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Abstract

We study the metric dimension and optimal split-resolving sets of the
point-circle incidence graph of a Möbius plane. We prove that the metric
dimension of a Möbius plane of order q is 2q + O(log q), and that an
optimal split-resolving set has cardinality between 5q−10 and 2.5q log q+
O(q). We also prove that a smallest blocking set of a Möbius plane of
order q has at most 2q(1 + log(q + 1)) points.

1 Introduction

The concept of metric dimension can be discussed in any metric space, and it already
appeared in 1953 [7]. In graph theory, resolving sets and metric dimension were first
introduced independently by Slater [21], and Harary and Melter [15]. The topic has
been studied in several articles, and many results have been gathered in [2] and [9].
Since then, the metric dimension of various graph classes has been studied, including
numerous graphs arising from finite geometries [1, 3, 4, 5, 16, 17].

In this paper we study the point-circle incidence graphs of Möbius planes and
give lower and upper bounds for the metric dimension and for the size of smallest
split-resolving sets of the incidence graphs of Möbius planes.

Definition 1.1. Let G = (V,E) be a graph. We say that a set W ⊆ V is resolved
by the set S ⊆ V if for any two different vertices v, u ∈ W there is a vertex s ∈ S
such that d(v, s) �= d(u, s).

S is called a resolving set of G if it resolves the set V . The cardinality of a
smallest resolving set is called the metric dimension of the graph and it is denoted
by μ(G).

Let G = (V,E) be a bipartite graph with parts A and B. We say that S is a
split-resolving set if S ∩ A resolves B and S ∩B resolves A.
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Note that if G is a bipartite graph with parts A and B and the set S resolves
the classes, then S is also a resolving set, because if a ∈ A and b ∈ B, then for any
element s of S, d(a, s) is odd if and only if d(b, s) is even.

In some cases we will reformulate the problem into a blocking problem of a
hypergraph. A blocking set of a hypergraph is a subset of vertices such that every
edge has at least one common vertex with the subset. The goal is to determine the
size of a smallest blocking set.

It is standard to reformulate such a problem to an Integer Linear Programming
(IP) task: for each vertex v of the hypergraph we introduce a binary variable xv,
which indicates whether the vertex v is included in a subset of vertices or not. Then
the subset {v ∈ V : xv = 1} is a blocking set if and only if for each hyperedge e, the
constraint ∑

v∈e
xv ≥ 1

holds. The objective function of this IP problem is∑
v∈V

xv,

which we want to minimize.

If we change the constraints xv ∈ {0, 1} to xv ≥ 0, xv ∈ R, then the solution of
this relaxed Linear Programming (LP) task is called the fractional solution of the
blocking problem.

We will consider points and circles of a Möbius plane as vertices and hyperedges
of a hypergraph. The blocking set of this hypergraph is called a blocking set of the
Möbius plane. These kinds of blocking sets have been studied in several articles
(see [8, 11, 13, 18, 22]). We will give an upper bound to an optimal blocking set in
Theorem 4.4.

We will use the following theorem to give upper bounds for the considered com-
binatorial problems.

Theorem 1.2 (Lovász [20]). Let τ denote the optimum of the blocking set problem
of a hypergraph H = (V,E). Then

τ < τ ∗(1 + log(d)),

where d is the greatest degree of the hypergraph, that is

d = max{|{e ∈ E : v ∈ e}| : v ∈ V }
and τ ∗ is the fractional optimal solution.

We will use this theorem by constructing a hypergraph such that a subset of its
vertices is a blocking set of the hypergraph if and only if it resolves a particular
subset of the graph.

We mention some results about the metric dimension of the incidence graphs of
some finite incidence geometries:
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Theorem 1.3 ([17]). The metric dimension of the incidence graph of a projective
plane of order q is 4q +O(1).

Theorem 1.4 ([3]). The metric dimension of the incidence graph of an affine plane
of order q is 3q +O(1).

Theorem 1.5 ([3]). The metric dimension of the incidence graph of a generalized
quadrangle of order (q, q) is at least max{6q − 27, 4q − 7}, and it is at least 8q for
the classical generalized quadrangle W (q) and Q(4, q).

We note that the metric dimension of a graph is related to other graph parameters
which are also studied in graphs arising from finite geometries, see [6, 12], for example.

2 Möbius planes and their incidence graphs

Definition 2.1. Let M = (P,Z) a hypergraph. We call this hypergraph a Möbius
plane, the elements of P points and the elements of Z circles if the following axioms
hold:

1. For every three pairwise distinct points there is exactly one circle through them.

2. If z ∈ Z, P ∈ z and Q ∈ P�z, there is exacly one circle z′ through P and Q
such that z ∩ z′ = {P}.

3. There is at least one circle, and every circle has at least three points.

4. For every circle z there is at least one point P such that P �∈ z.

If |P| < ∞ then M is a finite Möbius plane.

In a finite Möbius plane, every circle has the same number of points. If a circle
has q + 1 points, then q is called the order of the Möbius plane. In this case there
are q2 + 1 points and q(q2 + 1) circles in the plane, and there are q(q + 1) circles
through every point. For a point P ∈ P let us define the sets

P ′ = P�{P}, L = {z�{P} : P ∈ z ∈ Z}.
Then the hypergraph (P ′,L) is an affine plane, called the affine residue at point P .
More details and constructions of Möbius planes can be found in [10] and [19].

We give a simple example for the smallest Möbius plane:

Example 2.2. [23, p. 755] By axioms 3 and 4, there is at least one circle z, three
points on z and a fourth point not on z. By axioms 2 and 3 there are at least two
points not on z. So there are at least 5 points, and if there are only three points on
z then, by axiom 1, there are

(
5
3

)
circles.

Let P = {1, 2, 3, 4, 5} and Z = {z ⊆ P : |z| = 3}.
It is easy to see that (P,Z) is a Möbius plane of order 2, it has five points and

ten circles.
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From now on let M(q) = (P,Z) be a Möbius plane of order q.
We introduce some notation:

• The set of circles which go through a point P is denoted by [P ].

• For any three points A, B and C we denote the circle through them by ABC.

• We say the circle a is skew to the circle b if they have no common points.

• We say the circle a is tangent to the circle b if they have one common point.

In the next lemma we summarize combinatorial statements that are important
for us.

Lemma 2.3. [10, p. 264] Let z ∈ Z be a circle.

1. There are q + 1 circles through two distinct points.

2. There are (q+1)q2

2
circles with two common points with z.

3. There are q − 1 circles tangent to z through any one point of z.

4. There are q2 − 1 circles tangent to z.

5. There are q3−3q2+2q
2

circles skew to z.

6. There are q3+3q2−2
2

circles which have one or two common points with z.

Proof.

1. Let P and Q be two different points and H := P�{P,Q}. Consider the circles
through P and Q and let k denote the number of such circles. All of them
covers q − 1 points of H . By the first axiom, every point X ∈ H is covered by
exactly one of them. Hence

k(q − 1) = |H| = q2 − 1.

So there are k = q + 1 circles through P and Q.

2. For every two points on z there are q circles through them different from z.

Counting them we get
(|z|
2

)
q = (q+1)q2

2
such circles.

3. Let P be a point on z. There are q(q + 1) circles through the point P . One of
them is z. We can choose another point Q on z in q different ways, and there
are q circles through P and Q different from z. Hence the number of circles
tangent to z on P is

q(q + 1)− 1− qq = q − 1.
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4. The circle z has q + 1 points and, by the previous statement, there are q − 1
circles tangent to z on each of them. Thus there are (q + 1)(q − 1) = q2 − 1
circles tangent to z.

5. There are q(q2 + 1) circles, one of them is z itself. Subtracting the number of
circles which have at least one common point with z, we get

q(q2 + 1)− 1− (q2 − 1)− (q + 1)q2

2
=

q3 − 3q2 + 2q

2
.

6. Adding the number of circles with one or two common points with z we get

(q + 1)q2

2
+ q2 − 1 =

q3 + 3q2 − 2

2
.

Definition 2.4. The point-circle incidence graph of a Möbius plane M(q) is G =
(V,E), where V := P ∪ Z and E := {{P, z} : P ∈ z}.

This is obviously a bipartite graph with vertex classes P and Z. The metric
dimension of G will be considered as the metric dimension of the geometry and we
use the notation μ(M(q)) instead of μ(G). For every P,Q ∈ P and a, b ∈ Z we have

d(P,Q) =

{
0 if P = Q
2 if P �= Q

; d(a, b) =

⎧⎨
⎩

0 if a = b
2 if a ∩ b �= ∅
4 if a ∩ b = ∅

;

d(a, P ) =

{
1 if P ∈ a
3 if P �∈ a

.

Definition 2.5. For a subset S ⊆ V we call the circles outer circles and the points
outer points if they are not elements of S.

3 Metric dimension of Möbius planes

We give a construction that resolves the set of points, and then we will use Theorem
1.2 to find an upper bound on the minimum cardinality of sets that resolve the set
of circles.

Let us construct a hypergraph H = (V,E ′) with the same vertex set as G. For
every two different circles a and b we construct a hyperedge ea,b which contains all
vertices v ∈ V for which d(v, a) �= d(v, b). That means

• a, b ∈ ea,b,

• a circle c ∈ Z�{a, b} is an element of ea,b if and only if c has a common point
with a or b but not with both,
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• a point P ∈ P is in ea,b if and only if P is incident with a or b but not with
both.

By definition, ea,b denotes the same hyperedge as eb,a. Any subset of the graph G
resolves the set of circles if and only if it is a blocking set of the hypergraph H .

Lemma 3.1. There are at least q3

2
− 3q2 + 11q

2
− 1 vertices in any hyperedge of H.

Proof. Let ea,b be a hyperedge. There are three cases depending on how many
common points a and b have.

P

Q

a

b

c

d

Figure 1: Two types of circles not in ea,b.

First let a and b be two circles which have two common points P and Q, and let
Z denote the set of circles with two common points with a containing neither P nor
Q. Then |Z| = (

q−1
2

)
q. Among them, there are at most (q − 1)2 circles tangent to b

(like circle c in Figure 1). Let

X =
{
({A,B}, C) : A,B ∈ b, A �= B, C ∈ a, ABC ∈ Z

}
.

There are
(
q−1
2

)
unordered pairs {A,B} and there are q − 1 choices of C such that

A,B ∈ b, A �= B, C ∈ a and A,B,C �∈ {P,Q}. Since the circle ABC has to be an
element of Z,

|X| ≤
(
q − 1

2

)
(q − 1).

If ({A,B}, C1) ∈ X then ABC1 ∈ Z, therefore it has two common points with a, thus
there is a pair ({A,B}, C2) ∈ X such that C1 �= C2 and the circles ABC1 and ABC2

are the same. So we have at most 1
2

(
q−1
2

)
(q−1) circles in Z with two common points

with b (like circle d in Figure 1). So there are at least
(
q−1
2

)
q−(q−1)2− 1

2

(
q−1
2

)
(q−1)

circles with two common points with a skew to b. There are at least the same number
of circles that have two common points with b skew to a. All of them are elements
of the hyperedge ea,b. The points of a and b except P and Q and the circles a and b
are in ea,b, too. Therefore

|ea,b| ≥ 2

((
q − 1

2

)
q − 1

2

(
q − 1

2

)
(q − 1)− (q − 1)2

)
+ 2(q − 1) + 2

=
q3

2
− 3q2 +

11q

2
− 1.
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If a and b have one common point, then in the same way the lower bound for the
edge is

|ea,b| ≥ 2

((
q

2

)
q − 1

2

(
q

2

)
q − q(q − 1)

)
+ 2q + 2 =

q3

2
− 5q2

2
+ 4q + 2.

Finally, if a and b have no common points, then the lower bound is

|ea,b| ≥
((

q + 1

2

)
q − 1

2

(
q + 1

2

)
(q + 1)− (q + 1)(q − 1)

)
+ 2(q + 1) + 2

=
q3

2
− 2q2 +

3q

2
+ 6.

It is easy to see that the first case is the smallest of the three lower bounds.

Theorem 3.2. If q ≥ 4, then

μ(M(q)) ≤ 2q − 2 +

(
2 +

14q2 − 20q + 6

q3 − 6q2 + 11q − 2

)(
1 + log

(
q6

4

))
.

In particular, if q ≥ 156, then

μ(M(q)) ≤ 2q + 12 log(q).

Proof. We give a construction that resolves the set of points if q is at least 3. Let P
be a point and let us consider the affine residue at point P . Let P1 and P2 be two
different parallel classes in this affine plane (See Figure 2).

These are circle classes in the Möbius plane such that any two circles in a class
are tangent to each other in the point P . Let a ∈ P1 and b ∈ P2. We show that the
set S1 = P1 ∪ P2�{a, b} resolves the set of points.

P1�{a}

P2�{b}

P

Figure 2: The set S1 resolves the set of points.

Let A,B ∈ P�{P} be two different points. If ABP �∈ P1 then A and B lie on
two different circles of P1, and if ABP ∈ P1 then A and B lie on two different circles
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of P2. Since A is on at most two lines of S1 and the point P lies on every circle of S1

and |S1| = 2q − 2 > 2 there is a circle incidence with P but not with A. Therefore
the set of points is resolved by the set S1, and this set has 2q − 2 elements.

If z1, z2 ∈ Z�(P1 ∪ P2) and they are circles of the affine residue at point P, then
for any s ∈ S1, d(z1, s) = d(z2, s) = 2. So the set S1 does not resolve the set Z.
Using Theorem 1.2 we prove that there is a set S2 with at most roughly 12 log(q)
vertices that resolves the set of circles.

Let a and b be two different circles. Setting all the variables 2
q3−6q2+11q−2

, by
Lemma 3.1 all the constraints hold:

∑
v∈ea,b

xv ≥
(
q3

2
− 3q2 +

11q

2
− 1

)
2

q3 − 6q2 + 11q − 2
= 1.

The objective value is

τ ∗ ≤ 2

q3 − 6q2 + 11q − 2
(q3 + q + q2 + 1) = 2 +

14q2 − 20q + 6

q3 − 6q2 + 11q − 2
.

By Lemma 2.3, for every circle x there are q3−3q2+2q
2

circles skew to x and there are
q3+3q2−2

2
circles which have one or two common points with x. Also, x is an element

of the edge ea,x for every a ∈ Z�{x}. Therefore, in the hypergraph H , the degree
of a circle is

q3 − 3q2 + 2q

2
· q

3 + 3q2 − 2

2
+ q3 + q − 1 =

q6

4
− 7q4

4
+ 2q3 +

3q2

2
− 1

<
q6

4
.

It is easy to see that the degree of a point is (q2 + q)(q3 − q2). If q ≥ 4 then the
degree of a circle is greater then the degree of a point. By Theorem 1.2, there is a
set S2 with cardinality less than

(
2 +

14q2 − 20q + 6

q3 − 6q2 + 11q − 2

)(
1 + log

(
q6

4

))

that resolves the set of circles, so the set S = S1 ∪ S2 is a resolving set.

The given upper bound of the metric dimension is 2q + O(log(q)). We have a
similar lower bound too:

Theorem 3.3.

μ(M(q)) ≥
⌈
2q − 4 +

8

q + 2

⌉
≥ 2q − 3.

Moreover, if q ≥ 156, then every optimal resolving set for M(q) contains at least
2q − 4 circles.
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Proof. Let S be an optimal resolving set. Let ZS denote the set of circles, and PS

the set of points of S. Let t denote the number of outer points that are covered by
one circle:

t = |{P ∈ P�S : |[P ] ∩ S| = 1}|.
Then t ≤ |ZS|, because if there were two outer points P and Q which are covered
by the same circle, and only by that circle, then the constraint of {P,Q} would not
be resolved. Also, there could be only one outer point not covered by ZS. Let us
double count the set

{(P, a) ∈ P ×Z : a ∈ ZS, |[P ] ∩ ZS| ≥ 2, P ∈ a}
to obtain

|ZS|(q + 1)− t ≥ 2(q2 + 1− t− 1− |PS|).
By rearranging the inequality we get

|ZS|q ≥ 2(q2 − t− |PS|) + t− |ZS|
= 2q2 − t− |ZS| − 2|PS|
≥ 2q2 − 2|S|,

and thus

|ZS| ≥ 2q − 2
|S|
q
. (1)

As |S| ≥ |ZS|, (1) yields

|S| ≥ 2q2

q + 2
= 2q − 4 +

8

q + 2
,

which proves the assertion on |S|. If q ≥ 156, we can combine (1) with the upper
bound in Theorem 3.2 to obtain

|ZS| ≥ 2q − 2
2q + 12 log(q)

q
= 2q − 4− 24 log(q)

q
.

If q ≥ 114, then 24 log(q) < q, so for q ≥ 156 we have |ZS| ≥ 2q − 4.

4 Split-resolving sets of Möbius planes

In this section we give a lower and an upper bound for the cardinality of an optimal
split-resolving set of a Möbius plane.

Let PS and ZS denote the set of points and the set of circles of a split-resolving
set S.

Proposition 4.1. Let S be an optimal split-resolving set. If q > 5, then

2q − 3 ≤ |ZS| ≤ 2q − 2.

If 3 ≤ q ≤ 5 then
|ZS| = 2q − 2.



Á. BEKE/AUSTRALAS. J. COMBIN. 82 (1) (2022), 59–73 68

Proof. We can use the same construction as in the proof of Theorem 3.2, where we
gave a circle set which resolves P with 2q − 2 circles.

To obtain a lower bound, we can do almost the same as in the proof of Theorem
3.3. Let t denote the number of points that are covered by one circle. Then |ZS| ≥ t,
and there could be only one point not covered by ZS. Let us double count the set

{(P, a) ∈ P × Z : a ∈ ZS, |[P ] ∩ ZS| ≥ 2, P ∈ a}.
Now

|ZS|(q + 1)− t ≥ 2(q2 + 1− t− 1),

and by using the upper bound for t,

|ZS|(q + 1) ≥ 2q2 − t ≥ 2q2 − |ZS|;
thus |ZS|(q + 2) ≥ 2q2, and the obtained lower bound is

|ZS| ≥ 2q − 4 +
8

q + 2
.

If q < 6 then 8
q+2

> 1, and therefore, if q ∈ {3, 4, 5} then |ZS| ≥ 2q − 2, and if q > 5

then |ZS| ≥ 2q − 3.

Proposition 4.2. If S is an optimal split-resolving set, then

3q − 7 ≤ |PS| ≤ q + 2

2

(
1 + log

(
q5
))

.

Proof. Since the bounds are trivial for q = 2, we can assume that q ≥ 3. First we
prove the upper bound. Let us construct a hypergraph H = (P, E ′) such that for
every two different circles a and b we construct a hyperedge ea,b which contains all
points P for which d(P, a) �= d(P, b). That means a point P ∈ P is in ea,b if and only
if P is incident with a or b, but not with both.

Let a and b be two different circles. Setting all the variables to 1
2q−2

, all the
constraints hold because there are at least 2q− 2 vertices in any hyperedge of H . In
this case the objective value is

τ ∗ ≤ 1

2q − 2
(q2 + 1) =

q

2
+

1

2
+

1

q − 1
≤ q

2
+ 1.

In the hypergraph H the degree of a point is (q2+ q)(q3− q2) = q5 − q3 < q5. By

Theorem 1.2,
q + 2

2
(1 + log (q5)) vertices resolve all the constraints.

To have a lower bound, let

tk = |{z ∈ Z : |z ∩ PS| = k}|, k ∈ {0, 1, 2}.
There can be only one unblocked circle, and for every P ∈ PS there is at most one
circle that is blocked by only P . Thus

t0 ≤ 1, t1 ≤ |PS|.
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For any two points P1, P2 ∈ PS there is at most one double blocked circle z that is
blocked by P1 and P2. Thus

t2 ≤
(|PS|

2

)
.

Let us double count the set {(P, z) ∈ P × Z : P ∈ PS, |z ∩ PS| ≥ 3, P ∈ z} to get

|PS|(q2 + q)− t1 − 2t2 ≥ 3(q3 + q − t0 − t1 − t2).

By using the upper bound for t0, t1 and t2,

|PS|(q2 + q) ≥ 3(q3 + q − 1)− 2|PS| −
(|PS|

2

)
.

This yields the quadratic inequality

|PS|2 + |PS|(2q2 + 2q + 3) + 6(1− q3 − q) ≥ 0. (2)

If we substitute 3q − 8 into |PS|, we get the inequality

q2 + 61q − 46 ≤ 0.

Since both roots are less than 2, this inequality does not hold. Also, (2) clearly fails
for |PS| = 0, and thus

|PS| ≥ 3q − 7.

A corollary of the above propositions is the following.

Theorem 4.3. If S is an optimal split-resolving set of M(q), then

5q − 10 ≤ |S| ≤ q + 2

2

(
1 + log

(
q5
))

+ 2q − 2.

Note that the bound t0 ≤ 1, in the proof of Proposition 4.2, implies that the set
PS blocks all circles with one possible exception. This means that there is a point
P ∈ P such that B = PS ∪ {P} is a blocking set of the Möbius plane. In [8] Bruen
and Rothschild proved that if B is a blocking set of the Möbius plane of order q ≥ 9,
then |B| ≥ 2q; thus

if q ≥ 9, then |PS| ≥ 2q − 1.

As far as we know, the best upper bound for the size of a blocking set in a Mobius
plane of order q was given by Greferath and Rössing in [13]. They proved that there
exists a blocking set that has approximately 3q log(q) points. We prove that there
exists a blocking set of size approximately 2q log(q).

Theorem 4.4. If B is an optimal blocking set of M(q), then

|B| < q2 + 1

q + 1
(1 + log(q(q + 1))) .
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Proof. Let M(q) = (P,Z) be a Möbius plane. We consider the points as variables
and circles as constraints of an LP; that is, the constraints are the inequalities

∑
P∈z

xP ≥ 1

for every circle z. First we give a fractional solution. Since every circle has q + 1
points, if we set all variables to 1

q+1
, then all constraints hold with equality. There

are q2 + 1 variables, so the objective value is

τ ∗ ≤ q2 + 1

q + 1
.

All points are incident with the same number of circles, and thus the degree d of the
hypergraph is the number of circles incident with a point:

d = q(q + 1).

Using Theorem 1.2, we get the upper bound

|B| < τ ∗(1 + log(d)) ≤ q2 + 1

q + 1
(1 + log(q(q + 1))) .

5 Results for small orders

In this section we deal with optimal resolving sets and split-resolving sets for Möbius
planes of small order. Let us consider first M(2) in detail. We use the construction
that we gave in Section 2.

Lemma 5.1. For any three different points A,B and C there is no circle which
resolves all the constraints {A,B}, {A,C} and {B,C}.

Proof. Let us check whether a circle z can resolve all the considered constraints.
Without loss of generality we may assume that A ∈ z and B �∈ z, so z resolves
{A,B}. If C ∈ z then {A,C} is not resolved and if C �∈ z then {B,C} is not
resolved by z.

We use again the notation PS and ZS to denote the set of points and the set of
circles of a resolving or split-resolving set S.

Theorem 5.2. μ(M(2)) = 4.

Proof. We prove that any four-element subset of P is a resolving set. For any two
different points P and Q one can assume P ∈ S, so d(P, P ) = 0 �= 2 = d(P,Q). For
any two different circles a and b there are points A ∈ a�b and B ∈ b�a. We can
assume that A ∈ S. Then d(a, A) = 1 �= 3 = d(b, A).
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Next we prove the lower bound. InM(2), any two circles intersect, so two distinct
circles cannot be resolved by a third circle. Hence there can be at most one unblocked
outer circle. If |PS| = 0 then |ZS| ≥ 9. Since one point blocks six circles, if |PS| = 1
then there are four unblocked circles, so |ZS| ≥ 3. If |PS| = 2 then by Lemma 5.1,
|ZS| ≥ 2. Finally, if |PS| = 3, then the constraint of the two outer points is not
resolved by PS, so |ZS| ≥ 1.

Theorem 5.3. If S is an optimal split-resolving set of M(2), then

|PS| = 4 and |ZS| = 3.

Proof. We have already proved that any four-element point set resolves the set of
circles. Suppose that there are at most three points in the set PS. Without loss of
generality we may assume that 1 and 2 are outer points. Then the circles {1, 3, 4}
and {2, 3, 4} are at the same distance from any points of PS.

Now let us consider the set ZS. We may assume that {1, 2, 3} ∈ ZS. This circle
does not resolve the constraints {1, 2}, {1, 3} and {2, 3}. So by Lemma 5.1, we need
at least two more circles.

We prove that the set {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}} resolves the set of points. The
circle {1, 2, 3} resolves every constraint {A,B}, where A ∈ {1, 2, 3} and B ∈ {4, 5}.
So {4, 5}, {2, 3}, {1, 3} and {1, 2} are the constraints not resolved by {1, 2, 3}. The
first three are resolved by {1, 2, 4} and the last one by {1, 3, 4}.

We have investigated Miquelian planes and obtained results for small orders. We
used Gurobi [14] to solve the problems. The optimals of resolving sets and split
resolving sets are summarized in the following table:

Order of Resolving Split-
the plane set resolving set

3 8 11
4 11 15
5 MIN:9 MAX:13 21
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