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Abstract

We consider a two-player search game on a tree T . One vertex (unknown
to the players) is randomly selected as the target. The players alternately
guess vertices. If a guess v is not the target, then both players are in-
formed in which subtree of T rv the target lies. The winner is the player
who guesses the target.

When both players play optimally, we show that each of them wins
with probability approximately 1/2. When one player plays optimally
and the other plays randomly, we show that the player with the optimal
strategy wins with probability between 9/16 and 2/3 (asymptotically).
When both players play randomly, we show that each wins with proba-
bility between 13/30 and 17/30 (asymptotically).

1 Introduction

We consider the following competitive variant of traditional binary search: two
players seek an (unknown, uniformly random) element of the set {1, . . . , n}. The
players alternately guess elements of the set; if a guess is incorrect, then both players
are informed whether the secret number is larger or smaller than the guess. The
winner is the player who guesses the secret number.

We consider the following more general variant of the game, using a model of
binary search on trees introduced by Onak and Parys [5]: the starting position is not
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a set of n numbers, but rather a labeled tree T on n vertices, one vertex of which
has been selected (uniformly at random) as the target. The two players alternately
choose vertices; if a guess v is incorrect, then both players are informed in which
subtree of T r v the target vertex lies. The winner is the player who guesses the
target vertex. One immediately recovers the previous game upon choosing T to be
a path on n vertices.

We consider the variant of the game in which both players play according to an
optimal strategy, as well as variants where one or both players play uniformly at
random. When both players play optimally, we completely analyze the game: if n
(the number of vertices) is even, then the game is fair, while if n is odd, then the
first player wins with probability 1

2
+ 1

2n
, regardless of the structure of the tree. We

also describe all optimal strategies in this case.

When one or both players play randomly (selecting a vertex uniformly at ran-
dom from among the vertices that could be the target), the probabilities of winning
are surprisingly more complicated to analyze. We complete the analysis in the case
of paths and stars, and conjecture that the probability of a first-player win always
lies between these two extremes (Conjectures 4.9 and 5.3); we are able to estab-
lish the conjectures in some cases. Specifically, when one player plays optimally
and the other plays randomly, we show that the optimally playing competitor wins
with probability between 9/16 and 2/3 (asymptotically). When both players play
uniformly at random, we show that each wins with probability between 13/30 and
17/30 (for n ≥ 2).

The structure of the paper is as follows: in Section 2, we establish the terminol-
ogy and notation that is used throughout the paper as well as some basic lemmas.
In Section 3, we completely analyze the game in the case of two optimally playing
competitors. In Section 4, we study the game in the case that one player plays ac-
cording to an optimal strategy while the other chooses vertices uniformly at random.
In Section 5, we study the game in the case that both players play uniformly at
random. Finally, in Section 6, we give a number of open problems including variants
of the game that we believe might be of interest.

2 Background and notation

We begin by establishing some basic terminology and notation for the rest of the
paper.

As usual, a tree is a connected acyclic graph. Our trees are undirected and
unrooted, with a finite but positive number of vertices. We denote by V (T ) the
vertex set of tree T . The order |T | of tree T is |V (T )|, the number of vertices of T .
We denote by E(T ) the edge set of tree T . We denote by v ∼ w the relation that
vertices v and w are joined by an edge of the tree.

The degree deg(v) of a vertex v of a tree T is the number of edges of T incident
to v. A leaf is a vertex of degree 1. Every tree T of order n has n− 1 edges, and the
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Figure 1: The unique tree for which the inequality in Lemma 2.1(g) fails

sum of the vertex degrees of T is 2(n − 1). Given a vertex v of T , let T r v be the
graph that results from deleting v and its edges from T ; the graph T r v is a forest
with deg(v) components, each of which is a tree. Given an edge e of T , let T r e be
the graph that results from deleting e from T ; the graph T r e is a forest with two
components, each of which is a tree.

Denote by Pn the path graph on n vertices and by Sn the star graph on n vertices.
In particular, P1 = S1, P2 = S2, and P3 = S3 are the unique trees on 1, 2, and 3
vertices, respectively.

At several points, we will be concerned with counting leaves and other small
subtrees near “the boundary” of a given tree. To that end, define for each tree T
and each integer k the limb set

Lk(T ) = {(v, T ′) : v ∈ V (T ) and T ′ is a component of T r v of order k}

and the limb number
`k(T ) = |Lk(T )|.

If k ≤ 0 or k ≥ |T |, then `k(T ) = 0. We record below some basic information about
the limb numbers.

Lemma 2.1. Let T be a tree on n vertices.

(a) `1(T ) is the number of leaves of T .

(b) If n > 1, then `1(T ) ≥ 2.

(c) For every integer k, we have `k(T ) = `n−k(T ).

(d) The sum
∑

k `k(T ) is 2(n− 1).

(e) The sum
∑

k k`k(T ) is n(n− 1).

(f) For every integer k, we have `1(T ) ≥ `k(T ).

(g) If T is not the tree in Figure 1, then `1(T ) + `3(T ) ≥ `2(T ) + `4(T ).
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Proof.

(a) The map that sends the leaf w to the pair (v, T ′) where v is the unique neighbor
of w and T ′ is the tree with vertex set {w} is a bijection between the set of leaves
of T and L1(T ). Hence `1(T ) is the number of leaves of T .

(b) It is a standard result that may be found in many textbooks on graph theory
that every finite tree with more than one vertex has at least two leaves; for
example, see [8, Lemma 2.1.3]. A short proof: since the n vertex degrees are
positive integers and their sum is 2(n − 1), at least two of them must be equal
to 1.

(c) We index the (disjoint) union
⋃
k Lk(T ) as follows: if v is a vertex of T and w is

a neighbor of v, then let Tv,w be the component of T r v that contains w. Thus

Lk(T ) = {(v, Tv,w) : v ∼ w and |Tv,w| = k}.

Now fix an edge e = {v, w} of T . Since Tv,w∪Tw,v = Tre, one has |Tv,w|+|Tw,v| =
n. It follows that (v, Tv,w) ∈ Lk(T ) if and only if (w, Tw,v) ∈ Ln−k(T ), and hence
`k(T ) = `n−k(T ).

(d) The map that sends the pair (v, Tv,w) to the edge {v, w} is a two-to-one function
from the union

⋃
k Lk(T ) to the edge set E(T ). Hence

∑
k `k(T ) = 2|E(T )| =

2(n− 1).

(e) By part (c), we have

2
∑
k

k`k(T ) =
∑
k

k`k(T ) +
∑
k

k`n−k(T )

=
∑
k

k`k(T ) +
∑
k

(n− k)`k(T )

= n
∑
k

`k(T ).

Dividing by 2 and using part (d) gives∑
k

k`k(T ) =
n

2

∑
k

`k(T ) =
n

2
· 2(n− 1) = n(n− 1).

(f) If k ≤ 0, then `k(T ) = 0 ≤ `1(T ). If k = 1, then `k(T ) = `1(T ). Hence we may
assume that k > 1. By part (c), we may further assume that k ≤ n

2
.

Suppose that (v′, T ′) and (v′′, T ′′) are distinct elements of Lk(T ). We claim that
T ′ and T ′′ are vertex-disjoint. This clearly holds when v′ = v′′, so we may assume
that v′ 6= v′′. We have T ′ = Tv′,w′ for some neighbor w′ of v′ and T ′′ = Tv′′,w′′
for some neighbor w′′ of v′′. Are w′ and/or w′′ on the (unique) path between v′

and v′′ in T? The four cases are illustrated in Figure 2. If either w′ or w′′ (but
not both) were on the path between v′ and v′′ (Case 1 or 2), then one of the
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Case 1: v′ w′ · · · v′′ w′′

Case 2: w′ v′ · · · w′′ v′′

Case 3: v′ w′ · · · w′′ v′′

Case 4: w′ v′ · · · v′′ w′′

Figure 2: The four cases in the proof of Lemma 2.1(f)

Figure 3: The trees with six vertices other than the tree in Figure 1, with asso-
ciated limb numbers (`1(T ), `2(T ), `3(T ), `4(T )) = (3, 1, 2, 1), (4, 1, 0, 1), (5, 0, 0, 0),
(4, 0, 2, 0), and (2, 2, 2, 2)

trees T ′ and T ′′ would strictly contain the other, which is impossible since they
have equal orders. If both w′ and w′′ are on the path (Case 3), which includes
as special cases the situation w′ = w′′ and the situation w′ = v′′ and w′′ = v′,
then V (T ′)∪V (T ′′) = V (T ), while |T ′|+ |T ′′| = 2k ≤ n; hence V (T ′) and V (T ′′)
partition V (T ) and in particular are disjoint. If neither w′ nor w′′ is on the path
(Case 4), then T ′ and T ′′ are disjoint. In every case, T ′ and T ′′ are disjoint.

By part (b), since k > 1, for every pair (v, Tv,w) in Lk(T ), there is a ver-
tex φ(v, Tv,w) different from w that is a leaf of subtree Tv,w and hence a leaf
of T . By vertex disjointness, the map φ is an injective function from Lk(T ) to
the set of leaves of T . Consequently, by part (a), we have `k(T ) ≤ `1(T ).

(g) If n ≤ 4, then `4(T ) = 0 and part (f) implies that `1(T ) ≥ `2(T ). If n = 5, then
part (c) implies that `1(T ) = `4(T ) and `2(T ) = `3(T ). If n = 6, since T is not
the tree in Figure 1, T is one of the trees in Figure 3, and one checks by hand
that `1(T ) + `3(T ) ≥ `2(T ) + `4(T ) in all cases. If n = 7, then parts (c) and (f)
imply that `3(T ) = `4(T ) and `1(T ) ≥ `2(T ). Now suppose that n ≥ 8. We
construct an injective map φ : L2(T ) ∪ L4(T ) ↪→ L1(T ) ∪ L3(T ). Given a pair
(v, T ′) ∈ L2(T ) ∪ L4(T ), let w be the neighbor of v in T ′. The graph T ′ r w is
a forest on an odd number of vertices, so it has a connected component T ′′ of
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wv1 v2e1 e2

T ′′

T1T2

Figure 4: The form of tree T in the proof of Lemma 2.1(g)

odd order; define φ(v, T ′) = (w, T ′′). By construction, this map has the correct
domain and range; it remains to show that it is injective. Suppose otherwise,
so that φ(v1, T1) = φ(v2, T2) = (w, T ′′) and (v1, T1) 6= (v2, T2). Then by the
definition of φ, the tree T has the form illustrated in Figure 4, namely, v1 is
adjacent to w by an edge e1 and T1 is the component of containing w when e1 is
removed from T , and v2 is adjacent to w by an edge e2 and T2 is the component
containing w when e2 is removed from T . In this case, for any vertex v of T ,
at most one of e1 and e2 lies on the path connecting v to w, and therefore
V (T1) ∪ V (T2) = V (T ) and w ∈ V (T1) ∩ V (T2). However, this contradicts the
hypotheses |T | ≥ 8, |T1| ≤ 4, and |T2| ≤ 4. Thus φ is injective, as claimed.

In upcoming parts of the paper, the following type of tree will be useful. A spider
is a tree with exactly one vertex of degree bigger than 2. (In the literature, spiders are
also sometimes called star-like trees or subdivisions of stars.) The vertex of degree
bigger than 2 is called the head of the spider. Let T be a spider with head h. Each
component of T r h is called a leg of the spider. Each leg is a path, and the number
of legs of the spider is the degree of its head. The length of a leg is its order, the
number of vertices on it.

Given an integer d bigger than 2 and a list λ1, . . . , λd of positive integers, let
Sλ1,...,λd denote the spider with a head of degree d and legs of length λ1, . . . , λd.
Thus the order of Sλ1,...,λd is 1 +

∑
i λi. For example, the tree in Figure 1 is the

spider S2,2,1, and the three trees in the first row of Figure 3 are the spiders S3,1,1,
S2,1,1,1, and S1,1,1,1,1.

The next lemma will use paths and spiders to characterize trees with two or three
leaves. We will use the following indicator notation: 1true = 1 and 1false = 0.

Lemma 2.2.

(a) If T is a tree such that `1(T ) = 2, then T is a path.

(b) If T is the path Pn and 1 ≤ k ≤ n− 1, then `k(Pn) = 2.

(c) If T is a tree such that `1(T ) = 3, then T is a spider with three legs.
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Figure 5: The unique tree for which `1 = 3, `2 = 3, and `3 = 0

(d) If T is the spider Sλ1,...,λd and 1 ≤ k ≤
∑d

i=1 λi, then

`k(T ) =
d∑
i=1

1k≤λi +
d∑
i=1

1k≥n−λi .

(e) If T is a tree such that `1(T ) = 3, `2(T ) = 3, and `3(T ) = 0, then T is the
spider S2,2,2, shown in Figure 5.

Proof.

(a) From Lemma 2.1(a), `1(T ) is the number of leaves of T . It is a standard exer-
cise [8, Ex. 2.1.18] that the number of leaves of a tree is at least its maximum
degree ∆, since 2(n− 1) =

∑
v d(v) ≥ `1(T ) · 1 + 1 ·∆ + 2 · (n− `1(T )− 1). Thus

if `1(T ) = 2, the tree T has maximum degree at most 2, i.e., it is a path.

(b) Labelling the path v1 ∼ v2 ∼ · · · ∼ vn and using the indexing from the proof
of Lemma 2.1(c), we have for k = 1, . . . , n − 1 that Lk(T ) = {(vk+1, Tvk+1,vk),
(vn−k, Tvn−k,vn−k+1

)}.

(c) If T has three leaves, then it is not a path, and so some vertex has degree at least
3. By the argument in part (a), in fact the maximum degree must be exactly 3.
Refining the argument in part (a), if we have equality ∆ = `1(T ) then it must
be the case that all vertices other than the leaves and a single vertex of degree
∆ have degree 2, and so the graph is a spider with ∆ legs [8, Ex. 2.1.59(a)].

(d) Deleting the vertices of the leg of length λi contributes 1k<λi + 1k≥n−λi , with
the first term counting the contribution of the paths that do not contain the
head and the second term counting the subtrees containing the head; deleting
the head contributes

∑
i 1k=λi . Summing up over all legs gives the result.

(e) Let T be a tree such that `1(T ) = `2(T ) = 3 and `3(T ) = 0. By part (c), since
`1(T ) = 3, T = Sλ1,λ2,λ3 is a spider with three legs. Since `3(T ) = 0, we have by
part (d) that λi < 3 (because the first sum must not have any positive terms).
Finally one easily checks by hand that among the remaining possibilities S1,1,1,
S2,1,1, S2,2,1, and S2,2,2, only the last has `2(T ) = 3.
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3 Two players with optimal strategy

In this section, we consider the tree search game when both players are trying
to maximize their probability of winning. The tree search game is a finite, two-
player, zero-sum, sequential game, and so both players have an optimal deterministic
strategy. For a tree T , let P(T ) be the probability that the first player wins on T
when both players play with an optimal strategy. Our first theorem exactly computes
this win probability for every tree.

Theorem 3.1. If T is a tree on n vertices, then

P(T ) =
1

2
+

1

2n
· 1n is odd ,

where 1n is odd denotes the indicator function for the event that n is odd.

Proof. The result is easy to verify for n = 1. Let T be a tree on n > 1 vertices, and
suppose the result is true for all trees on fewer than n vertices. For a vertex v of T ,
let P(T, v) be the probability that the first player wins on T if their first guess is v,
so P(T ) = maxv∈V (T )P(T, v).

With probability 1
n
, the first guess is correct. Otherwise, the target vertex lies in

one of the k = deg(v) components T1, . . . , Tk of the forest T rv, and the probability

that it lies in component Ti is |Ti|
n

. Moreover, in this case, the second player wins
with probability P(Ti), and so the first player wins with probability 1−P(Ti). Thus

P(T, v) =
1

n
+

k∑
i=1

|Ti|
n
·
(
1− P(Ti)

)
= 1− 1

n

k∑
i=1

|Ti| · P(Ti).

Let m be the number of Ti such that |Ti| is odd. By the induction hypothesis,

P(T, v) = 1− 1

n

(m
2

+
k∑
i=1

|Ti| ·
1

2

)
= 1− m

2n
− n− 1

2n
=

1

2
+

1−m
2n

.

This quantity is maximized when m is minimized. If n = |T | is even, then after
removing v there are an odd number of vertices and so m ≥ 1; moreover, we can
always achieve the minimum m = 1 by taking v to be a leaf (among possibly other
options), and so P(T ) = 1

2
in this case. If n is odd, then we can always achieve

the minimum possible value m = 0 by taking v to be a leaf (among possibly other
options), and so P(T ) = 1

2
+ 1

2n
in this case. By induction, the result is valid for all

trees.

Remark. It follows from the preceding proof that the set of optimal moves for the
first player is precisely the set of vertices v such that T rv has the minimum number
of odd-order components (namely, 0 if n is odd and 1 if n is even). In particular,
it is always optimal to choose a leaf. In the motivating context of binary search on
{1, . . . , n}, we have that all first moves are equally strong if n is even, while the first
player should guess any odd number when n is odd.
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4 Optimal strategy versus a random player

In this section, we consider the tree search game when one player is trying to
maximize their probability of winning while the other plays uniformly at random.
This version of the game is effectively a one-player game, since only one player
is playing strategically. For a tree T , let P(T ) be the probability that a player
playing with an optimal strategy wins when they have the first move on T against
an opponent who chooses vertices uniformly at random. Similarly, let Q(T ) be the
probability that a player playing with an optimal strategy wins when they have the
second move on T against an opponent who chooses vertices uniformly at random.

It is easy to compute that P(S1) = 1, Q(S1) = 0, and P(S2) = Q(S2) = 1
2
.

For the tree on three vertices, a player wins with probability 1
3

if they choose the
middle node (if the choice is incorrect, then the opponent has only one vertex to
choose from) and probability 1

3
+ 2

3
· 1

2
= 2

3
if they choose a leaf, so P(S3) = 2

3

and Q(S3) = 1− 1
3

(
2
3

+ 1
3

+ 2
3

)
= 4

9
.

For a vertex v of tree T , let P(T, v) be the probability that the optimal player
wins when playing first on T , provided that the optimal player’s first move is v. Since
the first player plays optimally,

P(T ) = max
v∈V (T )

P(T, v).

Since the target vertex is selected uniformly at random,

P(T, v) =
1

n
+
∑
T ′

|T ′|
n
Q(T ′) =

1

n
+

1

n

∑
T ′

|T ′|Q(T ′),

where T ′ ranges over the components of the forest Trv. Similarly, let Q(T, v) be the
conditional probability that the optimal player wins when playing second on T , given
that the random player’s first move is v. Since the first move is chosen uniformly at
random,

Q(T ) =
1

n

∑
v∈V (T )

Q(T, v).

Moreover, since the target vertex is selected uniformly at random,

Q(T, v) =
∑
T ′

|T ′|
n
P(T ′) =

1

n

∑
T ′

|T ′|P(T ′),

where T ′ ranges over the components of T r v. Combining the last two formulas
gives

Q(T ) =
1

n2

∑
v∈V (T )

∑
T ′

|T ′|P(T ′).

In the following two subsections, we give exact values for the win probabilities P
and Q for star graphs and for path graphs, respectively. In a third subsection, we
give bounds for general trees.
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4.1 Stars

The next theorem exactly computes the probabilities of winning for every star
graph.

Theorem 4.1. For every positive integer n,

P(Sn) =
2

3
− 1

3n
+

2

3n
·

(
n−1

(n−1)/2

)
2n−1

· 1n is odd

and

Q(Sn) =
2

3
− 2

3n
+

2

3n
·

(
n
n/2

)
2n
· 1n is even .

Proof. For n = 1 the proposed formulas give P(S1) = 2
3
− 1

3
+ 2

3
= 1 and Q(S1) =

2
3
− 2

3
= 0, and for n = 2 they give P(S2) = 2

3
− 1

6
= 1

2
and Q(S2) = 2

3
− 1

3
+ 1

3
· 1
2

= 1
2
,

as needed.

For n ≥ 3, the strategic player may choose either a leaf ` or the center vertex c.
One has

P(Sn, `) =
1

n
· 1 +

n− 1

n
· Q(Sn−1) >

1

n
= P(Sn, c),

so it is always optimal to choose a leaf and

P(Sn) =
1

n
+
n− 1

n
Q(Sn−1).

Similarly, considering separately whether the opponent playing randomly chooses the
center or a leaf, one has

Q(Sn) =
1

n
· n− 1

n
· 1︸ ︷︷ ︸

chooses center

+
n− 1

n
· n− 1

n
· P(Sn−1)︸ ︷︷ ︸

chooses leaf

.

It is straightforward to verify that the given formulas satisfy these recurrence equa-
tions, so the result holds by induction.

One may immediately compute the asymptotic win probabilities for stars.

Corollary 4.2. One has

lim
n→∞

P(Sn) = lim
n→∞

Q(Sn) =
2

3
.
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n 1 2 3 4 5 6 7
pn 1 1/2 2/3 7/12 3/5 53/90 37/63
qn 0 1/2 4/9 1/2 38/75 14/27 386/735

Table 1: The first few values of pn and qn

4.2 Paths

In this subsection, we exactly compute the win probabilities P and Q for every
path graph. Given a positive integer n, define pn and qn by

pn =
1

2
− 1

n
· (−2)n

n!
+
n+ 2

2n

n∑
j=0

(−2)j

j!
,

qn =
n− 1

2n
− 1

n
· (−2)n

n!
+
n+ 3

2n

n∑
j=0

(−2)j

j!
.

We will show that P(Pn) = pn is the probability that the player playing strategically
beats an opponent playing randomly on a path with n vertices, provided that the
optimal player goes first. Similarly, we will show that Q(Pn) = qn is the probability
that an optimal player beats a random opponent on a path with n vertices, provided
that the optimal player goes second.

Because the infinite series
∑∞

j=0
(−2)j
j!

converges to e−2, the limits (as n approaches

infinity) of pn and qn are both (1 + e−2)/2. For later use, we record the first seven
values of pn and qn in Table 1. For convenience, define p0 and q0 to be 1

2
.

The following lemma shows how to express pn in terms of qn−1.

Lemma 4.3. If n is a positive integer, then

pn =
1

n
+
n− 1

n
qn−1 .

Proof. The case n = 1 is easy, so we may assume that n ≥ 2. Using the definitions
of p and q, we have

npn =
n

2
− (−2)n

n!
+
n+ 2

2

n∑
j=0

(−2)j

j!

=
n

2
+
n

2
· (−2)n

n!
+
n+ 2

2

n−1∑
j=0

(−2)j

j!

= 1 +
n− 2

2
− (−2)n−1

(n− 1)!
+
n+ 2

2

n−1∑
j=0

(−2)j

j!

= 1 + (n− 1)qn−1 ,

as desired.
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Our next lemma expresses qn as an average involving previous values of p.

Lemma 4.4. If n is a positive integer, then

qn =
1

n

n∑
k=1

(k − 1

n
pk−1 +

n− k
n

pn−k

)
.

Proof. The case n = 1 is easy. For n ≥ 2, we can simplify the desired equation as
follows:

n2qn = 2
n−1∑
k=1

kpk .

By telescoping sums, it is sufficient to verify the difference equation

(k + 1)2qk+1 − k2qk = 2kpk .

Plugging in the definition of qk and qk+1 and then using the definition of pk, we have

(k+1)2qk+1 − k2qk = k +
k+4

2
· (−2)k+1

k!
− (−2)k+1

k!
+ k · (−2)k

k!
+ (k+2)

k∑
j=0

(−2)j

j!

= k − 2 · (−2)k

k!
+ (k + 2)

k∑
j=0

(−2)j

j!

= 2kpk ,

which is the difference equation.

The next lemma gives good upper and lower bounds on qn.

Lemma 4.5. If n is a positive integer, then

nqn ≤
1 + e−2

2
n− 1

8
.

Furthermore, if n ≥ 3, then

1 + e−2

2
n− 3

8
≤ nqn ≤

1 + e−2

2
n− 1

4
.

Proof. Using Table 1, we can check the cases n ≤ 7, so we may assume that n ≥ 8.
By Taylor’s theorem applied to the exponential function,∣∣∣ n∑

j=0

(−2)j

j!
− e−2

∣∣∣ ≤ 2n+1

(n+ 1)!
.

Plugging this bound into the definition of qn gives∣∣∣nqn − 1 + e−2

2
n+

1− 3e−2

2

∣∣∣ ≤ n+ 3

2
· 2n+1

(n+ 1)!
+

2n

n!
= (n+ 2)

2n+1

(n+ 1)!
.
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m n mqm + nqn (m+ n)qm+n

1 1 0 1
1 2 1 4/3
2 2 2 2

Table 2: Small cases in the proof of Lemma 4.6

Since n ≥ 8, the right side (n+ 2)2n+1/(n+ 1)! is at most 1
25

. Hence

1 + e−2

2
n− 1− 3e−2

2
− 1

25
≤ nqn ≤

1 + e−2

2
n− 1− 3e−2

2
+

1

25
.

Since (1− 3e−2)/2 is between 0.29 and 0.3, we are done.

Since q2 > q3, the sequence {qn}n≥1 is not increasing, though the sequence {qn}n≥3
is strictly increasing. Our next lemma shows that the sequence {qn}n≥1 satisfies an
increasing-like property, namely, the sequence {nqn}n≥1 is superadditive.

Lemma 4.6. If m and n are nonnegative integers, then

mqm + nqn ≤ (m+ n)qm+n .

Proof. By symmetry, we may assume that m ≤ n. The case m = 0 is trivial, so we
may assume that m ≥ 1. The cases n ≤ 2 are verified in Table 2. Hence we may
further assume that n ≥ 3. Using Lemma 4.5 twice, we have

mqm ≤
1 + e−2

2
m− 1

8
and nqn ≤

1 + e−2

2
n− 1

4
.

Adding these two inequalities and using Lemma 4.5 again, we have

mqm + nqn ≤
1 + e−2

2
(m+ n)− 3

8
≤ (m+ n)qm+n .

Lemma 4.3 expressed pn in terms of qn−1. The next lemma shows that pn can be
expressed as a maximum involving all previous q.

Lemma 4.7. If n is a positive integer, then

pn = max
1≤k≤n

( 1

n
+
k − 1

n
qk−1 +

n− k
n

qn−k

)
.

Proof. By considering k = 1 and using Lemma 4.3, we see that the maximum is at
least pn. On the other hand, for every k, by Lemmas 4.3 and 4.6, we have

1

n
+
k − 1

n
qk−1 +

n− k
n

qn−k ≤
1

n
+
n− 1

n
qn−1 = pn .

Hence the maximum is at most pn.
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Finally, we are ready to prove our formulas for the probabilities of winning on a
path.

Theorem 4.8. If n is a positive integer, then P(Pn) = pn and Q(Pn) = qn.

Proof. We may assume that the vertices of the path in order are 1, 2, . . . , n. Recall
that P(Pn) is maxk P(Pn, k). For every vertex k, we have

P(Pn, k) =
1

n
+
k − 1

n
Q(Pk−1) +

n− k
n
Q(Pn−k).

Hence Lemma 4.7 provides the correct recurrence relation for P(Pn): it is given by
the maximum over all vertices k from 1 to n. Similarly, recall that Q(Pn) is the
average of Q(Pn, k) over all vertices k. For every vertex k, we have

Q(Pn, k) =
k − 1

n
P(Pk−1) +

n− k
n
P(Pn−k).

Hence Lemma 4.4 provides the correct recurrence relation for Q(Pn): it is given
by the average over all vertices k from 1 to n. The theorem follows by induction
on n.

4.3 General trees

In this subsection, we bound the probabilities P(T ) and Q(T ) of winning for
every tree. We start with an intriguing conjecture that paths and stars have the
extreme win probabilities.

Conjecture 4.9. For every tree T on n vertices,

P(Pn) ≤ P(T ) ≤ P(Sn) and Q(Pn) ≤ Q(T ) ≤ Q(Sn).

We have confirmed the conjecture for n ≤ 20. We are able to prove half of the
conjecture: stars have the largest probabilities of winning.

Theorem 4.10. If T is a tree with n vertices, then

P(T ) ≤ P(Sn) and Q(T ) ≤ Q(Sn).

Remark. Before embarking on the proof, we observe one complication that may help
explain why this semi-random version is more complicated than the fully optimal
play. Unlike the situation in which both players play optimally, it is not the case
that there is always a leaf among the optimal moves. Consider the tree T formed
by starting from the path P5 and adding two edges incident to each endpoint; see
Figure 6. Then for the central vertex c one has

P(T, c) =
1

9
+

8

9
· 9

16
≈ 0.611,

while for a leaf ` one has

P(T, `) =
1

9
+

8

9
· 12601

23040
≈ 0.597.
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`

c

Figure 6: A tree for which every leaf is a suboptimal move

As a first step toward the proof of Theorem 4.10, we study the sequence {Q(Sn)}n≥1.
This sequence alternately increases and decreases, but we prove a loose monotonic-
ity property on the values as they drift upward toward 2

3
. Namely, the next lemma

shows that the sequence {nQ(Sn)}n≥1 is superadditive.

Lemma 4.11. If m and n are positive integers, then

mQ(Sm) + nQ(Sn) ≤ (m+ n)Q(Sm+n).

Proof. If k is a positive even number, then
(
k
k/2

)
/2k is at most 1

2
. Hence, by using

Theorem 4.1 twice, we have

mQ(Sm) ≤ 2

3
m−2

3
+

2

3
·1
2

=
2

3
m−1

3
and nQ(Sn) ≤ 2

3
n−2

3
+

2

3
·1
2

=
2

3
n−1

3
.

Adding these two inequalities and using Theorem 4.1 again, we conclude

mQ(Sm) + nQ(Sn) ≤ 2

3
m− 1

3
+

2

3
n− 1

3
=

2

3
(m+ n)− 2

3
≤ (m+ n)Q(Sm+n).

Proof of Theorem 4.10. The proof is by strong induction on n. The base case n = 1
is easy. For n ≥ 2, assume the result is true for every tree with fewer than n vertices.
We will prove the result for tree T .

First we prove the bound on P(T ). Let v be a vertex of T . We have

P(T, v) =
1

n
+
∑
T ′

|T ′|
n
Q(T ′) =

1

n
+

1

n

∑
T ′

|T ′|Q(T ′),

where T ′ ranges over the components of T r v. By the induction hypothesis and
Lemma 4.11,

P(T, v) ≤ 1

n
+

1

n

∑
T ′

|T ′|Q(S|T ′|) ≤
1

n
+
n− 1

n
Q(Sn−1).

As shown in the proof of Theorem 4.1, the right side equals P(Sn), so P(T, v) ≤
P(Sn). We conclude that

P(T ) = max
v∈V (T )

P(T, v) ≤ P(Sn).
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Next we prove the bound on Q(T ). Let v be a vertex of T . We have

Q(T, v) =
∑
T ′

|T ′|
n
P(T ′) =

1

n

∑
T ′

|T ′|P(T ′),

where T ′ ranges over the components of T r v. By the induction hypothesis,

Q(T, v) ≤ 1

n

∑
T ′

|T ′|P(S|T ′|).

Given a positive integer m, let C(m) be
(

m−1
(m−1)/2

)
/2m−1 if m is odd and 0 otherwise.

Theorem 4.1 says that

mP(Sm) =
2

3
m− 1

3
+

2

3
C(m) .

Plugging this formula into our inequality for Q(T, v) gives

Q(T, v) ≤ 1

n

∑
T ′

(2

3
|T ′| − 1

3
+

2

3
C(|T ′|)

)
=

2(n− 1)

3n
− 1

3n
deg(v) +

2

3n

∑
T ′

C(|T ′|).

Given a vertex w that is a neighbor of v, recall from the proof of Lemma 2.1(c) that
the tree Tv,w is the component of T rv that contains w. We can rewrite our previous
inequality as

Q(T, v) ≤ 2(n− 1)

3n
− 1

3n
deg(v) +

2

3n

∑
w∈V (T )
w∼v

C(|Tv,w|).

Averaging over all vertices v gives the bound

Q(T ) =
1

n

∑
v∈V (T )

Q(T, v) ≤ 2(n− 1)2

3n2
+

2

3n2

∑
v,w∈V (T )
v∼w

C(|Tv,w|).

Given an edge {v, w} of T , we claim that C(|Tv,w|) + C(|Tw,v|) is at most 1 +
C(n− 1). Recall that |Tv,w|+ |Tw,v| is n. If either |Tv,w| or |Tw,v| is 1, then the other
is n − 1, so the claim is true with equality. Otherwise, both |Tv,w| and |Tw,v| are
greater than 1, in which case C(|Tv,w|) and C(|Tw,v|) are each at most 1

2
, so the claim

is again true. Plugging our claim into our inequality for Q(T ) gives

Q(T ) ≤ 2(n− 1)2

3n2
+

2(n− 1)

3n2

(
1 + C(n− 1)

)
=

2

3
− 2

3n
+

2(n− 1)

3n2
C(n− 1).

It is straightforward to verify that (n− 1)C(n− 1) = nC(n+ 1), so

Q(T ) ≤ 2

3
− 2

3n
+

2

3n
C(n+ 1).

By Theorem 4.1, the right side is Q(Sn), which completes the proof.
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The next theorem makes progress toward the lower bounds of Conjecture 4.9.
In particular, we show that the player playing optimally wins with probability at
least 9

16
(asymptotically).

Theorem 4.12. Let T be a tree on n vertices. If n ≥ 4, then

P(T ) >
9

16
and Q(T ) ≥ 9

16
− 5

16n
.

Proof. Define the function δ by δ(1) = 5
16

, δ(2) = −1
4
, δ(3) = 3

16
, δ(4) = − 1

24
,

δ(5) = 1
16

, and δ(k) = 0 for k ≥ 6. We will prove, for every positive integer n, the
more precise inequalities

P(T ) ≥ 9

16
+

1

8n
+
δ(n)

n
and Q(T ) ≥ 9

16
− 5

16n
+
δ(n+ 1)

n
.

The proof is by strong induction on n. The base cases n ≤ 4 are easy to check. For
n ≥ 5, assume the inequalities hold for every tree with fewer than n vertices. We
will prove the inequalities for tree T .

First we bound P(T ). Let v be a leaf of T . By the induction hypothesis,

P(T ) ≥ P(T, v)

=
1

n
+
n− 1

n
Q(T r v)

≥ 1

n
+
n− 1

n

(
9

16
− 5

16(n− 1)
+

δ(n)

n− 1

)
=

9

16
+

1

n
− 9

16n
− 5

16n
+
δ(n)

n

=
9

16
+

1

8n
+
δ(n)

n
,

as desired.

Next we bound Q(T ). By the recurrence formula for Q, we have

Q(T ) =
1

n2

∑
v

∑
T ′

|T ′|P(T ′)

≥ 1

n2

∑
v

∑
T ′

(
9

16
|T ′|+ 1

8
+ δ(|T ′|)

)
=

9(n− 1)

16n
+
n− 1

4n2
+

1

n2

∑
v

∑
T ′

δ(|T ′|)

=
9

16
− 5

16n
− 1

4n2
+

1

n2

(
5

16
`1(T )− 1

4
`2(T )+

3

16
`3(T )− 1

24
`4(T )+

1

16
`5(T )

)
=

9

16
− 5

16n
+

1

48n2

(
15`1(T )− 12`2(T ) + 9`3(T )− 2`4(T ) + 3`5(T )− 12

)
.
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To prove the desired bound on Q(T ), it suffices to prove that the expression
in parentheses is nonnegative. For short, write `k for `k(T ). If T is the unique
exceptional tree from Lemma 2.1(g) (shown in Figure 1), then `1 = 3, `2 = 2, `3 = 0,
`4 = 2, and `5 = 3, which means

15`1 − 12`2 + 9`3 − 2`4 + 3`5 = 45− 24 + 0− 4 + 9 = 26.

Hence we may assume that T is not the exceptional tree. By Lemma 2.1(g), we have
`1 + `3 ≥ `2 + `4, so

15`1 − 12`2 + 9`3 − 2`4 + 3`5 ≥ 13`1 − 10`2 + 7`3 + 3`5.

If `1 = 2, then T is a path (Lemma 2.2(a)), so `2 = `3 = 2 (Lemma 2.2(b)), which
means

13`1 − 10`2 + 7`3 + 3`5 ≥ 13`1 − 10`2 + 7`3 = 26− 20 + 14 = 20.

If `1 ≥ 4, then because `1 ≥ `2 (Lemma 2.1(f)), we have

13`1 − 10`2 + 7`3 + 3`5 ≥ 13`1 − 10`2 ≥ 3`1 ≥ 12.

Hence we may assume that `1 = 3. If `2 ≤ 2, then

13`1 − 10`2 + 7`3 + 3`5 ≥ 13`1 − 10`2 = 39− 10`2 ≥ 39− 20 = 19.

Hence we may assume that `2 = 3. If `3 ≥ 1, then

13`1 − 10`2 + 7`3 + 3`5 ≥ 13`1 − 10`2 + 7`3 = 39− 30 + 7`3 ≥ 39− 30 + 7 = 16.

Hence we may assume that `3 = 0. By Lemma 2.2(e), the only tree with `1 = 3,
`2 = 3, and `3 = 0 is the spider S2,2,2, shown in Figure 5. For this tree, `5 = 3, which
means

13`1 − 10`2 + 7`3 + 3`5 = 39− 30 + 0 + 9 = 18.

In every case, we have 15`1 − 12`2 + 9`3 − 2`4 + 3`5 − 12 ≥ 0. This completes the
proof.

5 Two random players

In this section, we consider the tree search game when both players play randomly.
Given a tree T , let P(T ) be the probability that the first player wins on T when both
players choose vertices uniformly at random from among the vertices that could be
the target. For example, P(S1) = 1, P(S2) = 1

2
, and P(S3) = 5

9
.

For every vertex v of a tree T , let P(T, v) be the conditional probability that the
first player wins on T given that they select v first. Since the first contestant plays
uniformly at random,

P(T ) =
1

n

∑
v∈V (T )

P(T, v).
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Moreover, since the target vertex is selected uniformly at random,

P(T, v) =
1

n
+
∑
T ′

|T ′|
n

(
1− P(T ′)

)
= 1− 1

n

∑
T ′

|T ′|P(T ′),

where T ′ ranges over the components of T r v. Combining these two formulas gives

P(T ) = 1− 1

n2

∑
v∈V (T )

∑
T ′

|T ′|P(T ′).

We first exactly compute the probability of winning for every star.

Theorem 5.1. If n is a positive integer, then

P(Sn) =
1

2
+

1

2n2
· 1n is odd .

Proof. The proof is by induction on n. The base cases n = 1 and n = 2 are easy to
check. For n ≥ 3, assume the result is true for n− 1.

If c is the center of the star, then P(Sn, c) = 1
n
. If ` is a leaf, then

P(Sn, `) =
1

n
+
n− 1

n

(
1− P(Sn−1)

)
= 1− n− 1

n
P(Sn−1).

Taking the weighted average of the center and the n− 1 leaves, we have

P(Sn) =
1

n
· 1

n
+
n− 1

n

(
1− n− 1

n
P(Sn−1)

)
= 1− 1

n
+

1

n2
− (n− 1)2

n2
P(Sn−1).

By the induction hypothesis,

P(Sn) = 1− 1

n
+

1

n2
− (n− 1)2

n2

(1

2
+

1

2(n− 1)2
· 1n is even

)
=

1

2
+

1

2n2
− 1

2n2
· 1n is even

=
1

2
+

1

2n2
· 1n is odd ,

which completes the induction.

We next exactly compute the probability of winning for a path.

Theorem 5.2. If n is an integer such that n ≥ 3, then

P(Pn) =
1

2
+

1

6n
.
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Proof. For convenience, define P(P0) to be 1
2
. Define the function δ by δ(0) = −1

6
,

δ(1) = 1
3
, δ(2) = −1

6
, and δ(k) = 0 for k ≥ 3. We will prove, for every nonnegative

integer n, that nP(Pn) = 1
2
n+ 1

6
+ δ(n). The proof is by strong induction on n. The

base cases n ≤ 2 are easy to check. For n ≥ 3, assume the result is true for every
nonnegative integer less than n. We will prove the result for n.

We may assume that the vertices of the path in order are 1, 2, . . . , n. By the
induction hypothesis, for every vertex k, we have

P(Pn, k) = 1− k − 1

n
P(Pk−1)−

n− k
n
P(Pn−k)

= 1− 1

n

(1

2
(k − 1) +

1

6
+ δ(k − 1)

)
− 1

n

(1

2
(n− k) +

1

6
+ δ(n− k)

)
=

1

2
+

1

6n
− δ(k − 1)

n
− δ(n− k)

n
.

Averaging over all vertices gives

P(Pn) =
1

n

n∑
k=1

P(Pn, k)

=
1

2
+

1

6n
− 1

n2

n∑
k=1

δ(k − 1)− 1

n2

n∑
k=1

δ(n− k)

=
1

2
+

1

6n
.

We again conjecture that stars and paths have the extreme win probabilities
(though now stars are the lower bound and paths are the upper bound).

Conjecture 5.3. For every tree T on n vertices, P(Sn) ≤ P(T ) ≤ P(Pn).

We have confirmed the conjecture for n ≤ 20. Conjecture 5.3 implies that the
probability of the first player winning is always at least 1

2
and approaches 1

2
on every

sequence of trees as n→∞.

The next theorem makes progress toward Conjecture 5.3. We show that both
players win with probability between 13

30
and 17

30
(for n ≥ 2).

Theorem 5.4. Let T be a tree with n vertices. If n ≥ 2, then

13

30
< P(T ) <

17

30
.

Proof. Define the function δ by δ(1) = 4
15

, δ(2) = −1
6
, δ(3) = 1

15
, δ(4) = − 1

30
,

δ(5) = 2
15

, and δ(k) = 0 for k ≥ 6. Define the function ∆ by ∆(1) = 1
3
, ∆(2) = 0,

∆(3) = 2
45

, and ∆(k) = 0 for k ≥ 4. We will prove, for every positive integer n, the
more precise inequality

13

30
+

3

10n
+
δ(n)

n
≤ P(T ) ≤ 17

30
− 1

6n
+

4

15n2
+

∆(n)

n
.
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The proof is by strong induction on n. The base cases n ≤ 5 are easy to check. For
n ≥ 6, assume the inequality holds for every tree with fewer than n vertices. We will
prove the inequality for tree T .

First we prove the upper bound on P(T ). By the induction hypothesis,

P(T ) = 1− 1

n2

∑
v

∑
T ′

|T ′|P(T ′)

≤ 1− 1

n2

∑
v

∑
T ′

(13

30
|T ′|+ 3

10
+ δ(|T ′|)

)
= 1− 13n(n− 1)

30n2
− 6(n− 1)

10n2
− 1

n2

∑
v

∑
T ′

δ(|T ′|)

=
17

30
− 1

6n
+

3

5n2
− 1

n2

∑
v

∑
T ′

δ(|T ′|)

=
17

30
− 1

6n
+

3

5n2
− 1

n2

( 4

15
`1(T )− 1

6
`2(T ) +

1

15
`3(T )− 1

30
`4(T ) +

2

15
`5(T )

)
=

17

30
− 1

6n
+

3

5n2
− 1

30n2

(
8`1(T )− 5`2(T ) + 2`3(T )− `4(T ) + 4`5(T )

)
.

We claim that 8`1(T )−5`2(T )+2`3(T )−`4(T )+4`5(T ) ≥ 10. For short, write `k
for `k(T ). If T is the unique exceptional tree from Lemma 2.1(g) (shown in Figure 1),
then `1 = 3, `2 = 2, `3 = 0, `4 = 2, and `5 = 3, which means

8`1 − 5`2 + 2`3 − `4 + 4`5 = 24− 10 + 0− 2 + 12 = 24.

Hence we may assume that T is not the exceptional tree. By Lemma 2.1(g), we have
`1 + `3 ≥ `2 + `4, which means

8`1 − 5`2 + 2`3 − `4 + 4`5 ≥ 7`1 − 4`2 + `3 + 4`5.

If `1 = 2, then T is a path (Lemma 2.2(a)), so `2 = `3 = `4 = `5 = 2 (Lemma 2.2(b)),
which means

7`1 − 4`2 + `3 + 4`5 = 14− 8 + 2 + 8 = 16.

If `1 ≥ 4, then because `1 ≥ `2 (Lemma 2.1(f)), we have

7`1 − 4`2 + `3 + 4`5 ≥ 7`1 − 4`2 ≥ 3`1 ≥ 12.

Hence we may assume that `1 = 3. If `2 ≤ 2, then

7`1 − 4`2 + `3 + 4`5 ≥ 7`1 − 4`2 = 21− 4`2 ≥ 21− 8 = 13.

Hence we may assume that `2 = 3. If `3 ≥ 1, then

7`1 − 4`2 + `3 + 4`5 ≥ 7`1 − 4`2 + `3 = 21− 12 + `3 ≥ 21− 12 + 1 = 10.

Hence we may assume that `3 = 0. By Lemma 2.2(e), the only tree with `1 = 3,
`2 = 3, and `3 = 0 is the spider S2,2,2, shown in Figure 5. For that tree, `5 = 3, which
means

7`1 − 4`2 + `3 + 4`5 = 21− 12 + 0 + 12 = 21.
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In every case, we have proved the claim 8`1(T )−5`2(T )+2`3(T )−`4(T )+4`5(T ) ≥ 10.

Plugging the claim into our previous inequality for P(T ) gives

P(T ) ≤ 17

30
− 1

6n
+

3

5n2
− 1

30n2

(
8`1(T )− 5`2(T ) + 2`3(T )− `4(T ) + 4`5(T )

)
≤ 17

30
− 1

6n
+

3

5n2
− 10

30n2

=
17

30
− 1

6n
+

4

15n2
,

which is the desired upper bound.

Next we prove the lower bound on P(T ). By the induction hypothesis,

P(T ) = 1− 1

n2

∑
v∈V (T )

∑
T ′

|T ′|P(T ′)

≥ 1− 1

n2

∑
v

∑
T ′

(17

30
|T ′| − 1

6
+

4

15|T ′|
+ ∆(|T ′|)

)
= 1− 17n(n− 1)

30n2
+

2(n− 1)

6n2
− 4

15n2

∑
v

∑
T ′

1

|T ′|
− 1

n2

∑
v

∑
T ′

∆(|T ′|)

=
13

30
+

17

30n
− 4

15n2

∑
v

∑
T ′

1

|T ′|
+
n− 1

3n2
− 1

n2

∑
v

∑
T ′

∆(|T ′|)

=
13

30
+

17

30n
− 4

15n2

∑
v

∑
T ′

1

|T ′|
+
n− 1

3n2
− 1

n2

(1

3
`1(T ) +

2

45
`3(T )

)
=

13

30
+

17

30n
− 4

15n2

∑
v

∑
T ′

1

|T ′|
+

1

3n2

(
n− 1− `1(T )− 2

15
`3(T )

)
.

By Lemma 2.1(c) and Lemma 2.1(d), the expression in parentheses is nonnegative:

`1(T )+
2

15
`3(T ) =

1

2
`1(T )+

1

2
`n−1(T )+

2

15
`3(T ) ≤ 1

2

n−1∑
k=1

`k(T ) =
1

2
·2(n−1) = n−1.

Hence

P(T ) ≥ 13

30
+

17

30n
− 4

15n2

∑
v

∑
T ′

1

|T ′|
.

We claim that the double sum can be bounded as follows:∑
v

∑
T ′

1

|T ′|
≤ n.

Given a vertex v and one of its neighboring vertices w, recall from the proof of
Lemma 2.1(c) that the tree Tv,w is the component of T r v that contains w. We can
rewrite the inequality as ∑

v,w
v∼w

1

|Tv,w|
≤ n.
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For every edge {v, w} of T , we have

1

|Tv,w|
+

1

|Tw,v|
=
|Tv,w|+ |Tw,v|
|Tv,w| · |Tw,v|

=
n

|Tv,w| · |Tw,v|
≤ n

n− 1
.

Hence we can sum over every edge:∑
v,w
v∼w

1

|Tv,w|
≤ (n− 1) · n

n− 1
= n,

which establishes the claimed bound on the double sum.

Plugging this bound on the double sum into our previous inequality for P(T )
gives

P(T ) ≥ 13

30
+

17

30n
− 4

15n2

∑
v

∑
T ′

1

|T ′|
≥ 13

30
+

17

30n
− 4

15n2
· n =

13

30
+

3

10n
,

which is the desired lower bound.

6 Other questions

The main question arising from our work is to resolve Conjectures 4.9 and 5.3,
namely, to show that the path and star have the extreme probabilities of winning
among all trees of fixed order in both the semi-random and all-random models. In
this section we outline a number of other possible directions of future research.

6.1 Other models

The rules of the game studied in this paper can be varied or extended in numerous
ways. We mention a few explicit cases that are similar in spirit and might lead in
interesting directions.

Guessing edges

Rather than choosing a vertex, players might alternate choosing edges, with the
goal being to isolate the randomly selected target vertex. This version of the game
is reminiscent of the random process called cutting down trees, which was introduced
by Meir and Moon [4] and is an active area of research (see, e.g., [1]).

Searching on general graphs

In [3], the binary search algorithm on trees was extended to a model on general
connected graphs: upon querying a vertex v, the player either is informed that v is
the target or is given an edge out of v that lies on a shortest path from v to the
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target. One could extend the two-player version of the game to this model. On some
graphs, and unlike for trees, the first player may be at a marked disadvantage in this
generalization: for example, on the complete graph Kn, the first player wins with
probability 1

n
.

Misère search

In the misère version of the game, the target vertex is poisoned, and the player
who finds it loses. For example, the one-vertex tree is a first player loss, the two-
vertex tree is a fair game, and the first player wins on the three-vertex tree with
probability 2

3
if they choose the central vertex and with probability 1

3
if they choose

a leaf.

Continuous models

The following continuous model of binary search also admits a two-player version:
a target point is selected uniformly at random in the real interval [a, b], and a player
wins if they pick a point within some fixed distance ε > 0 of the target; non-winning
guesses are informed whether the guess is too large or too small. Higher-dimensional
analogues are also possible: a guess might consist of a hyperplane, with the goal being
to bound the target point in a region of sufficiently small volume; or a guess might
consist of a point and a hyperplane through that point, with the goal of choosing a
point within ε of the target.

6.2 Probability distributions

In the models where one or both players play randomly, the set of probabilities
of a first-player win lies in some nontrivial interval [a, b]. As the order n of the trees
goes to infinity, is the set of these probabilities dense in some interval? Is there
a limiting distribution of probabilities of winning, where (for example) we think of
drawing a vertex-labeled tree uniformly at random?

6.3 Random vs. random as a random process

The all-random game (Section 5) involves no strategy, so we can view it as a
purely random process. Namely, we are given a tree T , one vertex of which has been
randomly selected as the target. At each step, a vertex v is chosen at random; if
v is not the target, then the tree is cut down to the subtree of T r v in which the
target lies. The stopping time is the number of steps it takes to hit the target. Our
problem can be restated as bounding the probability that the stopping time is odd.

For the star Sn, the stopping time has expected value about n/3. For the path Pn,
the stopping time has expected value about 2 lnn. Does every tree with n vertices
have expected stopping time between those of the path and the star? For a given
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tree, is the probability distribution of the stopping time unimodal? Answering these
questions might help resolve Conjecture 5.3.

6.4 Fixed target

The all-random game (Section 5) has three sources of randomness: the target
vertex, the first player, and the second player. What if instead the target vertex
were fixed (so that effectively we have a rooted tree)? Does the first player always
win with probability at least 1

2
? After looking at small trees (up to five vertices), we

tentatively conjecture that the answer is yes. If the target is a leaf, then a simple
induction shows that the game is fair (win probability exactly 1

2
).

6.5 Relation with the gold grabber game

In [7], Seacrest and Seacrest consider the following (non-random, complete infor-
mation) game on trees: some coins of various values are distributed on the vertices of
a tree, and players take turns selecting a leaf and collecting the coins on the chosen
leaf. Their main theorem is that on a tree with an even number of vertices, the first
player can always guarantee to acquire at least half the total value of coins. Our
game could be rephrased in similar language, with the target having a coin of positive
value and all other vertices having coins of value 0. In this rephrasing, the key differ-
ence between our game and the game considered by Seacrest and Seacrest is that the
players do not know the distribution of the coins. Are there interesting variations of
the binary search game involving more elaborate distributions of weight?

6.6 Other constraints on limb numbers

Lemma 2.1 gives a number of constraints on the limb numbers `i(T ), which are
used for the bounds in several results in Sections 4 and 5. These relations are not
exhaustive; for example, the proof of Lemma 2.1(g) may be extended to show that

`1(T ) + `3(T ) + · · ·+ `2k−1(T ) ≥ `2(T ) + `4(T ) + · · ·+ `2k(T )

for every tree T of order at least 4k. On the other hand, for any positive integers a
and b, one can construct a tree T such that `2(T ) = a and `3(T ) = b: if a = b = 1
then take T to be the spider S2,1,1, shown at the top of Figure 7, while if a + b > 2
then take T to be the bottom tree in Figure 7 with a branches on the left and
b branches on the right. What else can one say about the constraints satisfied by the
tuples (`1, . . . , `k)? For example, are the tuples (`1, . . . , `k) the set of lattice points
in a polytope (at least for n sufficiently large)?
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...
...

Figure 7: Trees with specified values for `2 and `3
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