All unicyclic Ramsey $\left(m K_{2}, P_{4}\right)$-minimal graphs

Edy Tri Baskoro
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung, Indonesia
ebaskoro@itb.ac.id

Kristiana Wijaya
Graph and Algebra Research Group
Department of Mathematics, Faculty of Mathematics and Natural Sciences
Universitas Jember, Indonesia
kristiana.fmipa@unej.ac.id

Joe Ryan
School of Electrical Engineering and Computing
Faculty of Engineering and the Built Environment University of Newcastle, Australia
joe.ryan@newcastle.edu.au

Abstract

For graphs F, G and H, we write $F \rightarrow(G, H)$ to mean that if the edges of F are colored with two colors, say red and blue, then the red subgraph contains a copy of G or the blue subgraph contains a copy of H. The graph F is called a Ramsey (G, H) graph if $F \rightarrow(G, H)$. Furthermore, the graph F is called a Ramsey (G, H)-minimal graph if $F \rightarrow(G, H)$ but $F-e \nrightarrow(G, H)$ for any edge $e \in E(F)$. In this paper, we characterize all unicyclic Ramsey (G, H)-minimal graphs when G is a matching $m K_{2}$ for any integer $m \geq 2$ and H is a path on four vertices.

1 Introduction

All the graphs discussed in this paper are finite and simple, without isolated vertices, unless otherwise specified. For any graphs F, G, and H, we write $F \rightarrow(G, H)$ to mean that if the edges of F are colored with two colors, say red and blue, then there exists either a red copy of G or a blue copy of H as a subgraph of F. The graph
F is called a Ramsey (G, H) graph if $F \rightarrow(G, H)$. The Ramsey number $R(G, H)$ is the smallest natural number n such that $K_{n} \rightarrow(G, H)$. There have been extensive studies on Ramsey numbers $R(G, H)$ for a general graph G versus a graph H; see an interesting survey paper [10] regarding the current progress on the Ramsey numbers for general graphs.

From now on, what we mean by 'coloring' is an edge-coloring of a graph. A (G, H)-coloring of F is a red-blue coloring of F such that neither a red copy of G nor a blue copy of H occurs. Furthermore, a Ramsey (G, H) graph F is minimal if for any edge $e \in E(F), F-e \nrightarrow(G, H)$. In other words, a Ramsey (G, H) graph F is minimal if for every edge $e \in E(F)$, there exists a (G, H)-coloring of $F-e$. The set of all Ramsey (G, H)-minimal graphs is denoted by $\mathcal{R}(G, H)$. A pair of graphs (G, H) is said to be Ramsey-infinite if there are infinitely many minimal graphs F for which $F \rightarrow(G, H)$. If a pair (G, H) is not Ramsey-infinite, then it is said to be Ramsey-finite.

The problem of Ramsey-infinite pairs of graphs is studied extensively in the literature; for example, Łuczak [7] showed that for every forest F other than a matching, and every graph H containing a cycle, there exists an infinite number of graphs J such that $J \in \mathcal{R}(F, H)$.

In this paper we focus on a pair of Ramsey-finite graphs. Let us briefly discuss some results concerning Ramsey-finiteness. The problem of characterizing a pair (G, H) that is Ramsey-finite was first addressed by Burr et al. [3] in 1978. It was proved that if G is a matching then (G, H) is Ramsey-finite for any graph H. They stated that in general it is difficult to determine the members of $\mathcal{R}(G, H)$, even if (G, H) is Ramsey-finite. In fact the problem appears to be very difficult for $\mathcal{R}\left(m K_{2}, H\right)$. One trivial case is $\mathcal{R}\left(K_{2}, H\right)=\{H\}$ for an arbitrary graph H. Burr et al. [3] also gave two non-trivial sets $\mathcal{R}(G, H)$, namely, $\mathcal{R}\left(2 K_{2}, 2 K_{2}\right)$ and $\mathcal{R}\left(2 K_{2}, K_{3}\right)$. Next, the set $\mathcal{R}\left(m K_{2}, 2 K_{2}\right)$ for $m \in[3,4]$ is given by Burr et al. [4]. Other results concerning Ramsey-finiteness can be seen in $[1,2,5,6,8,9,13]$. Most recently, Wijaya et al. [12] showed a relation between Ramsey ($m K_{2}, H$)-minimal graphs and $\left((m-1) K_{2}, H\right)$-minimal graphs as follows.
Lemma 1.1. [12] Let H be a graph and $m \geq 2 . F \rightarrow\left(m K_{2}, H\right)$ if and only if the following conditions hold:
(i) for every $v \in V(F), F-\{v\} \rightarrow\left((m-1) K_{2}, H\right)$;
(ii) for every $K_{3} \subseteq F, F-E\left(K_{3}\right) \rightarrow\left((m-1) K_{2}, H\right)$; and
(iii) for every $F\left[S_{2 m-1}\right]$ of $F, F-E\left(F\left[S_{2 m-1}\right]\right)$ contains a graph H, where $F\left[S_{2 m-1}\right]$ is a subgraph of F induced by any $(2 m-1)$-set $S_{2 m-1} \subseteq V(F)$.
Theorem 1.2. [12] Let H be a graph and $m \geq 2$. If $F \in \mathcal{R}\left(m K_{2}, H\right)$, then for every $v \in V(F)$ and $K_{3} \subseteq F$, both graphs $F-\{v\}$ and $F-E\left(K_{3}\right)$ contain a Ramsey $\left((m-1) K_{2}, H\right)$-minimal graph.

In [12], it is also shown that for any connected graph H, the graph $F \cup G \in$ $\mathcal{R}\left(m K_{2}, H\right)$ if and only if $F \in \mathcal{R}\left(s K_{2}, H\right)$ and $G \in \mathcal{R}\left((m-s) K_{2}, H\right)$ for every
positive integer $s<m$. Let P_{n} denote a path on n vertices. Wijaya et al. [11] characterized all unicyclic graphs, namely connected graphs containing exactly one cycle, in $\mathcal{R}\left(m K_{2}, P_{3}\right)$ for any integer $m \geq 2$. More general results as in the following theorem have been also obtained.

Theorem 1.3. [11]
(a) There is no tree belonging to $\mathcal{R}\left(m K_{2}, P_{n}\right)$, for any integers $m, n>1$.
(b) The forest in $\mathcal{R}\left(m K_{2}, P_{n}\right)$ is only the disjoint union of m paths with n vertices, $m P_{n}$.
(c) Let $m>1$ and $n>2$ be positive integers. A cycle graph C_{s} belongs to $\mathcal{R}\left(m K_{2}, P_{n}\right)$ if and only if $m n-n+1 \leq s \leq m n-1$.

In this paper we give the characterization of all unicyclic graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ for any natural number $m \geq 2$. A unicyclic graph is a connected graph containing exactly one cycle. Finding all unicyclic graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ is not as simple as finding all unicyclic graphs in $\mathcal{R}\left(m K_{2}, P_{3}\right)$. We prove that the only unicyclic graphs other than cycles in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ are the graphs formed from a cycle by attaching some pendant paths P_{2} and/or P_{3} with a certain distribution on them. Note that what we mean by a pendant path in a unicyclic graph F is the path with one of the end-vertices in the cycle of F, while the remaining vertices are not in the cycle.

2 Properties of Graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$

In this section we derive some properties of a graph belonging to $\mathcal{R}\left(m K_{2}, P_{4}\right)$. By considering Theorems 1.2 and 1.3(b), we have the following corollary.

Corollary 2.1. Let $F \in \mathcal{R}\left(m K_{2}, P_{n}\right), v \in V(F)$ and $m, n \geq 2$. If $F-\{v\}$ is a forest, then $F-\{v\}$ must contain an $(m-1) P_{n}$.

Proof. By Theorem 1.2, for every $v \in V(F), F-\{v\}$ contains a graph G in $\mathcal{R}((m-$ 1) K_{2}, P_{n}). Since $F-\{v\}$ is acyclic, by Theorem $1.3(\mathrm{~b}), G$ must be isomorphic to $(m-1) P_{n}$.

Lemma 2.2. Let $m \geq 2$ and $n \geq 4$ be natural numbers. If $F \in \mathcal{R}\left(m K_{2}, P_{n}\right)$, then no two vertices of degree 1 have a common neighbor.

Proof. Let $F \in \mathcal{R}\left(m K_{2}, P_{n}\right)$. For a contradiction, assume there were two vertices of degree 1 in F, say u_{1} and u_{2}, having a common neighbor v. Now, consider two edges $e_{1}=u_{1} v$ and $e_{2}=u_{2} v$. Since $F \in \mathcal{R}\left(m K_{2}, P_{n}\right)$, there exists an ($m K_{2}, P_{n}$)-coloring ϕ_{1} of $F-e_{1}$. This means that there are at most $(m-1)$ independent red edges in ϕ_{1} of $F-e_{1}$. Now, if $\phi_{1}\left(e_{2}\right)$ is red then these $(m-1)$ red edges in $F-e_{1}$ must include e_{2}. Therefore, we can define a new red-blue coloring ϕ of F such that

$$
\phi(x)= \begin{cases}\phi_{1}(x) & \text { for } x \in F-e_{1} \\ \text { red } & \text { for } x=e_{1}\end{cases}
$$

Then the new coloring ϕ is an $\left(m K_{2}, P_{n}\right)$-coloring of F, which is a contradiction. Therefore $\phi_{1}\left(e_{2}\right)$ must be blue. Since ϕ_{1} is an $\left(m K_{2}, P_{n}\right)$-coloring of $F-e_{1}$, there is neither a red $m K_{2}$ nor a blue P_{n} in $F-e_{1}$. Now, consider a new red-blue coloring φ of F such that

$$
\varphi(x)= \begin{cases}\phi_{1}(x) & \text { for } x \in F-e_{1}, \\ \text { blue } & \text { for } x=e_{1}\end{cases}
$$

However, the new coloring φ is now an $\left(m K_{2}, P_{n}\right)$-coloring of F, a contradiction. Therefore there are no two vertices of degree 1 in F having a common neighbor.

Lemma 2.3. Let F be a unicyclic graph in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ with $m \geq 2$. Then there is no P_{4} in F consisting of exactly one vertex in the cycle of F.

Proof. Let F be a unicyclic graph in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ with $m \geq 2$. On the contrary, assume there were a path P_{4} consisting one vertex v in the cycle of F and three vertices a, b, c not in the cycle. By Corollary $2.1, F-\{v\}$ must contain an $(m-1) P_{4}$. Clearly the vertices a, b and c are not contained in the forest $(m-1) P_{4}$. So, together with the vertex v, these three vertices will form a P_{4} in F. Therefore F contains $m P_{4}$, a contradiction to the minimality of F.

Theorem 2.4. Let F be a unicyclic graph in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ with the cycle C. Then $F-E(C)$ is a linear forest with each component being either P_{1}, P_{2} or P_{3}.

Proof. Let F be a unicyclic graph in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ with the cycle C. Since F is unicyclic, the graph $F-E(C)$ is a linear forest with $|V(C)|$ components. By Lemmas 2.2 and 2.3 , each component must be either a singleton vertex or a path with one or two edges.

We now present a very useful necessary and sufficient condition for any unicyclic graph F satisfying $F \rightarrow\left(m K_{2}, P_{4}\right)$.

Theorem 2.5. Let F be a unicyclic graph. Then $F \rightarrow\left(m K_{2}, P_{4}\right)$ for any $m \geq 2$ if and only if, for any $v \in V(F)$, the graph $F-\{v\} \supseteq(m-1) P_{4}$.

Proof. Let F be a unicyclic graph and say $F \rightarrow\left(m K_{2}, P_{4}\right)$. If F is a cycle, then $F-\{v\}$ is a path for each $v \in V(F)$. By Corollary 2.1, $F-\{v\}$ contains a forest $(m-1) P_{4}$. Now, if F is not a cycle, then for each $v \in V(F)$, the graph $F-\{v\}$ can be either acyclic or a (connected or disconnected) graph containing exactly one cycle. By Corollary 2.1, if $F-\{v\}$ is an acyclic graph, then F contains an $(m-1) P_{4}$ and the proof is complete. Now, consider the case $F-\{v\}$ is a (connected or disconnected) graph containing exactly one cycle. Let C be the cycle of $F-\{v\}$. Now, choose the vertex $w \in V(C)$ such that $d(v, w) \leq d(v, u)$ for all $u \in V(C)$. We have that $(F-\{v\})-\{w\}$ is a forest with two components where the first component is a tree and the second one is a path P_{r} for some natural number r. By Theorem 2.4, $1 \leq r \leq 2$. By Corollary 2.1, the graph $(F-\{v\})-\{w\}$ contains a forest $(m-1) P_{4}$. Clearly the path P_{r} is not contained in the forest $(m-1) P_{4}$. Hence the graph $F-\{v\}$
contains the same $(m-1) P_{4}$ as in $(F-\{v\})-\{w\}$. Therefore, for each $v \in V(F)$, the graph $F-\{v\}$ contains an $(m-1) P_{4}$.

Conversely, if for each $v \in V(F)$ we have $F-\{v\} \supseteq(m-1) P_{4}$, then we will show that $F \rightarrow\left(m K_{2}, P_{4}\right)$ provided F is a unicyclic graph. Consider any red-blue coloring of the edges of F containing no red copy of $m K_{2}$. Then there are at most $(m-1)$ independent red edges in such a coloring on F. Now, choose any vertex v in F incident to red edge in such a coloring. By the assumption that $F-\{v\} \supseteq(m-1) P_{4}$ for such a vertex v and since such a coloring has at most $(m-1)$ independent red edges (including one red edge incident with v), then the other $(m-2)$ independent red edges will be distributed in the subgraph $(m-1) P_{4}$ and leave one path P_{4} without red color. It means that there is a blue P_{4} in such a coloring. So, $F \rightarrow\left(m K_{2}, P_{4}\right)$.

The following assertion is a direct consequence of Theorem 2.5.
Corollary 2.6. Let $m \geq 2$ be a natural number. Let F be a unicyclic graph and $F \rightarrow\left(m K_{2}, P_{4}\right)$. If there is an edge $e \in E(F)$ such that $(F-e)-\{v\} \supseteq(m-1) P_{4}$ for any vertex $v \in V(F)$, then F is not minimal.

Proof. Let F be a unicyclic graph and $F \rightarrow\left(m K_{2}, P_{4}\right)$. So, if there is an edge $e \in E(F)$ such that $(F-e)-\{v\} \supseteq(m-1) P_{4}$ for any vertex $v \in V(F)$, then by Theorem 2.5, we have $(F-e) \rightarrow\left(m K_{2}, P_{4}\right)$. This means that F is not minimal.

Now we discuss a circumference of a unicyclic graph belonging to $\mathcal{R}\left(m K_{2}, P_{4}\right)$. The circumference of a graph refers to the length of a longest cycle in the graph.

Lemma 2.7. Let $m \geq 2$ be a natural number. If $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ is a unicyclic graph other than a cycle, then the cycle in F has circumference s with $2 m \leq s \leq 4 m-4$.

Proof. Let F be a unicyclic Ramsey $\left(m K_{2}, P_{4}\right)$-minimal graph other than a cycle. Then F contains a unique cycle C. By Theorem $1.3(\mathrm{c})$, the cycle C must have circumference s at most $4 m-4$, that is, $s \leq 4 m-4$. Otherwise, F contains either a cycle in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ or a forest $m P_{4}$. Now, suppose for a contradiction, that $s \leq 2 m-1$. Define a red-blue coloring of the edges of F such that all edges in the cycle C are colored red, and the other edges (namely all edges of pendant paths) are colored blue. By Lemma 2.4, no pendant path in F contains a copy of P_{4}. So, by such a coloring, there is neither a red $m K_{2}$ nor a blue P_{4} in F; a contradiction. Therefore $2 m \leq s \leq 4 m-4$.

Next, we discuss the lower bound of the number of edges in a unicyclic graph F in $\mathcal{R}\left(m K_{2}, P_{4}\right)$.
Lemma 2.8. Let $m \geq 2$ be a natural number. Let $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ be a unicyclic graph other than a cycle. Then $|E(F)| \geq 4 m-2$.

Proof. Let C be the cycle in F and let $v \in V(C)$ be of degree 3. By Theorem 2.5, we have $F-\{v\} \supseteq(m-1) P_{4}$. Since every two consecutive P_{4} S in $(m-1) P_{4}$ must be separated by at least one edge, it follows that we have in total at least $3(m-1)+(m-2)+3=4 m-2$ edges.

By Theorem 2.4, we can conclude that each pendant path in a unicyclic Ramsey ($m K_{2}, P_{4}$)-minimal graph must be isomorphic to either P_{2} or P_{3}. Let us define classes of such unicyclic graphs. A unicyclic graph $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ is said to have a gap sequence $\left(a_{i}\right)_{1}^{t-1}=\left(a_{1}, a_{2}, \ldots, a_{t-1}\right)$ if all cycle vertices of degree 3 in F can be cyclically ordered as $u_{1}, u_{2}, \ldots, u_{t}$ such that a_{i} is the length of path from u_{i} to u_{i+1} for each $i \in[1, t-1]$. If we shift the label u_{1} to u_{2}, u_{2} to u_{3}, and so on until u_{t} to u_{1}, then a gap sequence of this graph is $\left(a_{2}, a_{3}, \ldots, a_{t-1}, a_{t}\right)$ where $a_{t}=s-\sum_{i=1}^{t-1} a_{i}$. So a gap sequence depends on the labels of vertices of degree 3. For $r=2$ or 3 , denote by $C_{s}\left[\left(t, P_{r}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ the unicyclic graph F with circumference s and having the gap sequence $\left(a_{1}, a_{2}, \ldots, a_{t-1}\right)$ such that at every vertex $u_{i}, i \in[1, t]$, there is a pendant path P_{r} starting from it. So the order of the graph $C_{s}\left[\left(t, P_{r}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ is $s+(r-1) t$. For example, two graphs in Figure 1 are isomorphic, where the gap sequence depends on the label u_{1}. To determine all unicyclic Ramsey ($m K_{2}, P_{4}$)-

Figure 1: Two isomorphic graphs with distinct gap sequences.
minimal graphs F other than a cycle, we consider whether the graph F contains pendant path P_{2} or P_{3} only or both.

3 The graph $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{1}, a_{2}, \ldots, a_{t-1}\right)\right]$

In this section we characterize all the graphs $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ with circumference s and gap sequence $\left(a_{1}, a_{2}, \ldots, a_{t-1}\right)$ which are Ramsey unicyclic ($m K_{2}, P_{4}$)-minimal graphs.

Lemma 3.1. Let m, s and t be natural numbers with $m \geq 2$ and $2 m \leq s \leq 4 m-4$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$. If there exists some $i \in[1, t-1]$ such that a_{i} is even and for any $v \in V(F), F-\{v\} \supseteq(m-1) P_{4}$, then $t \geq 4 m-s-1$.

Proof. Suppose for each $v \in V(F), F-\{v\} \supseteq(m-1) P_{4}$. Then $|V(F)| \geq 4(m-1)+1$. For a contradiction, assume $t=4 m-s-2$. So, F has $t+s(=4 m-2)$ vertices. Let u_{i} be the vertex of degree 3 and x_{i} be the pendant vertex adjacent to u_{i} for each $i \in[1, t]$. Without loss of generality, we may assume a_{1} is even. Then the graph $F-\left\{u_{1}\right\}$ must be isomorphic to a disconnected graph $K_{1} \cup T_{4 m-4}$ where $T_{4 m-4}$ is a tree of order $4 m-4$. Since a_{1} is even, there is at most one independent P_{4} formed by the five vertices (including u_{2} and x_{2}), as depicted in Figure 2. Then the remaining $4 m-9$ vertices are insufficient to form $(m-2) P_{4}$ in $F-\left\{u_{1}\right\}$, which contradicts the fact that $F-\{v\} \supseteq(m-1) P_{4}$ for any $v \in F$. Therefore we conclude that $t \geq 4 m-s-1$.

Figure 2: A path P_{4} from the five vertices.

Lemma 3.2. Let m, s and t be natural numbers with $m \geq 2$ and $2 m \leq s \leq 4 m-4$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$. If $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$, then all the a_{i} are odd.

Proof. Let $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ with circumference s and a gap sequence $\left(a_{1}, a_{2}, \ldots, a_{t-1}\right)$. On the contrary, suppose that there exists some $i \in[1, t-1]$ such that a_{i} is even. Without loss of generality, we can assume a_{1} is even. Let u_{i} be the vertex of degree 3 and x_{i} be the pendant vertex of F adjacent to u_{i} for each $i \in[1, t]$. According to Lemma 3.1, $t \geq 4 m-s-1$. Now consider the pendant edge $e=u_{2} x_{2}$. Since $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$, by Theorem 2.5, for each $v \in V(F), F-\{v\} \supseteq(m-1) P_{4}$. From the proof of Lemma 3.1, there is a path P_{4} not containing the edge e as depicted in Figure 2. This means that for each $v \in V(F),(F-e)-\{v\}$ contains an $(m-1) P_{4}$, for some pendant edge $e=x_{2} u_{2}$. By Corollary 2.6, F is not minimal, which contradicts the fact that $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. Therefore all the a_{i} are odd.

For an illustration, consider $F=C_{14}\left[\left(5, P_{2}\right) ;(2,1,3,1)\right]$. In this case, $m=5$, $s=14$ and $t=5$. Then, $F \rightarrow\left(5 K_{2}, P_{4}\right)$ as depicted in Figure 3. We can see that for each vertex $v \in V(F), F-\{v\} \supseteq 4 P_{4}$ (in this case, by removing the red vertex of the graph F we have $4 P_{4}$ (in blue)) and the red pendant edge e is not included. Since a gap a_{1} is even, for each $v \in V(F),(F-e)-\{v\}$ contains a $4 P_{4}$. So the graph $F=C_{14}\left[\left(5, P_{2}\right) ;(2,1,3,1)\right]$ is not minimal.

Figure 3: The graph $C_{14}\left[\left(5, P_{2}\right) ;(2,1,3,1)\right]$.

Theorem 3.3. Let m, s and t be natural numbers with $m \geq 2$ and $2 m \leq s \leq 4 m-4$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$. Then $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ if and only if (i) all the a_{i} are odd and (ii) $t=4 m-s-2$.

Proof. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ and $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. First, by Lemma 3.2, all the a_{i} are odd. Now we will show that $t=4 m-s-2$. By Lemma 2.8, we have $|E(F)| \geq 4 m-2$ and so $|V(F)| \geq 4 m-2$ (since F is a unicyclic graph). Therefore $t \geq 4 m-s-2$. Since every $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ with $t>4 m-s-2$ must contain $C_{s}\left[\left(t^{*}, P_{2}\right) ;\left(a_{i}\right)_{1}^{t^{*}-1}\right]$ with $t^{*}=4 m-s-2$ as a subgraph by removing the last consecutive pendant edges, then to get the minimality of F we must have that $F=C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ with $t=4 m-s-2$.

Conversely, let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ with a gap sequence $\left(a_{i}\right)_{1}^{t-1}$, where all the a_{i} are odd and $t=4 m-s-2$. We can see that for every $v \in V(F), F-\{v\} \supseteq(m-1) P_{4}$. By Theorem 2.5, we get $F \rightarrow\left(m K_{2}, P_{4}\right)$. Next, to prove the minimality, let e be any edge of F. If e is a pendant edge, then for each vertex w of degree $3,(F-e)-\{w\} \nsupseteq(m-1) P_{4}$. If e is an edge in the cycle C of F, then $F-e$ is a tree with $4 m-2$ vertices and $4 m-3$ edges. Now, choose a vertex z in C such that $(F-e)-\{z\}$ is isomorphic to a disconnected graph $P_{r} \cup G$, where $2 \leq r \leq 3$ and G is a forest having at most two components. So G has q edges, where $4 m-8 \leq q \leq 4 m-6$. In this case, $G \nsupseteq(m-1) P_{4}$, since G does not have enough edges. Therefore $(F-e)-\{z\} \nsupseteq(m-1) P_{4}$. So we have shown that for any edge $e,(F-e) \nrightarrow\left(m K_{2}, P_{4}\right)$. Hence $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$.

In Figure 4, we give an example of graphs $C_{10}\left[\left(4, P_{2}\right) ;\left(a_{i}\right)_{1}^{3}\right]$ with all odd a_{i} that belong to $\mathcal{R}\left(4 K_{2}, P_{4}\right)$.

Figure 4: Some examples of the graphs in $\mathcal{R}\left(4 K_{2}, P_{4}\right)$.

4 The graph $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{1}, b_{2}, \ldots, b_{t-1}\right)\right]$

In this section, we derive necessary and sufficient conditions for unicyclic graphs $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{i}\right)_{1}^{t-1}\right]$ with circumference s and a gap sequence $\left(b_{i}\right)_{1}^{t-1}=\left(b_{1}, b_{2}, \ldots, b_{t-1}\right)$ to be members of $\mathcal{R}\left(m K_{2}, P_{4}\right)$.

Lemma 4.1. Let t and m be natural numbers with $m \geq 2$ and $2 m \leq s \leq 4 m-4$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{i}\right)_{1}^{t-1}\right]$. If $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$, then $b_{i} \not \equiv 0,3 \bmod 4$ for each $i \in[1, t-1]$.

Proof. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{i}\right)_{1}^{t-1}\right]$. For a contradiction, assume there exists $i \in[1, t-1]$ such that $b_{i} \equiv 0$ or $3 \bmod 4$. Without loss of generality we assume $b_{1} \equiv 0$ or $3 \bmod 4$. Let $b_{1} \equiv 0 \bmod 4$. Consider now the subgraph B_{1} of F obtained by removing all vertices (of degree 1 or 2) in all pendant paths other than two consecutive pendant paths causing a gap b_{1}. Therefore B_{1} is isomorphic to a graph $C_{s}\left[\left(2, P_{3}\right) ;(4 k)\right]$, for some positive integer k. Now, relabeling (if necessary) the vertices of B_{1} in such a way we have the graph depicted in Figure 5(a). Consider a path $\mathbb{P}_{1}:=\left(x_{1}, x_{2}, v_{1}, v_{2}, \ldots, v_{1+4 k}, y_{2}, y_{1}\right)$ in B_{1} of length $4(k+1)$ (depicted with yellow vertices). It is clear that $\mathbb{P}_{1} \supseteq(k+1) P_{4}$ and $\mathbb{P}_{1}-\left\{v_{1}\right\} \supseteq k P_{4}$ where y_{1} can be

Figure 5: Two unicyclic graphs $B_{1}=C_{s}\left[\left(2, P_{3}\right) ;(4 k, s-4 k)\right]$ for some $k \geq 1$ and $B_{2}=C_{s}\left[\left(2, P_{3}\right) ;\left(3+4 k_{1}, s-3-4 k_{1}\right)\right]$ for some $k_{1} \geq 0$.
included in $V\left(k P_{4}\right)$ but $v_{2} \notin V\left(k P_{4}\right)$. This $k P_{4}$ is a part of $(m-1) P_{4}$ in $F-\left\{v_{1}\right\}$. Since the four vertices x_{1}, x_{2}, v_{1} and v_{2} can form a path P_{4}, it follows that $F \supseteq m P_{4}$. Hence F is not minimal, a contradiction.

The case $b_{1} \equiv 3 \bmod 4$ is treated similarly by considering a path $\mathbb{P}_{2}:=\left(x_{1}, x_{2}, v_{1}\right.$, $\left.v_{2}, \ldots, v_{4+4 k_{1}}, y_{2}, y_{1}\right)$ in B_{2} of length $7+4 k_{1}$ (depicted with yellow vertices) as depicted in Figure 5(b), where B_{2} is the subgraph $C_{s}\left[\left(2, P_{3}\right) ;\left(3+4 k_{1}\right)\right]$ of F obtained by deleting all vertices in all pendant paths except two consecutive pendant paths causing a gap b_{1}.

Lemma 4.2. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{i}\right)_{1}^{t-1}\right]$. If there are two gaps b_{i} and b_{j} with $b_{i}, b_{j} \equiv 1 \bmod 4$ for some $i, j \in[1, t-1]$ and for each $v \in V(F)$, $F-\{v\} \supseteq(m-1) P_{4}$, then $t>2 m-\left\lceil\frac{s}{2}\right\rceil$.

Proof. For a contradiction, assume that $t \leq 2 m-\left\lceil\frac{s}{2}\right\rceil$. Then $|V(F)| \leq 2 t+s=$ $4 m+s-2\left\lceil\frac{s}{2}\right\rceil$. We consider two cases. First, consider the case where b_{i} and b_{j} are consecutive. We can assume that $i=1$ and $j=2$, namely $b_{1}=1+4 k_{1}$ and $b_{2}=1+4 k_{2}$ for some positive integers k_{1} and k_{2}. Write $F=C_{s}\left[\left(t, P_{3}\right) ;\left(1+4 k_{1}, 1+\right.\right.$ $\left.\left.4 k_{2}, b_{3}, \ldots, b_{t-1}\right)\right]$. Consider the subgraph $B_{3 a}=C_{s}\left[\left(3, P_{3}\right) ;\left(1+4 k_{1}, 1+4 k_{2}\right)\right]$ of F. We relabel the vertices of $B_{3 a}$ as depicted in Figure 6(a).

Now consider the subgraph of $B_{3 a}$ induced by the set $U=\left\{v_{1}, v_{2}, \ldots, v_{3+4\left(k_{1}+k_{2}\right)}\right.$, $\left.x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right\}$. Since $F-\left\{v_{1}\right\} \supseteq(m-1) P_{4}$, it follows that the subgraph induced by the set $U-\left\{v_{1}\right\}$ will contribute $\left(1+k_{1}+k_{2}\right) P_{4}$ and $F-U$ must contain $\left(m-2-k_{1}-k_{2}\right) P_{4}$. However, there are only at most $4\left(m-2-k_{1}-k_{2}\right)-1$ vertices

Figure 6: Two graphs $B_{3 a}=C_{s}\left[\left(3, P_{3}\right) ;\left(1+4 k_{1}, 1+4 k_{2}\right)\right]$ and $B_{3 b}=C_{s}\left[\left(4, P_{3}\right) ;(1+\right.$ $\left.\left.4 k_{1}, 2+4 k_{2}, 1+4 k_{3}\right)\right]$ for some integers $k_{1}, k_{2}, k_{3} \geq 0$.
in $F-U$ since

$$
\begin{aligned}
|V(F)|-|U| & \leq\left(4 m+s-2\left\lceil\frac{s}{2}\right\rceil\right)-\left(4 k_{1}+4 k_{2}+9\right) \\
& \left.=4\left(m-2-k_{1}-k_{2}\right)-\left(2\left\lceil\frac{s}{2}\right\rceil\right)-s+1\right) .
\end{aligned}
$$

Therefore the supposition that $t \leq 2 m-\left\lceil\frac{s}{2}\right\rceil$ leads to a contradiction. Hence $t>$ $2 m-\left\lceil\frac{s}{2}\right\rceil$ if b_{i} and b_{j} are consecutive.

Now consider the case where b_{i} and b_{j} are not consecutive. Without loss of generality, let $b_{1}=1+4 k_{1}$ and $b_{2}=2+4 k_{2}$, and $b_{3}=1+4 k_{3}$ for some non-negative integers k_{1}, k_{2}, and k_{3}. Write $F=C_{s}\left[\left(t, P_{3}\right) ;\left(1+4 k_{1}, 2+4 k_{2}, 1+4 k_{3}, b_{4}, \ldots, b_{t-1}\right)\right]$. Consider a subgraph $B_{3 b}=C_{s}\left[\left(4, P_{3}\right) ;\left(1+4 k_{1}, 2+4 k_{2}, 1+4 k_{3}\right)\right]$ of F. We relabel the vertices of $B_{3 b}$ as depicted in Figure 6(b). Consider the subgraph of $B_{3 b}$ induced by the set $U=\left\{v_{1}, \ldots, v_{5+4\left(k_{1}+k_{2}+k_{3}\right)}, w_{1}, w_{2}, x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right\}$. Since $F-\left\{v_{1}\right\} \supseteq$ $(m-1) P_{4}$, it follows that the subgraph induced by the set $U-\left\{v_{1}\right\}$ will contribute at most $\left(2+k_{1}+k_{2}+k_{3}\right) P_{4}$ and the subgraph $F-U$ must contain the remaining $\left(m-3-k_{1}-k_{2}-k_{3}\right) P_{4}$. However, there are only at most $4\left(m-3-k_{1}-k_{2}-k_{3}\right)-1$ vertices in $F-U$ since

$$
\begin{aligned}
|V(F)|-|U| & \leq\left(4 m+s-2\left\lceil\frac{s}{2}\right\rceil\right)-\left(4 k_{1}+4 k_{2}+4 k_{3}+13\right) \\
& \left.=4\left(m-3-k_{1}-k_{2}-k_{3}\right)-\left(2\left\lceil\frac{s}{2}\right\rceil\right)-s+1\right) .
\end{aligned}
$$

So this leads to a contradiction. Thus $t>2 m-\left\lceil\frac{s}{2}\right\rceil$.
Lemma 4.3. Let t and m be natural numbers with $m \geq 2$ and $2 m \leq s \leq 4 m-4$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{i}\right)_{1}^{t-1}\right]$. If $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$, then there exists at most one $i_{0} \in[1, t-1]$ such that $b_{i_{0}} \equiv 1 \bmod 4$, and for the remaining $i \neq i_{0}$, $b_{i} \equiv 2 \bmod 4$.

Proof. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{i}\right)_{1}^{t-1}\right]$ and $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. By Lemma 4.1, we have $b_{i} \equiv 1$ or $2 \bmod 4$. Now, for a contradiction, suppose that there were two distinct indices i_{0} and i_{1} such that $b_{i_{0}}=1+4 k_{1}$ and $b_{i_{1}}=1+4 k_{2}$ for some positive integers k_{1} and k_{2}. By Lemma $4.2, t \geq 2 m+1-\left\lceil\frac{s}{2}\right\rceil$. If both $b_{i_{0}}$ and $b_{i_{1}}$ are consecutive, then the graph $B_{3 a}$ in Figure 6(a) is a subgraph of F (see the proof of Lemma 4.2). If $b_{i_{0}}$ and $b_{i_{1}}$ are not consecutive, then F contains the graph $B_{3 b}$ as depicted in Figure 6(b). In each of these subgraphs, consider the edge $e=v_{1} x_{2}$. We can see that for each $v \in V(F),(F-e)-\{v\}$ contains an $(m-1) P_{4}$. By Corollary 2.6, $(F-e) \rightarrow\left(m K_{2}, P_{4}\right)$. This means that F is not minimal, a contradiction. Thus we conclude that there is at most one $i_{0} \in[1, t-1]$ such that $b_{i_{0}} \equiv 1 \bmod 4$.

Theorem 4.4. Let t, m, s be natural numbers with $m \geq 2$ and $2 m \leq s \leq 4 m-4$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{i}\right)_{1}^{t-1}\right]$. Then the graph F satisfies $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ if and only if the following three conditions hold:
(i) there exists at most one $i_{0} \in[1, t-1]$ such that $b_{i_{0}} \equiv 1 \bmod 4$ and the remaining b_{i} satisfy $b_{i} \equiv 2 \bmod 4$;
(ii) s is odd; and
(iii) $t=2 m-\left\lceil\frac{s}{2}\right\rceil$.

Proof. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{i}\right)_{1}^{t-1}\right]$ satisfying the three conditions above. It is easy to check that for each $v \in V(F)$, we have $F-\{v\} \supseteq(m-1) P_{4}$. By Theorem 2.5, we obtain $F \rightarrow\left(m K_{2}, P_{4}\right)$. To prove the minimality, we consider an edge $e \in E(F)$. If e is an edge of a cycle of F, then choose the vertex w in the cycle of F such that the graph $(F-e)-\{w\}$ is either $P_{3} \cup T_{a}$ or $P_{6} \cup T_{b}$ where T_{a} or T_{b} is a tree of order $4 m-5$ or $4 m-8$, respectively. We obtain $(F-e)-\{w\} \nsupseteq(m-1) P_{4}$. Next, let e be an edge of a pendant path of F. Choose a vertex w of degree 3 in $F-e$. Then we find that $(F-e)-\{w\} \nsupseteq(m-1) P_{4}$. Hence, for each $e \in E(F)$, we have $(F-e) \nrightarrow\left(m K_{2}, P_{4}\right)$. Therefore F is minimal.

Conversely, suppose that $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. First, by Lemma 4.3 , there is at most one $i_{0} \in[1, t-1]$ such that $b_{i} \equiv 1 \bmod 4$ and for the remaining $i \neq i_{0}$, $b_{i} \equiv 2 \bmod 4$, so (i) holds. We are going to show that s must be odd. Assume, to the contrary, that s were even. Now, if $t \geq 2 m-\left\lceil\frac{s}{2}\right\rceil$, then $F \supseteq m P_{4}$. So F is not minimal. If $t<2 m-\left\lceil\frac{s}{P}\right\rceil$, then we can choose a vertex u of degree 3 in F to obtain $F-\{u\} \nsupseteq(m-1) P_{4}$. So $F \nrightarrow\left(m K_{2}, P_{4}\right)$, a contradiction, and the second condition holds. Next, we prove that the third condition must be satisfied, namely $t=2 m-\left\lceil\frac{s}{2}\right\rceil$. For a contradiction, let $t>2 m-\left\lceil\frac{s}{2}\right\rceil$. Then F would be not minimal, since F must contain an $m P_{4}$. However, if $t<2 m-\left\lceil\frac{s}{2}\right\rceil$, then there exists a vertex w of degree 3 in F so that $F-\{w\} \nsupseteq(m-1) P_{4}$. This means that $F \nrightarrow\left(m K_{2}, P_{4}\right)$, a contradiction. Therefore the condition $t=2 m-\left\lceil\frac{s}{2}\right\rceil$ holds.

As an illustration, in Figure 7 we provide the graphs $C_{13}\left[\left(3, P_{3}\right) ;(2,2)\right]$ and $C_{13}\left[\left(3, P_{3}\right) ;(1,2)\right]$ which are in $\mathcal{R}\left(5 K_{2}, P_{4}\right)$.

Figure 7: Two examples of the graphs in $\mathcal{R}\left(5 K_{2}, P_{4}\right)$.

5 The graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{1}, \ldots, a_{t-1}\right),\left(b_{0}, b_{1}, \ldots, b_{t^{*}-1}\right)\right]$

In this section, we characterize all unicyclic graphs G containing both pendant paths P_{2} and P_{3}. First, we discuss the graphs G when all pendant paths P_{2} are consecutive. We denote these graphs by $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$ where $\left(a_{i}\right)_{1}^{t-1}=\left(a_{1}, \ldots, a_{t-1}\right),\left(b_{j}\right)_{0}^{t^{*}-1}=\left(b_{0}, b_{1}, \ldots, b_{t^{*}-1}\right)$ and b_{0} is the distance between the cycle vertex incident with the last pendant path P_{2} and the cycle vertex incident with the first pendant path P_{3}. According to Lemma 3.2, all the a_{i} are odd for $i \in[1, t-1]$.

Lemma 5.1. Let m, s, t, t^{*} be natural numbers and $m \geq 2$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$. If F is a Ramsey $\left(m K_{2}, P_{4}\right)$-minimal graph, then $b_{0} \equiv 1 \bmod 2$.

Proof. Let F be a unicyclic Ramsey $\left(m K_{2}, P_{4}\right)$-minimal graph of the form $C_{s}\left[\left(t, P_{2}\right)\right.$, $\left.\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$. We are going to show that $b_{0} \equiv 1 \bmod 2$. Suppose to the contrary that b_{0} is even. To do this, we write $F=C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1}\right.$, $\left.\left(0 \bmod 2, b_{1}, \ldots, b_{t^{*}-1}\right)\right]$. We consider two cases: $b_{0}=2+4 k$ or $b_{0}=4(k+1)$ for some integer $k \geq 0$. We observe the subgraph $C_{s}\left[\left(1, P_{2}\right),\left(1, P_{3}\right) ;\left(b_{0}\right)\right]$ of F. For $b_{0}=2+4 k$, consider the graph $B_{4 a}$, while for $b_{0}=4(k+1)$, consider the graph $B_{4 b}$. Relabel these two graphs as depicted in Figure 8.

Figure 8: The graphs $B_{4 a}=C_{s}\left[\left(1, P_{2}\right),\left(1, P_{3}\right) ;(2+4 k)\right]$ and $B_{4 b}=C_{s}\left[\left(1, P_{2}\right),\left(1, P_{3}\right)\right.$; $(4+4 k)$], for some integer $k \geq 0$.

Consider the subgraph of $B_{4 a}$ induced by the set U_{a}, where $U_{a}=\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{3+4 k}, x_{1}, y_{1}, y_{2}\right\}$. By Theorem 2.5, the graph $F-\left\{v_{3+4 k}\right\}$ must contain a forest $(m-1) P_{4}$, where the path from $v_{3}, v_{4}, \ldots, v_{2+4 k}$ contains a $k P_{4}$. We can see that x_{1}
and v_{2} are the pendant vertivces of $F-e\left(\right.$ with $\left.e=v_{2} v_{3}\right)$. This means that we can exclude the vertex v_{2} to form the forest $(m-1) P_{4}$, and its role is replaced by x_{1}. However, the path from $v_{2}, v_{3}, \ldots, y_{1}$ contains a $(k+1) P_{4}$. It forces $F \supseteq m P_{4}$. Hence F is not minimal; a contradiction. Next we consider the subgraph of $B_{4 b}$ induced by the set U_{b}, where $U_{b}=\left\{v_{1}, v_{2}, \ldots, v_{1+4 k}, x_{1}, y_{1}, y_{2}\right\}$. By Theorem 2.5, the graph $F-\left\{v_{1}\right\} \supseteq(m-1) P_{4}$. The subgraph induced by the set $U_{b}-\left\{v_{1}\right\}$ must contain a $(k+1) P_{4}$, and exclude the vertices y_{1} and y_{2}. Since the induced subgraph $F\left[U_{b}\right]$ contains a $(k+2) P_{4}$, it forces $F \supseteq m P_{4}$. So F is not minimal; a contradiction.

In the next corollary we show that there is no unicyclic graph $C_{s}\left[\left(1, P_{2}\right),\left(1, P_{3}\right)\right.$; $\left.\left(b_{0}\right)\right]$ in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ for any integers $m \geq 2$ and $s \geq 1$.

Corollary 5.2. The graph $C_{s}\left[\left(1, P_{2}\right),\left(1, P_{3}\right) ;\left(b_{0}\right)\right]$ is not in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ for any positive integers s and $m \geq 2$.

Proof. Let F be a unicyclic graph $C_{s}\left[\left(1, P_{2}\right),\left(1, P_{3}\right) ;\left(b_{0}\right)\right]$ with any $s \geq 1$. By contradiction, assume that $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. It follows from Theorem 3.3 that $C_{4 m-4}\left[\left(2, P_{2}\right) ;(1 \bmod 2)\right]$ is in $\mathcal{R}\left(m K_{2}, P_{4}\right)$. Let F be a unicyclic graph $C_{s}\left[\left(1, P_{2}\right)\right.$, $\left.\left(1, P_{3}\right) ;\left(b_{0}\right)\right]$. By Lemma 5.1, b_{0} must be odd. For $s=4 m-4, F \supseteq C_{s}\left[\left(2, P_{2}\right) ;(1 \bmod \right.$ 2)]. So $F \notin \mathcal{R}\left(m K_{2}, P_{4}\right)$. For $s \leq 4 m-5$, for each vertex u of degree 3 incident with the pendant path P_{3}, we have $F-\{w\} \nsupseteq(m-1) P_{4}$. This means that $F \nrightarrow\left(m K_{2}, P_{4}\right)$. This leads to a contradiction.

Now we discuss the gap sequence $\left(b_{j}\right)_{0}^{t^{*}-1}$ for pendant paths P_{3}. It follows from Lemma 4.1 that $b_{j} \not \equiv 0,3 \bmod 4$. By Lemma 4.3, there exists at most one $i_{0} \in[1, t]$ such that $b_{j_{0}} \equiv 1 \bmod 4$ and for the remaining $i \neq i_{0}, b_{j} \equiv 2 \bmod 4$.

Lemma 5.3. Let m, s, t and t^{*} be natural numbers with $m \geq 3$ and $2 m \leq s \leq 4 m-5$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$ with all the a_{i} and b_{0} odd. If $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$, then $b_{j} \equiv 2 \bmod 4$ for all $j \in\left[1, t^{*}-1\right]$.

Proof. For a contradiction, assume that $b_{j} \not \equiv 2 \bmod 4$ for some $j \in\left[1, t^{*}-1\right]$. According to Lemmas 4.1 and 4.3, there is exactly one $j_{0} \in\left[1, t^{*}-1\right]$ such that $b_{j_{0}} \equiv 1 \bmod 4$ and for the remaining $j, b_{j} \equiv 2 \bmod 4$. Therefore F contains B_{5} as a subgraph, where $B_{5}=C_{s}\left[\left(1, P_{2}\right),\left(2, P_{3}\right) ;\left(1+2 k_{1}, 1+4 k_{2}\right)\right]$ for some natural numbers $k_{1}, k_{2} \geq 0$. Relabeling all vertices of B_{5} in such a way, we have the graph as depicted in Figure 9(a). By Theorem 3.3, we have $C_{4 m-5}\left[\left(3, P_{2}\right) ;(1 \bmod 2)\right] \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. Consequently, for $s=4 m-5, F$ is not minimal since F contains $C_{4 m-5}\left[\left(3, P_{2}\right) ;(1 \bmod 2)\right]$.

Now, consider s even and $2 m \leq s \leq 4 m-6$. Since b_{0} is odd, clearly $t^{*} \geq 2$. By relabeling the graph B_{5} with opposite direction (with v_{1} fixed, v_{s} becomes v_{2}, $v_{3+2 k_{1}+4 k_{2}}$ becomes $v_{s-1-2 k_{1}-4 k_{2}}$, and so on; see Figure 9(b)), we obtain that the length of the path from the vertex v_{1} to $v_{s-1-2 k_{1}-4 k_{2}}$ is b_{0}, where b_{0} is even, which contradicts the fact that b_{0} is odd.

Now consider the case s odd and $2 m+1 \leq s \leq 4 m-7$. If we take $s=4 m-7, t^{*}=2$ and $t=1$, then $F-\left\{v_{1}\right\} \nsupseteq(m-1) P_{4}$. So $F \nrightarrow\left(m K_{2}, P_{4}\right)$, a contradiction. If $t^{*}>$ 2, F is not minimal since F contains a graph $C_{4 m-7}\left[\left(3, P_{3}\right) ;(1 \bmod 4,2 \bmod 4)\right] \in$
$\mathcal{R}\left(m K_{2}, P_{4}\right)$ (by Theorem 4.4). If $t>1$ and t is even, then by relabeling the graph F with opposite direction we find that the length of the path from the vertex incident with the last pendant path P_{3} to the vertex incident with the first pendant path P_{2} is even, which produces a contradiction. Hence, for $s=4 m-7$, it should be $b_{j} \equiv 2 \bmod 4$ for all $j \in\left[1, t^{*}-1\right]$. Any other odd values of s with $2 m+1 \leq s \leq 4 m-9$ can be proved in a similar fashion.
(a)

(b)

Figure 9: The graph $B_{5}=C_{s}\left[\left(1, P_{2}\right),\left(2, P_{3}\right) ;\left(1+2 k_{1}\right),\left(1+4 k_{2}\right)\right]$ for some non-negative integers k_{1} and k_{2} with two different labelings.

According to Lemmas 2.8, 3.2, 4.1, 5.1, and 5.3 we have the following consequence.
Corollary 5.4. If a unicyclic graph $C_{s}\left[\left(t, P_{2}\right)\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$ is Ramsey $\left(m K_{2}, P_{4}\right)$-minimal, then the following three conditions hold:
(i) both b_{0} and all the a_{i} are odd;
(ii) $b_{j} \equiv 2 \bmod 4$ for each $j \in\left[1, t^{*}-1\right]$;
(iii) $t+2 t^{*} \geq 4 m-s-2$.

Proof. Let $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right)\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$. By Lemmas 3.2, 4.1, 5.1 and 5.3, the conditions of (i) and (ii) hold. By Lemma 2.8, we obtain $|E(F)|=s+t+2 t^{*} \geq 4 m-2$. So $t+2 t^{*} \geq 4 m-s-2$, that is, the condition (iii) holds.

Lemma 5.5. Let m, s, t and t^{*} be natural numbers with $m \geq 2$ and $2 m+1 \leq s \leq$ $4 m-6$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$ with all the a_{i} and b_{0} odd, and $b_{j} \equiv 2 \bmod 4$ for $i \in[1, t-1], j \in\left[1, t^{*}-1\right]$. If s and t are the same parity, then $F \notin \mathcal{R}\left(m K_{2}, P_{4}\right)$.

Proof. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$ with all the a_{i} and b_{0} odd, and $b_{j} \equiv 2 \bmod 4$ for $i \in[1, t-1], j \in\left[1, t^{*}-1\right]$. By Corollary 5.4(c), we have $t+2 t^{*} \geq 4 m-s-2$. Let s and t both be odd. For $t+2 t^{*}=4 m-s-2$,
by choosing the vertex u of degree 3 incident with a pendant path P_{3}, we obtain $F-\{u\} \nsupseteq(m-1) P_{4}$. So $F \nrightarrow\left(m K_{2}, P_{4}\right)$. Now, for $t+2 t^{*}>4 m-s-1$, we have $F \supseteq m P_{4}$. This implies that F is not minimal. Therefore, in each case, we obtain $F \notin \mathcal{R}\left(m K_{2}, P_{4}\right)$. Similarly we can show the result in the case that s and t are both even.

Theorem 5.6. Let m, s, t and t^{*} be natural numbers with $m \geq 2$ and $2 m+1 \leq$ $s \leq 4 m-5$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$ for odd s. The graph $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ if and only if the following conditions are satisfied:
(i) t is even and $t+2 t^{*}=4 m-s-1$;
(ii) all the a_{i} and b_{0} are odd, and $b_{j} \equiv 2 \bmod 4$ for $i \in[1, t-1], j \in\left[1, t^{*}-1\right]$.

Proof. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$ satisfying the two conditions above. It is easy to verify that for each $v \in V(F)$, the graph $F-\{v\} \supseteq$ $(m-1) P_{4}$. So $F \rightarrow\left(m K_{2}, P_{4}\right)$. Next, we prove the minimality property of F. Let e be an edge of F. First we consider that e is an edge of a pendant path. Then, by choosing a cycle vertex u incident with a pendant path P_{3}, we obtain $(F-e)-\{u\} \nsupseteq(m-1) P_{4}$. Meanwhile, if e is an edge of the cycle of F, then $F-e$ is a tree. If possible, choose a vertex w of degree 2 such that $(F-e)-\{w\}=P_{3} \cup T$, where T is a tree; otherwise, choose a cycle vertex z incident with a pendant path P_{3}. Then we obtain $(F-e)-\{z\} \nsupseteq(m-1) P_{4}$. Therefore the graph F is minimal.

Conversely, for a contradiction, assume t is odd. Since s is odd, by Lemma 5.5, we obtain $F \notin \mathcal{R}\left(m K_{2}, P_{4}\right)$ which leads to a contradiction. Hence t must be even. Next, by Corollary $5.4, t+2 t^{*} \geq 4 m-s-2$. If $t+2 t^{*}=4 m-s-2$, then we take a cycle vertex u incident with a pendant path P_{3}, such that $F-\{u\} \nsupseteq(m-1) P_{4}$. So $F \nrightarrow\left(m K_{2}, P_{4}\right)$. However, if $t+2 t^{*}>4 m-s-1$ then F is not minimal, since $F \supseteq m P_{4}$. Hence $t+2 t^{*}=4 m-s-1$. Next, by Corollary 5.4, condition (ii) holds.

The graphs in Figure 10 are examples of unicyclic graphs with circumference 13 belonging to $\mathcal{R}\left(5 K_{2}, P_{4}\right)$.

Figure 10: Two non-isomorphic unicyclic graphs with circumference 13 both belong to $\mathcal{R}\left(5 K_{2}, P_{4}\right)$.

Theorem 5.7. Let m, s, t and t^{*} be natural numbers and $m \geq 3$ and $2 m \leq s \leq$ $4 m-6$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$ for even s. The graph $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ if and only if the following conditions are satisfied.
(i) t is odd and $t+2 t^{*}=4 m-s-1$;
(ii) for all $i \in[1, t-1], j \in\left[1, t^{*}-1\right], a_{i} \equiv 1 \bmod 2, b_{0} \equiv 1 \bmod 2$ and $b_{j} \equiv 2 \bmod 4$.

Proof. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right),\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$ for even s satisfying the above conditions (i) and (ii). Since for every $v \in V(F)$, the graph $F-\{v\} \supseteq(m-1) P_{4}$, we have $F \rightarrow\left(m K_{2}, P_{4}\right)$. Now we prove the minimality. Consider an edge $e \in E(F)$. If e is an edge of a pendant path, then choose any cycle vertex u of degree 3 of $F-e$; we obtain $(F-e)-\{u\} \nsupseteq(m-1) P_{4}$. Furthermore, if e is an edge of the cycle of F, then, if possible, choose a vertex w of degree 2 of the cycle such that $(F-e)-\{w\}=P_{3} \cup T$, where T is a tree; otherwise choose a vertex z of degree 3 incident with a pendant path P_{3}. We again obtain $(F-e)-\{z\} \nsupseteq(m-1) P_{4}$. Hence F is minimal.

Conversely, assume, to the contrary, that t is even. Since s is even, by Lemma 5.5, $F \notin \mathcal{R}\left(m K_{2}, P_{4}\right)$. Next, by Corollary $5.4, t+2 t^{*} \geq 4 m-s-2$. If $t+2 t^{*}=4 m-s-2$, then we choose any vertex u of degree 3 incident with a pendant path P_{3}, and we get $F-\{u\} \nsupseteq(m-1) P_{4}$. So $F \nrightarrow\left(m K_{2}, P_{4}\right)$. However, if $t+2 t^{*}>4 m-s-1$ then F is not minimal, since F contains an $m P_{4}$. Therefore the supposition that t is even or $t+2 t^{*} \neq 4 m-s-1$ leads to a contradiction. Therefore t must be odd and $t+2 t^{*}=4 m-s-1$. The second condition holds by applying Corollary 5.4.

For example, to illustrate Theorem 5.7, we give two non-isomorphic graphs with circumference 14 belonging to $\mathcal{R}\left(5 K_{2}, P_{4}\right)$ in Figure 11.

Figure 11: Two non-isomorphic graphs with circumference 14 that are in $\mathcal{R}\left(5 K_{2}, P_{4}\right)$.

Now we are investigating a unicyclic graph F with pendant paths P_{2} and P_{3} alternating in a cycle C_{s}. We denote this graph by $C_{s}\left[\left(t, P_{2}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$, i.e., a unicyclic graph with circumference s and a gap sequence $\left(a_{i}\right)_{1}^{t-1}=\left(a_{1}, a_{2}, \ldots, a_{t-1}\right)$ with pendant paths P_{2} and P_{3} alternating.

Let $V\left(C_{s}\right)=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ be the vertex set of the cycle of F. Hence there are t vertices of C_{s} having degree 3 . Next, let $u_{1}, u_{2}, \ldots, u_{t}$ be the vertices of degree 3 . A vertex u_{i} is said to be close to u_{j} if there is no other vertex of degree 3 between u_{i} and u_{j} in the cycle. In this case, we also say that a pendant path incident with
u_{i} is close to a pendant path incident with u_{j}. According to Lemmas 3.2, 4.3, 5.1, and 5.3, we have the remark below.

Remark 5.8. Let m, s and t be natural numbers with $m \geq 2$. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$, where pendant paths P_{2} and P_{3} are alternating in the cycle C_{s}. Let $u_{1}, u_{2}, \ldots, u_{t}$ be the vertices of degree 3 in the cycle C_{s}. If $F \in$ $\mathcal{R}\left(m K_{2}, P_{4}\right)$, then the following conditions must be satisfied.
(i) If a pendant path P_{2} incident with u_{i} is close to either a pendant path P_{2} or P_{3} incident with u_{j}, then $d\left(u_{i}, u_{j}\right)$ is odd.
(ii) If a pendant path P_{3} incident with u_{i} is close to a pendant path P_{3} incident with u_{j}, then $d\left(u_{i}, u_{j}\right) \equiv 2 \bmod 4$.

A sequence of pendant paths appearing in distances $\left(a_{i}\right)_{1}^{t-1}$ of the graph $C_{s}\left[\left(t, P_{2}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ is called a pendant path sequence. For example, the graph in Figure 12 has a pendant path sequence ($P_{2}, P_{3}, P_{2}, P_{3}$).

Figure 12: The graph $B_{6}=C_{s}\left[\left(4, P_{2}, P_{3}\right) ;\left(1+2 k_{1}, 1+2 k_{2}, 1+2 k_{3}\right)\right]$.

Theorem 5.9. Let m, s and t be natural numbers with $m \geq 2$. There is no a unicyclic graph $C_{s}\left[\left(t, P_{2}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ in $\mathcal{R}\left(m K_{2}, P_{4}\right)$.

Proof. Let F be a unicyclic graph $C_{s}\left[\left(t, P_{2}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$. For a contradiction, assume that $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. Without loss of generality, we could consider a subgraph of F by removing all pendant paths except any four pendant paths with the sequence $\left(P_{2}, P_{3}, P_{2}, P_{3}\right)$. By Remark 5.8, we consider the unicyclic graph $B_{6}=$ $C_{s}\left[\left(t, P_{2}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$ having a gap sequence $a_{i}=1 \bmod 2$ for each $i \in[1,3]$. Now, relabeling (if necessary) the vertices of B_{6} in such a way we have the graph depicted in Figure 12. Consider now the pendant edge $e=x_{1} x_{2}$ of a pendant path P_{3} (see Figure 12). For each $v \in V(F)$, we get $(F-e)-\{v\} \supseteq(m-1) P_{4}$. By Corollary 2.6, F is not minimal, which is a contradiction.

6 Conclusion

To conclude this paper, we present the characterization of all unicyclic Ramsey ($m K_{2}, P_{4}$)-minimal graphs in the following theorem (as a summary from Theorems 1.3, 3.3, 4.4, 5.6, 5.7 and 5.9).

Theorem 6.1. Let F be a unicyclic Ramsey $\left(m K_{2}, P_{4}\right)$-minimal graph. Then graph F is one of the following forms:
(i) a cycle C_{s}, where $s \in\{4 m-3,4 m-2,4 m-1\}$;
(ii) a graph $C_{s}\left[\left(t, P_{2}\right) ;\left(a_{i}\right)_{1}^{t-1}\right]$, where $2 m \leq s \leq 4 m-4, t=4 m-s-2$ and all the a_{i} are odd;
(iii) a graph $C_{s}\left[\left(t, P_{3}\right) ;\left(b_{i}\right)_{1}^{t-1}\right]$, where $2 m+1 \leq s \leq 4 m-5$ and s is odd, $t=2 m-\left\lceil\frac{s}{2}\right\rceil$ and there is at most one $i_{0} \in[1, t-1]$ such that $b_{i_{0}} \equiv 1 \bmod 4$ and the remaining b_{i} satisfy $b_{i} \equiv 2 \bmod 4$; or
(iv) a graph $C_{s}\left[\left(t, P_{2}\right),\left(t^{*}, P_{3}\right) ;\left(a_{i}\right)_{1}^{t-1},\left(b_{j}\right)_{0}^{t^{*}-1}\right]$, where $2 m \leq s \leq 4 m-5, t+2 t^{*}=$ $4 m-s-1$, all the a_{i} and b_{0} are odd, and $b_{j} \equiv 2 \bmod 4$ for $j \in\left[1, t^{*}-1\right]$.

Acknowledgments

This research has been supported by the "Program Pendidikan Magister Menuju Doktor untuk Sarjana Unggul (PMDSU)", the Indonesian Ministry of Education, Culture, Research and Technology, and the In-house Post Doctoral Program, Institut Teknologi Bandung, Indonesia.

References

[1] E.T. Baskoro and K. Wijaya, On Ramsey $\left(2 K_{2}, K_{4}\right)$-minimal graphs, Mathematics in the 21st Century, Springer Proc. Math. Stat. 98 (2015), 11-17.
[2] E. T. Baskoro and L. Yulianti, On Ramsey minimal graphs for $2 K_{2}$ versus P_{n}, Adv. Appl. Discrete Math. 8 (2) (2011), 83-90.
[3] S. A. Burr, P. Erdős, R. J. Faudree and R. H. Schelp, A class of Ramsey-finite graphs, Proc. Ninth Southeastern Conf. on Combin., Graph Theory and Computing, Boca Raton (1978), 171-180.
[4] S. A. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp, Ramsey minimal graphs for matchings, The Theory and Applications of Graphs, Kalamazoo, Mich. (1980), 159-168. (Wiley, New York, 1981).
[5] S. A. Burr, P. Erdős, R. Faudree, C. C. Rousseau and R. H. Schelp, Ramsey minimal graphs for forests, Discrete Math. 38 (10) (1982), 23-32.
[6] R. Faudree, Ramsey minimal graphs for forests, Ars Combin. 31 (1991), 117124.
[7] T. Łuczak, On Ramsey minimal graphs, Electron. J. Combin. 1 (1994), \#R4.
[8] I. Mengersen and J. Oeckermann, Matching-star Ramsey sets, Discrete Appl. Math. 95 (1999), 417-424.
[9] H. Muhshi and E. T. Baskoro, On Ramsey $\left(3 K_{2}, P_{3}\right)$-minimal graphs, AIP Conf. Proc. 1450 (2012), 110-117.
[10] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2017), DS1.15.
[11] K. Wijaya, E. T. Baskoro, H. Assiyatun and D. Suprijanto, On unicyclic Ramsey ($m K_{2}, P_{3}$)-minimal graphs, Procedia Comp. Sci. 74 (2015), 10-14.
[12] K. Wijaya, E.T. Baskoro, H. Assiyatun and D. Suprijanto, On Ramsey ($m K_{2}, H$)-minimal graphs, Graphs Combin. 33 (1) (2017), 233-243.
[13] K. Wijaya, E.T. Baskoro, H. Assiyatun and D. Suprijanto, On Ramsey $\left(4 K_{2}, P_{3}\right)$-minimal graphs, AKCE Int. J. Graphs Combin. 15 (2) (2018), 174186.

