), (8), and the fact that  $v_0 = 1 + xv_0^{s+1}$ , we obtain the following result.

**Theorem 3.2.** The generating function for the total area over the polyominoes associated with the members of  $C_n^{(s)}$  is given by

$$A_q^{(s)}(1) \mid_{q=1} = v_0 - \frac{s+2-(s+1)v_0}{1-(s+1)xv_0^s} + \frac{\binom{s+1}{2}(v_0-1-xv_0^s)}{(1-(s+1)xv_0^s)^2} \\ = x\frac{dv_0}{dx} + \binom{s+1}{2}\frac{1}{v_0}\left(x\frac{dv_0}{dx}\right)^2,$$

where  $v_0 = \sum_{n \ge 0} \frac{1}{sn+1} \binom{(s+1)n}{n} x^n$ .

Note that if  $v_0 = \sum_{n \ge 0} \frac{1}{sn+1} {\binom{(s+1)n}{n}} x^n$  (solution of  $v_0 = 1 + x v_0^{s+1}$ ), then  $\frac{1}{v_0} = 1 - \sum_{n \ge 0} \frac{1}{n+1} {\binom{(s+1)n+s-1}{n}} x^{n+1}$ . Hence, by Theorem 3.2

$$\begin{split} A_q^{(s)}(1) \mid_{q=1} &= \sum_{j \ge 0} \frac{j}{sj+1} \binom{(s+1)j}{j} x^j \\ &+ \binom{s+1}{2} \left( 1 - \sum_{j \ge 0} \frac{1}{j+1} \binom{(s+1)j+s-1}{j} x^{j+1} \right) \left( \sum_{j \ge 0} \frac{j}{sj+1} \binom{(s+1)j}{j} x^j \right)^2, \end{split}$$

from which, by comparing the coefficient of  $x^n$  on both sides, we obtain the following result.

**Theorem 3.3.** The total area over the polynomial associated with the members of  $\mathcal{C}_n^{(s)}$  is given by

$$\frac{n}{sn+1}\binom{(s+1)n}{n} + \binom{s+1}{2} \sum_{j=0}^{n} \frac{j(n-j)}{(sj+1)(s(n-j)+1)} \binom{(s+1)j}{j} \binom{(s+1)(n-j)}{n-j} \\ - \binom{s+1}{2} \sum_{j=0}^{n-1} \sum_{i=0}^{j} \frac{i(j-i)}{(si+1)(s(j-i)+1)(n-j)} \\ \times \binom{(s+1)i}{i} \binom{(s+1)(j-i)}{j-i} \binom{(s+1)(n-j)-2}{n-1-j}$$

Let  $a_s(n)$  denote the total area of the polyominoes associated with the members of  $\mathcal{C}_n^{(s)}$ . For s = 1 the combinatorial formula given in Theorem 3.3 can be simplified to just (see [7, Corollary 12])

$$a_1(n) = \frac{1}{2} \left( 4^n - \binom{2n}{n} \right)$$

Table 1 gives the first few values of the sequence  $a_s(n)$  for s = 1, 2, 3, 4. Notice that the sequence  $a_s(n)$  was studied by Merlini et al. [13] in the context of the Tennis Ball Problem.

| $s \backslash n$ | 1 | 2  | 3   | 4    | 5     | 6      | 7       | 8         | 9          |
|------------------|---|----|-----|------|-------|--------|---------|-----------|------------|
| s = 1            | 1 | 5  | 22  | 93   | 386   | 1586   | 6476    | 26333     | 106762     |
| s=2              | 1 | 9  | 69  | 502  | 3564  | 24960  | 173325  | 1196748   | 8229849    |
| s = 3            | 1 | 14 | 156 | 1622 | 16347 | 161970 | 1588176 | 15465222  | 149866020  |
| s = 4            | 1 | 20 | 295 | 4000 | 52290 | 670316 | 8491720 | 106740640 | 1334461075 |

Table 1: Values of the total area.

#### 4 The Semiperimeter of the Polyominoes

By setting q = 1 in (1) we obtain the functional equation

$$A^{(s)}(x;p,1;v) = p^{2}x + \frac{px}{1-v}A^{(s)}(x;p,1;1) + \left(x\sum_{k=1}^{s}p^{k+1}v^{k} - \frac{pxv}{1-v}\right)A^{(s)}(x;p,1;v).$$
(9)

Then

$$\left(1 - x\sum_{k=1}^{s} p^{k+1}v^k + \frac{pxv}{1-v}\right)A^{(s)}(x;p,1;v) = p^2x + \frac{px}{1-v}A^{(s)}(x;p,1;1).$$
 (10)

Define the function

$$K(v) = 1 - x \sum_{k=1}^{s} p^{k+1}v^k + \frac{pxv}{1-v} = 1 - \frac{p^2xv(1-(pv)^s)}{1-pv} + \frac{pxv}{1-v}$$

Let  $v_0 = v_0(x, p)$  be a root of K(v) = 0. This functional equation can be solved again by the kernel method. In this case, if we assume that  $v = v_0$ , where  $v_0$  satisfies  $K(v_0) = 0$ , we obtain

$$A^{(s)}(x; p, 1; 1) = p(v_0 - 1).$$

Note that the equation  $K(v_0) = 0$  can be written as

$$w_0 = px(w_0+1)\frac{1-p-p^{s+1}w_0(w_0+1)^s}{(1-p)(1-\frac{pw_0}{1-p})}$$

where  $w_0 = v_0 - 1$ . Using the Lagrange inversion formula we obtain that the coefficient of  $x^n$  in  $w_0$  (here, we assume that |p| < 1) is given by

$$[x^{n}]w_{0} = \frac{1}{n} \sum_{0 \le i+j \le n-1} \frac{(-1)^{j} p^{n+1+i+(s+1)j}}{(1-p)^{i+j}} \binom{n-1+i}{i} \binom{n}{j} \binom{n+sj}{n-1-i-j}.$$

Hence, we can state the following result.

**Theorem 4.1.** The coefficient of  $x^n$ ,  $n \ge 1$ , in  $A^{(s)}(x; p, 1; 1)$  is given by

$$\mathsf{Per}_n^{(s)}(p) := \frac{1}{n} \sum_{0 \le i+j \le n-1} \frac{(-1)^j p^{n+1+i+(s+1)j}}{(1-p)^{i+j}} \binom{n-1+i}{i} \binom{n}{j} \binom{n+sj}{n-1-i-j}.$$

For example,  $\mathsf{Per}_3^{(2)}(p) = p^4 + 3p^5 + 5p^6 + 2p^7 + p^8$ . Figure 6 shows the weights of the polyominoes corresponding to this term.

Corollary 4.2. The total semiperimeter over the polyominoes associated with the members of  $\mathcal{C}_n^{(s)}$  is given by

$$\left.\frac{\partial \mathsf{Per}_n^{(s)}(p)}{\partial p}\right|_{p=1}$$

Table 2 gives the first few values of the total semiperimeter sequence for s =1, 2, 3, 4.

455



Figure 6: Weights for the polyominoes associated with the words in  $C_3^{(2)}$ .

| $s \backslash n$ | 1 | 2  | 3   | 4    | 5     | 6       | 7        | 8         | 9          |
|------------------|---|----|-----|------|-------|---------|----------|-----------|------------|
| s = 1            | 2 | 7  | 25  | 91   | 336   | 1254    | 4719     | 17875     | 68068      |
| s = 2            | 2 | 12 | 71  | 430  | 2652  | 16576   | 104652   | 665874    | 4263050    |
| s = 3            | 2 | 18 | 150 | 1275 | 11033 | 96768   | 857440   | 7658001   | 68827440   |
| s = 4            | 2 | 33 | 439 | 5900 | 80535 | 1113273 | 15541258 | 218637585 | 3094921424 |

Table 2: Values of the total semiperimeter.

#### Acknowledgements

The authors would like to thank the anonymous referees for carefully reading the paper and giving helpful comments and suggestions.

#### References

- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating functions for generating trees, *Discrete Math.* 246 (2002), 29–55.
- [2] J.-L. Baril, S. Kirgizov and V. Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, *Discrete Math.* **341** (2018), 2608–2615.
- [3] J.-L. Baril, C. Khalil and V. Vajnovszki, Catalan words avoiding pairs of length three patterns, *DIMACS Ser. Discrete Math. Theoret. Comput. Sci.* 22(2) (2021), 1–19.
- [4] A. Blecher, C. Brennan and A. Knopfmacher, Levels in bargraphs, Ars Math. Contemp. 9 (2015), 287–300.

- [5] A. Blecher, C. Brennan and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. S. Afr. 71 (2016), 97–103.
- [6] A. Blecher, C. Brennan and A. Knopfmacher, Combinatorial parameters in bargraphs, Quaest. Math. 39 (2016), 619–635.
- [7] D. Callan, T. Mansour and J. L. Ramírez, Statistics on bargraphs of Catalan words, J. Autom. Lang. Comb., accepted.
- [8] A. J. Guttmann (Ed.), Polygons, Polyominoes and Polycubes, Lec. Notes in Physics 775, Springer, Heidelberg, Germany, 2009.
- [9] S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math. 308 (2008), 5954–5964.
- [10] T. Mansour and A. Sh. Shabani, Enumerations on bargraphs, Discrete Math. Lett. 2 (2019), 65–94.
- [11] T. Mansour, J. L. Ramírez and D. Toquica, Counting lattice points on bargraphs of Catalan words, *Math. Comput. Sci.* 15 (2021), 701–713.
- [12] T. Mansour and V. Vajnovszki, Efficient generation of restricted growth words, Inform. Process. Lett. 113 (2013), 613–616.
- [13] D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory Ser. A 99 (2002), 307–344.
- [14] R. Stanley, *Catalan Numbers*, Cambridge University Press, 2015.
- [15] S.-L. Yang and L. J. Wang, Taylor expansions for the *m*-Catalan numbers, Australas. J. Combin. 64(3) (2016), 420–431.

(Received 25 Feb 2021; revised 7 Sep 2021)