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Abstract

It is proven that every geometric lattice of finite rank greater than 1 has
a matching between the points and hyperplanes. This answers a question
of Anders Björner from the 1981 Banff Conference on Ordered Sets.

1 Introduction

At the famous 1981 Banff Conference on Ordered Sets—such luminaries as Erdős,
Birkhoff, Dilworth, Scott (the Turing Award-winner), Daykin, Garsia, Graham,
Greene, Jónsson, Milner, Stanley, and Priestley attended—Björner asked if every
geometric lattice L of finite rank at least 2 had a matching between the points or
atoms and the hyperplanes or co-atoms [13, pp. xi, xii, and 799].

Greene had proven this for finite lattices [7, Corollary 3]. Björner had proven this
in special cases [4, Theorems 3 and 4]—for modular lattices and for “equicardinal
lattices,” i.e., lattices whose hyperplanes contained the same number of atoms.

In 1976, Björner wrote, “It would be interesting to know if the result of our
theorems 3 and 4 can be extended to all infinite geometric lattices, or at least to
some classes of such lattices other than the modular and the equicardinal.” [4,
p. 10]. In 1977, he proved it for lattices of rank 3 and for lattices of cardinality
less than ℵω, the smallest singular cardinal [5, Theorems 3 and 6]; his argument
essentially only worked for regular cardinals.

We answer Björner’s 1976 question about matchings. The main new contribution
of the present work is Proposition 10, the rest of the argument being derived from
Björner’s prior writings.

We selectively use some of the notation and terminology from [6] and [3, Chapter
II, §8 and Chapter IV].

Let P be a poset. Let x, y ∈ P be such that x ≤ y. The closed interval [x, y] is
{z ∈ P : x ≤ z ≤ y}. If |[x, y]| = 2, we say x is a lower cover of y and y is an upper
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cover of x and denote it x� y.

Let P be a poset with least element 0. An atom or point is a cover of 0. The set
of atoms is A(P ). If P is a poset with greatest element 1, a co-atom, co-point, or
hyperplane is a lower cover of 1. The set of hyperplanes is H(P ).

A poset is semimodular if, for all a, b, c ∈ P , a � b, c and b �= c imply there
exists d ∈ P such that b, c� d. A geometric lattice of finite height is a semimodular
lattice L with no infinite chains (totally ordered subsets)—implying L has a 0 and a
1—such that every element is a join of a subset of atoms. It is known [12, Theorem
9.4], [3, Chapter II, §8, Theorem 14] that such an L is a complete lattice with a finite
maximal chain and all maximal chains have the same size r+1, where r is the height
or rank of L. Moreover, every element is a join of a finite set of atoms and a meet of
a finite subset of H(L) (see [4, Lemma 1]). Every interval is a geometric lattice [15,
§3.3, Lemma]. For x ∈ L, the rank of ↓ x := [0, x] is the rank r(x) of x. For x, y ∈ L,
r(x∨ y) + r(x∧ y) ≤ r(x) + r(y) [12, Theorem 9.5], [3, Chapter II, §8, Theorem 15].
For x ∈ L, let x := A(L)∩ ↓ x and let x := H(L) ∩ [x, 1].

Let L be a geometric lattice of finite height. Let a, b ∈ L be such that a ≤ b. An
element x ∈ [a, b] has a modular complement y in [a, b] if x ∧ y = a, x ∨ y = b, and
r(x) + r(y) = r(a) + r(b).

The following is a basic fact (see [4, p. 3]).

Lemma 1 Let L be a geometric lattice of finite height. Let a, b ∈ L be such that
a ≤ b. Then any x ∈ [a, b] has a modular complement in [a, b].

Proof. If x = c0 � c1 � · · ·� ck = b, find ai ∈ A(L)∩ ↓ ci\ ↓ ci−1 for i = 1, . . . , k; we
know ai exists for i = 1, . . . , k, since ci is a join of atoms but if every atom less than or
equal to ci were also less than or equal to ci−1, then ci would be less than or equal to
ci−1, a contradiction. Let y = a∨a1∨ · · ·∨ak. Clearly r(y)− r(a) = k = r(b)− r(x),
x∨y = b, and x∧y ≥ a. As r(a) ≤ r(x∧y) ≤ r(x)+r(y)−r(x∨y) = r(a)+r(b)−r(b) =
r(a), we have x ∧ y = a. �

See [8, Chapters 2, 3, 5 and 8] and [9, Appendix 2, §3] for basic facts about
ordinals and cardinals. If κ is a regular cardinal, a subset Ω ⊆ κ is closed in κ if for
every non-empty subset A ⊆ Ω, the supremum of A is κ or in Ω; it is unbounded
in κ if the supremum of Ω is κ; it is a club in κ if it is both. A subset Ω ⊆ κ is
stationary in κ if it intersects every club in κ; note that |Ω| = κ.

We take our notation from [2, §§2, 4, and 6]. A society is a triple Λ=(MΛ,WΛ, KΛ)
where MΛ ∩WΛ = ∅ and KΛ ⊆ MΛ ×WΛ. If A ⊆ MΛ and X ⊆ WΛ, then KΛ[A] :=
{w ∈ WΛ : (a, w) ∈ KΛ for some a ∈ A}, and Λ[A,X ] :=

(
A,X,KΛ ∩ (A×X)

)
is a

subsociety of Λ. If B ⊆ MΛ, then Λ−B := Λ[MΛ \B,WΛ]. If Π is a subsociety, then
Λ/Π := Λ[MΛ\MΠ,WΛ\WΠ]. We call a subsociety Π of Λ saturated ifKΛ[MΠ] ⊆ WΠ

and we denote this situation by Π� Λ.

An espousal for Λ is an injective function E : MΛ → WΛ such that E ⊆ KΛ. A
society is critical if it has an espousal and every espousal is surjective.

If I is a set and Π̄ = (Πi : i ∈ I) is a family of subsocieties of Λ, then
⋃

Π̄ :=
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(
⋃

i∈I MΠi
,
⋃

i∈I WΠi
,
⋃

i∈I KΠi
). Assume I is an ordinal. If θ ≤ I, then Π̄θ denotes

(Πi : i < θ). The sequence Π̄ is non-descending if Πi is a subsociety of Πj whenever
i < j < I; it is continuous if, in addition,

⋃
Π̄θ = Πθ for every limit ordinal θ < I. If

I = J + 1, Π̄ is a J-tower in Λ if Π̄ is a continuous family of saturated subsocieties
of Λ such that Π0 = (∅, ∅, ∅).

Let Π be a subsociety of Λ. Assume 1 ≤ κ ≤ ℵ0. Then Π is a κ-obstruction in Λ
if Π� Λ and Π− A is critical for some A ⊆ MΠ such that |A| = κ.

Now assume κ is a regular, uncountable cardinal. We say Π is a κ-obstruction in
Λ if Π =

⋃
Σ̄ for an obstructive κ-tower Σ̄ in Λ, where a κ-tower Σ̄ in Λ is obstructive

when, for each α < κ, Σα+1/Σα is either (a) a μ-obstruction in Λ/Σα for some μ < κ
or (b) (∅, {w}, ∅) for some w ∈ WΛ, and {α < κ : (a) holds at α} is stationary in κ.
By [2, Lemmas 4.2 and 4.3], Π� Λ.

For a society Λ, δ(Λ) is the minimum of {|B| : B ⊆ MΛ such that Λ − B has an
espousal}.

We will use the following theorems of Aharoni, Nash-Williams, and Shelah:

Theorem 2 (from [2, Lemma 4.2 and Corollary 4.9a]) If Π is a κ-obstruction, then
δ(Π) = κ. �

Theorem 3 [2, Theorem 5.1] A society Λ has an espousal if and only if it has no
obstruction. �

We will say that a geometric lattice of finite rank r ≥ 3 has a matching if the

society

(
A(L),H(L),≤ ∩(A(L)×H(L)

))
has an espousal. (Since A(L) = H(L) in

geometric lattices of rank 2, we could say they also have a matching.)

This generalizes the notion of “matching” for a finite lattice of rank at least 3,
which is this: a one-to-one map from the set of atoms of the lattice to the set of
co-atoms of the lattice, sending each atom p to a co-atom h lying above the atom,
i.e., p ≤ h, or, showing the connection with the previous paragraph, (p, h) ∈≤. (A
matching in this paper is a matching in the sense of graph theory, for the graph
consisting of the atoms and co-atoms, such that all atoms are matched.)

Greene proved:

Theorem 4 [7, Corollary 3] Every finite geometric lattice of rank at least 2 has a
matching. �

Björner proved:

Theorem 5 [5, Theorems 3 and 6] Every geometric lattice of rank 3, or of finite
height and infinite cardinality less than ℵω, has a matching. �

We use the following results of Björner:



J.D. FARLEY /AUSTRALAS. J. COMBIN. 82 (3) (2022), 228–236 231

Lemma 6 ([5, Lemma 1] and [4, Theorem 1]) Let L be a geometric lattice of finite
height. (a) Let p ∈ A(L), h ∈ H(L) and assume p � h. Then |h| ≤ |p|. (b) If L is
infinite, then |A(L)| = |H(L)| = |L|. �

Theorem 7 [5, Theorem 4] Let L be an infinite geometric lattice of finite height
such that | ↓ x| < |L| for every x ∈ L of rank 2. If |L| is a regular cardinal, then L
has a matching. �

Björner also uses this theorem of Milner and Shelah:

Theorem 8 [14, Theorem] Let Γ = (M,W,K) be a society such that K[m] �= ∅ for
all m ∈ M and such that (m,w) ∈ K implies |K−1[w]| ≤ |K[m]|. Then Γ has an
espousal. �

2 Answering Björner’s Question

We are ready to begin answering Björner’s question.

As a referee noted, the following exemplifies a standard technique for geometric
lattices [3, Chapter IV, §3, Lemma 3].

Lemma 9 Let L be a geometric lattice of finite height. Let B ⊆ A(L). Let L(B) be
the subposet

{∨
L{b1, . . . , bn} : n ∈ N0, b1, . . . , bn ∈ B

}
.

Then L(B) is a geometric lattice of finite height with rank rL(
∨

L B), and A(L(B)
)
=

B. The inclusion map is order- and cover-preserving. Also, 0L(B) = 0L and |L(B)|
is either finite or |B|. If 1L(B) = 1L, then H(L(B)

) ⊆ H(L).

Proof. Note that 0L is the join of the empty set. Since L(B) is closed under arbitrary
joins, it is a complete lattice (e.g., [6, Theorems 2.31 and 2.41]). Letting n equal 0 or
1, we get {0L}∪B ⊆ L(B) and so B ⊆ A(L(B)

)
. But for n ≥ 2, b1∨b2∨· · ·∨bn ≥ b1,

so A(L(B)
) ⊆ B. Clearly every element of L(B) is a join of atoms. Let m,n ∈ N0

and let b1, . . . , bn, c1, . . . , cm ∈ B. Assume b1 ∨ · · · ∨ bn �L(B) c1 ∨ · · · ∨ cm. Then
m ≥ 1. Pick r ∈ {1, . . . , m} such that b1 ∨ · · · ∨ bn < b1 ∨ · · · ∨ bn ∨ cr ∈ L(B). Then
b1∨· · ·∨bn < b1∨· · ·∨bn∨cr ≤ b1∨· · ·∨bn∨c1∨· · ·∨cr∨· · ·∨cm = c1∨· · ·∨cm. As
c1∨ · · ·∨ cm covers b1∨ · · · ∨ bn in L(B), we conclude b1∨ · · · ∨ bn ∨ cr = c1∨ · · ·∨ cm.

By semimodularity in L, b1 ∨ · · · ∨ bn �L b1 ∨ · · · ∨ bn ∨ cr = c1 ∨ · · · ∨ cm. Now
let k ∈ N0 and let d1, . . . , dk ∈ B. Assume that b1 ∨ · · · ∨ bn �L(B) d1 ∨ · · · ∨ dk and
c1∨· · ·∨cm �= d1∨· · ·∨dk. As before, for some s ∈ {1, . . . , k}, b1∨· · ·∨bn�L b1∨· · ·∨
bn∨ds = d1∨· · ·∨dk. Thus cr � d1∨· · ·∨dk and ds � c1∨· · ·∨cm. By semimodularity,
c1 ∨ · · · ∨ cm �L c1 ∨ · · · ∨ cm ∨ ds = b1 ∨ · · · ∨ bn ∨ cr ∨ ds = d1 ∨ · · · ∨ dk ∨ cr and
d1∨· · ·∨dk�Ld1∨· · ·∨dk∨cr; hence c1∨· · ·∨cm, d1∨· · ·∨dk�L(B)b1∨· · ·∨bn∨cr∨ds.
This shows that L(B) is a geometric lattice, of finite height since L has no infinite
chains, with 1L(B) =

∨
L B. As

∨
LB =

∨
L{b1, . . . , bn} for some n ∈ N0 and some

b1, . . . , bn ∈ B, picking the smallest such n and using semimodularity in L and L(B),
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we see that rL(
∨

L B) = rL(B)(
∨

L B), namely n. If 1L(B) = 1L, then the hyperplanes
of L and L(B) have the same rank; thus H(L(B)

) ⊆ H(L).

The cardinality of L(B) follows from standard arguments (or see [4, Theorem 1]).
�

Proposition 10 Let λ be a singular cardinal. Assume that every geometric lattice
of finite rank at least 2 and of cardinality less than λ has a matching. Then every
geometric lattice of finite rank at least 2 of cardinality λ has a matching.

Proof. (Compare this with the proof of [2, Theorem 6.4].) Assume not, for a contra-
diction. Then, by Theorem 3, there is a geometric lattice L (of rank at least three)

such that the society Γ =

(
A(L),H(L),≤ ∩(A(L) × H(L)

))
has a κ-obstruction

Π = (M,W,K). Since |M | ≤ λ, then by Theorem 2, we have κ ≤ λ; indeed κ < λ,
since κ is finite or a regular cardinal. By Theorem 2, there exists A ⊆ M such that
|A| = κ and Π − A has an espousal, E. Let R ⊆ A(L) be a finite subset such that
1L =

∨
R.

Let B0 = A∪R, and, for n < ω, if Bn is defined, let Bn+1 = Bn∪E−1

(
H(L(Bn)

))
.

Note that R ⊆ Bn for all n < ω, so the rank of L(Bn) is the rank of L and
H(L(Bn)

) ⊆ H(L) by Lemma 9.

Let B =
⋃

n<ω Bn ⊆ M ∪ R. Now |B0| ≤ max{κ,ℵ0} < λ. If n < ω and
|Bn| ≤ max{κ,ℵ0}, then |H(L(Bn)

)| ≤ max{κ,ℵ0}, so |Bn+1| ≤ max{κ,ℵ0} +
max{κ,ℵ0} = max{κ,ℵ0}. Hence |B| ≤ ℵ0max{κ,ℵ0} = max{κ,ℵ0} < λ.

As R ⊆ B, Lemma 9 shows that |L(B)| < λ and H(L(B)
) ⊆ H(L), so L(B) has

a matching. Let G be the espousal. Since

E[(M \ A) \ (M \A) ∩B] ∩H(L(B)
)
= ∅

and A ⊆ B ∩ M , so that M = [(M \ A) \ (M \ A) ∩ B] ∪ (B ∩ M), we know
E|(M\A)\(M\A)∩B ∪G|B∩M is an espousal of Π, as Π�Γ, contradicting Theorem 2. �

With Theorem 5, Proposition 10 extends Björner’s work to ℵω. But using the
argument of [5, Theorem 6] almost verbatim, we can settle Björner’s first question
from the 1981 Banff Conference on Ordered Sets. Björner already did the heavy
lifting in proving Theorem 5, but to make it clear that his proof is what we need, we
include it.

We feel it is important to go through the argument, since one of the proofs we
are copying is of this theorem [5, page 9]:

Let L be an infinite geometric lattice such that the cardinality of the set of rank 2
intervals [x, y] with rank x ≥ 4 is strictly less than |L|. Assume further that L fulfills
either condition (i) |L| is a regular cardinal or (ii) L has a rank 2 element such that
the set of atoms below it has cardinality |L|. Then L has a matching.

If we merely told a reader to trust that the proof does what we want, a reader might
be sceptical.
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Theorem 11 Every geometric lattice of finite rank greater than 1 has a matching.

Proof. The proof is drawn from [5, pp. 10–13]. Assume we have a counterexample
L of smallest cardinality, and, among those counterexamples, one of smallest rank.
By Theorems 4 and 5 and Proposition 10, we can assume |L| is a regular cardinal
and that L has rank at least 4. By Theorem 7, there is �0 ∈ L of rank 2 such that
| ↓ �0| = |L|.

Assume that |p| = |L| for all p ∈ �0. Consider any q ∈ A(L) \ �0 and consider the
rank 3 geometric lattice ↓ (q ∨ �0). By Lemma 6(b),

|L| = | ↓ �0| = |�0| ≤ |{c ∈↓ (q ∨ �0) : q � c}|.

The reason for the inequality is that q is an atom not below �0; therefore q ∨ �0 has
rank 3 (since �0 has rank 2) and, in the geometric lattice ↓ (q∨�0), �0 is a hyperplane.
Every atom below �0 in L is an atom below �0 in this smaller geometric lattice. The
hyperplanes greater than or equal to q in this smaller geometric lattice have rank 2,
so must cover q; and any cover of q in this smaller geometric lattice has rank 2, so is
a hyperplane in the smaller geometric lattice. By Lemma 6(a), we get the inequality.

The right-hand side equals |q| by Lemma 6(b); hence |L| = |q|. Hence |p| = |L|
for all p ∈ A(L). By Theorem 8, L has a matching.

So now assume |q| < |L| for some q ∈ �0.

Case 1. Every cover of q except �0 covers only one other atom.

Then define s : A(L) \ �0 → {x ∈ L : q� x} by s(p) = p ∨ q for all p ∈ A(L) \ �0.
In this case, s is one-to-one. By the minimality of L, the geometric lattice ↑ q has a
matching t : {x ∈ L : q � x} → q. We will define a matching f for L.

Let f(p) := t
(
s(p)

)
for all p ∈ A(L) \ �0 and let f(q) := t(�0); we just need to

define f on �0 \{q}. Pick h0 ∈ �0 and let z be a modular complement of �0 in ↓ h0. It
exists by Lemma 1. Since the rank of L is at least 4, the rank of h0 is at least 3. Since
�0 has rank 2, the modular complement property of z means that the rank of z is the
rank of h0 minus 2, so at least 1. Define R : �0 → {x ∈ L : z�x�h0} by R(p) = p∨z
for all p ∈ �0. This function is well-defined, since the modular complement property
implies that �0 ∧ z = 0L. Hence, if p is an atom below �0, then p � z, and thus p∨ z
covers z; both p and z are less than or equal to h0, so p ∨ z ≤ h0, and because the
rank of z is the rank of h0 minus 2, anything covering z that is less than or equal to
h0 must be covered by h0. This function R is one-to-one: If p, p′ ∈ �0 but p �= p′ and
p ∨ z = p′ ∨ z, then p ∨ z = p ∨ p′ ∨ z = �0 ∨ z = h0, a contradiction.

If p ∈ �0 \ {q}, then q � R(p) (or else R(p) = p ∨ q ∨ z = �0 ∨ z = h0, a
contradiction), so R(p) is covered by exactly one hyperplane in q, namely q ∨ R(p),
and this is h0. Since f [

(A(L) \ �0
) ∪ {q}] ⊆ q, if p ∈ �0 \ {q}, we can let f(p) be any

hyperplane covering R(p) except h0; there is one, since R(p) is a meet of co-atoms, by
a statement made three paragraphs before Lemma 1. If p1, p2 ∈ �0 \ {q} but p1 �= p2
and f(p1) = f(p2), then f(p1) covers R(p1) = p1 ∨ z and covers R(p2) = p2 ∨ z, so
f(p1) = p1 ∨ p2 ∨ z = �0 ∨ z = h0 (remember that R is one-to-one, so f(p1) covers
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the distinct elements p1 ∨ z and p2 ∨ z, and so is their join), a contradiction. Thus
f is a matching, as we will see:

The set of atoms is a disjoint union of the sets �0 \ {q}, {q}, and A(L) \ �0. If
p ∈ �0 \ {q}, then f(p) ≥ R(p) ≥ p. Also, f(q) ≥ �0 ≥ q. Further, if p ∈ A(L) \ �0,
then f(p) ≥ s(p) ≥ p. In each of the three cases, f(p) is a hyperplane.

Let us see that f is one-to-one when restricted to each of the three sets in the
disjoint union. Obviously it is one-to-one on {q}. We just showed f is one-to-one on
�0 \ {q}. On A(L) \ �0, it is a composition of two one-to-one functions, by the first
paragraph of Case 1.

Since f(p1) is not in q if p1 ∈ �0\{q}, it cannot equal f(p2) if p2 ∈
(A(L)\�0

)∪{q}.
If f(q) = f(p) for some p ∈ A(L) \ �0, then t

(
s(p)

)
= t(�0). Since t is one-to-one,

that means s(p) = �0. That means p ≤ �0, a contradiction.

Case 2. There exists �1 ∈ L \ {�0} such that q � �1 and |�1| ≥ 3.

Let p1, p2 ∈ �1 be such that |{p1, p2, q}| = 3. Since q = �0∧�1, we have p1, p2 � �0.

Let h0 ∈ �0 be such that p1 � h0. (Pick a modular complement of �0 ∨ p1 in ↑ �0.) If
p2 ≤ h0, then q ≤ �0 ≤ h0 implies �1 = p2 ∨ q ≤ h0, and so p1 ≤ h0, a contradiction.
Hence p2 � h0.

By the minimality of L, ↓ h0 has a matching g : h0 → C := {x ∈ L : x�h0}. Let
C2 := {c ∈ C : |c| = 2} and let C3 := C \ C2. We will show that |C3| = |L|.

Because {p1, p2} ∈ A(L) \ h0, we have that q ≤ �1 = p1 ∨ p2 ≤
∨A(L) \ h0 =: y.

Claim. For x ∈ C, x ∈ C2 if and only if x = h0 ∧ h for some h ∈ y.

Proof of claim. We have a partition of A(L) \ x: {k \ x : x� k ∈ L}.
If x ∈ C2, then x�h for some h ∈ H(L)\{h0} and so x = h0∧h. If w ∈ A(L)\h0,

then w /∈ x, so x � w ∨ x ∈ H(L) but w ∨ x �= h0, so w ∨ x = h. Hence w ≤ h.
Therefore y ≤ h.

Conversely, if x = h0 ∧ h for some h ∈ y, then h0 �= h. If there exists h′ ∈
x \ {h0, h}, then, for some a ∈ h′ \ x, h′ = a ∨ x. Hence a /∈ h0 \ x, and thus a ≤ y,
so a ≤ h and thus a ≤ h ∧ h′ = x, a contradiction. Hence x ∈ C2. �

By the claim, |C2| ≤ |y|: send every x in C2 to the h in the statement of the
claim; since x = h0 ∧ h, the map is one-to-one. But q ≤ y implies that y ⊆ q and,
since |q| < |L|, we conclude |C2| < |L|.

Remember that the set of elements less than or equal to �0 has cardinality |L|,
and h0 ≥ �0, so the set of elements less than or equal to h0 has cardinality |L|. This
set is a geometric lattice (of rank at least 3); being infinite, Lemma 6(b) applies, to
tell us that the cardinality of the set of its hyperplanes is | ↓ h0|, which, as we just
observed, equals |L|—but the set of its hyperplanes is C. Thus |C| = |L|. As C is
the disjoint union of C2 and C3, but |C2| < |L| and L is infinite, we conclude that
|C3| = |L|.

We now define our matching as follows: Since |A(L)\h0| ≤ |C3|, take any injection
b : A(L)\h0 → C3 and let f(p) = p∨b(p) for p ∈ A(L)\h0. For p ∈ h0, let f(p) be any
cover of g(p) except h0 or, in case g(p) = b(p′) for some p′ ∈ A(L) \ h0, except f(p

′).
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(We can do this since b(p′) ∈ C3.) If x′, x′′ ∈ C and x′ �= x′′, then ↑ x′∩ ↑ x′′ =↑ h0;
hence if p, p′ ∈ A(L) \ h0 and p �= p′ but f(p) = f(p′) (so p ∨ b(p) = p′ ∨ b(p′)), then
f(p) ≥ h0; but r

(
f(p)

)
= r(h0), so f(p) = h0 and p ≤ h0, a contradiction.

If for some p ∈ h0 and p′ ∈ A(L) \h0 we have f(p) = f(p′), then g(p)� p′ ∨ b(p′).
Since g(p), b(p′)�h0, then {g(p), b(p′), h0, p

′∨b(p′)} would be a 4-element crown (also
called a “cycle”) of elements in consecutive ranks—impossible in a lattice—unless
g(p) = b(p′), which we have ruled out.

If p, p′ ∈ h0 and f(p) = f(p′) but p �= p′, then g(p) �= g(p′) and g(p), g(p′)�h0 and
f(p) is a cover of g(p), g(p′) distinct from h0, so we get another impossible 4-crown.

Hence f is one-to-one. �

This answers the question of Björner from 1976 that was the first question he
stated at the 1981 Banff Conference on Ordered Sets.

The Pólya Prize-winner went on to ask at the Banff Conference if there exists
a family M of pairwise disjoint maximal chains in L \ {0, 1} whose union contains
the set of atoms, saying, “I showed this is true for modular L, and J. Mason showed
it to be true for finite L.” Björner conjectured this in 1977 ([5, p. 18], [4, p. 10]),
writing in 1976, “Another challenging question, related to the existence of matchings,
is whether maximal families of pairwise disjoint maximal proper chains do exist in
infinite geometric lattices. . . .” He refers the reader to [11].

A good approach to the second question would be to use [1] and [10]; Theorem
13 of the latter, when this writer first read it, made this writer feel that it could hold
its own alongside many classic results in combinatorics.
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