Note on sets of hyperplane-type $(m, n)_{r-1}$ in $\mathrm{PG}(r, q)$

Vito Napolitano*
Dipartimento di Matematica e Fisica
Università degli Studi della Campania "Luigi Vanvitelli"
Viale Lincoln 5, 81100 Caserta
Italy
vito.napolitano@unicampania.it

Abstract

It is shown that if \mathcal{K} is a set of k points of $\operatorname{PG}(r, q)$ of hyperplane-type $(m, n)_{r-1}, q=p^{h}, p$ an odd prime and $h \geq 1$, then either $n-m \leq q^{(r-1) / 2}$ or p divides m, n and k or p divides $m-1, n-1$ and $k-1$.

1 Introduction

Let k, m and n be three integers satisfying $k>0,0 \leq m<n \leq q^{r-1}+q^{r-2}+\cdots+q+1$. Then a k-set \mathcal{K} of points of $\operatorname{PG}(r, q)$ of hyperplane-type $(m, n)_{r-1}$ is a set of points of $\mathrm{PG}(r, q)$ of size k intersected by any hyperplane of $\mathrm{PG}(r, q)$ either in m or n points, and both the sizes m and n of these intersections occur. The integers m and n are the intersection numbers of \mathcal{K} with respect to the hyperplanes. The interest in the study of such sets is motivated not only by the fact that many classical and nice objects of $\operatorname{PG}(3, q)$ have exactly two intersection numbers with respect to the hyperplanes, but also because of their connection with coding theory: the points of a k-set of hyperplane-type $(m, n)_{r-1}$ seen as columns of a matrix give rise to a linear (projective) code of dimension r and with two weights, and vice versa (see e.g. [1]).

Such sets have been intensively investigated, especially for $r \leq 3$, and for any r one has that $(n-m) \mid q^{r-1}$ and k fulfils the equation

$$
\begin{equation*}
\theta_{r-2} k^{2}-k\left[\theta_{r-2}+(m+n-1) \theta_{r-1}\right]+m n \theta_{r}=0 \tag{1.1}
\end{equation*}
$$

where $\theta_{r}=q^{r}+q^{r-1}+\cdots+q+1$.

[^0]Since, if $m=0$ then the set \mathcal{K} is either a point or the complement of a hyperplane, and if $n=\theta_{r-1}$, then the set \mathcal{K} is either the complement of a point or a hyperplane, we may assume that $1 \leq m<\theta_{r-1}$.

As already remarked, the most studied cases are $r=2$ and $r=3$, and in the 2-dimensional case not only desarguesian planes have been considered. When $r=3$, most attention has been devoted to the case $n-m \leq q$, which certainly occurs if $1 \leq m \leq q$ (see e.g. [5]). Some examples of such sets with $n-m=q$ and $r=3$ are hyperbolic quadrics, Baer subgeometries and Hermitian surfaces. If $r=3$ and $n-m=q$ then the possible sizes of \mathcal{K} are $k=m(q+1)$ and $k=\frac{\left(q^{2}+1\right)(q+m)}{q+1}$. In [4] or [5] two subsets of $\mathrm{PG}(3,3)$ of plane-type $(3,6)_{2}$ and size $k=15=\frac{\left(3^{2}+1\right)(3+3)}{3+1}$ are given. For a more general overview of k-sets of $\mathrm{PG}(3, q)$ of plane-type $(m, n)_{2}$ with $n-m=q$ we refer the interested reader to [2]. When $n-m \neq q$, a triple (k, m, n) with k fulfilling Equation (1.1) is called non-standard, and recently in [3] we can find results concerning the existence of admissible non-standard triples for k-sets of plane-type $(m, n)_{2}$ in $\operatorname{PG}(3, q)$.

If $r=3$ and $n-m=q^{2}$, then $m \geq q+1$ and so $n=q^{2}+q+1$ and $m=q+1$; that is, \mathcal{K} is a plane. Note that, in this case, since $q=p^{h}, p$ prime, we have that p divides $m-1, n-1$ and $k-1$. If $r=3$ and $n-m=1$, the discriminant of Equation (1.1) is $\Delta=(q+1)^{2}-4 m q^{2}(q(q+1)-m)$, and from $\Delta \geq 0$ it follows that $m=0$. Thus, a set of points of $\mathrm{PG}(3, q)$ of plane type $(m, m+1)_{2}$ is a point.

In the planar case, independently of the plane being desarguesian, in [7] it has been proved that if $(m, n)=1=(m-1, n-1), m \geq 2$, then either $n-m<\sqrt{q}$ or q is a square, $n-m=\sqrt{q}$ and $k=m(q+\sqrt{q}+1)$ or $k=q \sqrt{q}+\sqrt{q}(\sqrt{q}-1)(m-1)+m$.

Sets of points of $\operatorname{PG}(r, q)$ with two intersection numbers m and n with respect to the family of all d-dimensional subspaces of $\mathrm{PG}(r, q)$ are defined similarly, and we recall that such sets with $d \leq r-2$ also have exactly two intersection numbers with respect to hyperplanes.

In this note, it is shown that if \mathcal{K} is a k-set of hyperplane-type $(m, n)_{r-1}, r \geq 2$, then either $n-m \leq q^{(r-1) / 2}$ or p divides m and n or p divides $m-1$ and $n-1$, where p is the prime number such that $q=p^{h}$, with p odd and $h \geq 1$. Indeed, this will follow from the proof of the following result.

Theorem 1.1 Let \mathcal{K} be a k-set of points of $\operatorname{PG}(r, q)$ of hyperplane-type $(m, n)_{r-1}$, $r \geq 2, q=p^{h}$ and $h \geq 1$. Assume $n-m>q^{\frac{r-1}{2}}$. Then either $m \equiv n \equiv k \equiv 0$ $\bmod p$ or $m \equiv n \equiv k \equiv 1 \bmod p$.

2 Proof of Theorem 1.1

Let us start by recalling some useful properties for k-sets of points of $\operatorname{PG}(r, q)$ of hyperplane-type $(m, n)_{r-1}$.

An m-hyperplane (or n-hyperplane) is a hyperplane intersecting \mathcal{K} in exactly m (or n) points.

If P is a point of \mathcal{K}, denote by $v_{m}(P)$ and $v_{n}(P)$, respectively, the number of m-hyperplanes and n-hyperplanes through P. Then $v_{m}(P)+v_{n}(P)=\theta_{r-1}$ and (see e.g. $[4,6]$)

$$
\begin{align*}
& v_{m}(P)=\frac{n \theta_{r-1}-k \theta_{r-2}}{n-m}-\frac{q^{r-1}}{n-m}, \tag{2.1}\\
& v_{n}(P)=\frac{k \theta_{r-2}-m \theta_{r-1}}{n-m}+\frac{q^{r-1}}{n-m} . \tag{2.2}
\end{align*}
$$

Let P be a point of $\operatorname{PG}(r, q)$ not in \mathcal{K}, and denote by $u_{m}(P)$ and $u_{n}(P)$, respectively, the number of m-hyperplanes and n-hyperplanes through P. Then $u_{m}(P)+u_{n}(P)=$ θ_{r-1} and

$$
\begin{equation*}
u_{m}(P)=\frac{n \theta_{r-1}-k \theta_{r-2}}{n-m}, \quad u_{n}(P)=\frac{k \theta_{r-2}-m \theta_{r-1}}{n-m} . \tag{2.3}
\end{equation*}
$$

Thus the integers $v_{m}(P), v_{n}(P), u_{m}(P), u_{n}(P)$ are independent from the point P, and comparing Equations (2.1), (2.2) and (2.3) gives

$$
(n-m) \mid q^{r-1}
$$

and, from $u_{n}=\frac{(k-m) \theta_{r-2}-m q^{r-1}}{n-m}$, it follows that $(n-m) \mid(k-m)$. So $(n-m) \mid$ $(k-n)$ since $k-n=k-m-(n-m)$.

Now for the proof of Theorem 1.1, we are going to rewrite Equation (1.1). Let

$$
\theta_{r-2} k^{2}-k\left[\theta_{r-2}+(m+n-1) \theta_{r-1}\right]+m n \theta_{r}=0
$$

Thus,

$$
\begin{aligned}
& \theta_{r-2} k^{2}-k\left((m+n) q^{r-1}+(m+n) \theta_{r-2}-q^{r-1}\right)+m n \theta_{r}=0, \\
& \theta_{r-2} k^{2}-k m q^{r-1}-k n q^{r-1}-k m \theta_{r-2}-k n \theta_{r-2}+k q^{r-1} \\
& +m n q^{r}+m n q^{r-1}+m n \theta_{r-2}=0, \\
& \theta_{r-2} k(k-n)-m q^{r-1}(k-n)-m \theta_{r-2}(k-n)-k n q^{r-1} \\
& +k q^{r-1}+m n q^{r}-m n q^{r-1}+m n q^{r-1}=0, \\
& \theta_{r-2}(k-n)(k-m)-m q^{r-1}(k-n)-n q^{r-1}(k-m) \\
& +k q^{r-1}+m n q^{r}-m n q^{r-1}-m q^{r-1}+m q^{r-1}=0, \\
& \theta_{r-2}(k-n)(k-m)-m q^{r-1}(k-n)-n q^{r-1}(k-m)+(k-m) q^{r-1} \\
& =-m n q^{r}+m n q^{r-1}-m q^{r-1} \text {, } \\
& \theta_{r-2}(k-n)(k-m)-m q^{r-1}(k-n)-n q^{r-1}(k-m)+(k-m) q^{r-1} \\
& =-m n q^{r}+m q^{r-1}(n-1) \text {, } \\
& \theta_{r-2}(k-n)(k-m)-m q^{r-1}(k-n)-n q^{r-1}(k-m)+(k-m) q^{r-1} \\
& =m q^{r-1}(n-1-n q) \text {. }
\end{aligned}
$$

The left-hand side is divisible by $(n-m)^{2}$ and so $(n-m)^{2}$ divides $m q^{r-1}(n-1-n q)$. Hence, since $n-m>q^{\frac{r-1}{2}}$, a factor of $n-m$ has to divide $m(n-1)$; in particular $p \mid m(n-1)$. Thus, either p divides m, n and k or p divides $m-1, n-1$ and $k-1$, and so the theorem is proved.

References

[1] R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (2) (1986), 97-122.
[2] M. de Finis, On k-sets of type (m, n) in $\operatorname{PG}(3, q)$ with respect to planes, Ars Combin. 21 (1986), 119-136.
[3] S. Innamorati and F. Zuanni, On the parameters of two-intersection sets in PG(3,q), AAPP Atti della Accademia Peloritana dei Pericolanti Classe di Scienze Fisiche, Matematiche e Naturali 96 (S2) (2018), A7(1)-A7(12). doi:10.1478/AAPP.96S2A7.
[4] V. Napolitano and D. Olanda, Sets of type (3,h) in PG(3,q), Rend. Lincei Mat. Appl. 23 (2012), 395-403. doi:10.4171/RLM/635.
[5] V. Napolitano, On sets of type $(m, h)_{2}$ in $\mathrm{PG}(3, q)$ with $m \leq q$, Note Mat. 35 (1) (2015), 109-123. doi:10.1285/i15900932v35n1p109.
[6] V. Napolitano, Ruled sets of plane-type $(m, h)_{2}$ in $\mathrm{PG}(3, q)$ with $m \leq q, J$. Geom. 108 (2017), 953-960.
[7] G. Tallini, Some new results on sets of type (m, n) in projective planes, J. Geom 29 (1987), 411-422.

[^0]: * This research was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM). The author was also supported by the project "VALERE: Vanvitelli pEr la RicErca" of the University of Campania "Luigi Vanvitelli".

