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Abstract

In a bipartite graph G, a set S ⊆ V (G) is deficient if |N(S)| < |S|. A
matching M with vertex set U is k-suitable if G−U has no deficient set
of size less than k. Define the extremal function fk(G) to be the largest
integer r such that every k-suitable matching in G with at most r edges
extends to a perfect matching. Let G(2m)d be the d-fold Cartesian prod-
uct of the cycle C2m, where m ≥ 2. We extend results of Vandenbussche
and West by showing that for any integers k and d such that 1 ≤ k ≤ d,
fk(G(2m)d) = k(2d− k) +

(
k−1
2

)
, except when m = 2 and d = 1.

1 Introduction

A graph G is m-extendable if m < |V (G)|/2 and every matching of size m extends to
a perfect matching. The largest value for which a graph G with a perfect matching
is m-extendable, called the extendability of G, has been studied at length. Plummer
has written three extensive surveys on this topic [18, 19, 20], the most recent of which
appeared in 2008. Since then, additional results have been obtained on graphs on sur-
faces [2, 3, 11], distance-regular graphs [10], Cayley graphs [9], bi-Cayley graphs [16],
eigenvalue conditions [23], the interrelation between extendability and criticality [7],
and many others.

An early result of particular relevance to the current paper is by Györi and
Plummer [12], who proved that the Cartesian product of an a-extendable and a
b-extendable graph is an (a + b + 1)-extendable graph. Also relevant is the study
of extendability under additional structural conditions. Aldred and Plummer [5]
proved that induced matchings of size three extend to perfect matchings in planar
triangulations, even though these graphs are not 3-extendable [17]. Vandenbussche
and West [21] proved that all induced matchings extend to perfect matchings in the
d-dimensional hypercube. Since induced matchings are those in which the matched
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edges are at distance at least two from each other, a natural generalization is the
extendability of matchings in which more general distance constraints are placed on
the edges. Tseng and Anstee (unpublished) proved that in the Cartesian product of d
copies of the path Pn, every matching whose edges are separated by distance at least
3 extends to a perfect matching. Other results on distance-restricted matchings can
be found in [1] and [6]. A common variation of this problem also considers matching
extensions that must avoid some edges [4, 8].

An easy way to prevent a matching from extending to a perfect matching is to
saturate the neighborhood of an uncovered vertex; prohibiting such a configuration
may allow larger matchings to extend. This idea led Vandenbussche and West to
introduce another structural requirement on matchings in [21] based on Hall’s Con-
dition. For a bipartite graph G, a set S ⊆ V (G) is deficient if |N(S)| < |S|, where
N(S) =

⋃
v∈S N(v). In 1935, Philip Hall [13] proved the famous characterization of

bipartite graphs that admit perfect matchings: If G is a bipartite graph with partite
sets X and Y , then G has a matching saturating X if and only if no subset of X is
deficient. We say such a graph satisfies Hall’s condition on X if X has no deficient
subset, i.e., for all S ⊆ X, |N(S)| ≥ |S|. The condition introduced in [21] prohibits
small deficient sets in order to increase the extendability of the graph. More pre-
cisely, a matching M (with vertex set U) is k-suitable if G−U has no deficient set of
size less than k. Every matching is trivially 1-suitable, and a matching is 2-suitable
if no set of endpoints of the matching edges cover the neighborhood of a vertex not
in the matching. Let the extremal function fk(G) be the largest integer r such that
every k-suitable matching in G with at most r edges extends to a perfect matching.
Let Qd be the d-dimensional hypercube. The main result of [21] was the following:

Theorem 1.1 (Vandenbussche and West [21]). For k ≤ d− 3,

fk(Qd) = k(d− k) +

(
k − 1

2

)
.

This result was a generalization of the result by Limaye and Sarvate [14] that
proved (in different language) that f1(Qd) = d− 1 and f2(Qd) ≥ d.

Note that Qd is the d-fold Cartesian product graph of K2, that is, Qd
∼=

K2� · · ·�K2 = Kd
2 . Stretching the methodology in [21], the main result of this pa-

per shows that the same extremal function applies to a much larger class of graphs,
namely the d-fold Cartesian product graph of the cycle graph C2m, where m ≥ 2 and
d ≥ 1. We will denote this graph as G(2m)d.

Theorem 1.2 (Main Theorem). For k ≤ d and m ≥ 2, every k-suitable matching
in G(2m)d having at most k(2d− k) +

(
k−1
2

)
edges extends to a perfect matching.

Moreover, we will also show the result is sharp: If 1 ≤ k ≤ d and d �= 1,
then there exists a k-suitable matching having k(2d − k) +

(
k−1
2

)
+ 1 edges that

does not extend to a perfect matching in G(2m)d. Together, this will establish that
fk(G(2m)d) = k(2d− k) +

(
k−1
2

)
.
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Note that for any d ≥ 0, Q2d
∼= G(4)d. When m = 2, the two results align, except

Theorem 1.1 is true for a larger range of values of k (e.g., k ≤ 2d− 3 versus k ≤ d).
Therefore, throughout this paper, we will generally assume m ≥ 3, as the case m = 2
is resolved by Theorem 1.1 (though many of the statements do in fact hold for m = 2
as well). We will discuss the motivation for requiring k ≤ d in our Main Theorem at
the end of the paper.

Although it may not be surprising that the extremal function for G(2m)d and Q2d

are the same, we should note that the two families of graphs do behave differently
with respect to matchings in another important way. As mentioned above, in [21],
it was also shown that every induced matching in Qd extends to a perfect matching.
At the end of this paper, we will give an example of an induced matching that shows
that this is not true in G(2m)d when m > 2. We also include a variety of open
questions in the area of k-suitability.

2 Definitions and preliminaries

Throughout, d will be a positive integer and [d] = {1, . . . , d}. In this paper, Zn =
{0, . . . , n− 1} is the usual cyclic group of integers modulo n and Z

d
n = Zn × · · ·×Zn

(d copies of Zn) is the d-fold external direct product group of Zn. For each i ∈ [d],
let ei ∈ Z

d
n be the d-dimensional vector consisting of 0’s in all coordinates except

coordinate i, in which the entry is 1. For example, in Z
3
n, we have e1 = (1, 0, 0),

e2 = (0, 1, 0), and e3 = (0, 0, 1). For any n ≥ 2 and d ≥ 1, the set {e1, . . . , ed} is a
generating set (often called the standard generating set) for the group Z

d
n.

For any integer m ≥ 2, let G(2m)d denote the graph with vertex set Z
d
2m, and

two vertices v = (v1, . . . , vd) and w = (w1, . . . , wd) are adjacent if and only if their
coordinate-wise difference (modulo 2m), v−w, is equal to ±ei for some i ∈ [d]. Note
G(2m)d can be thought of in two equivalent ways: G(2m)d ∼= Cay(Zd

2m; {e1, . . . , ed})
(the Cayley graph on Z

d
2m whose connection set is the standard generating set of

Z
d
2m) and G(2m)d ∼= C2m� · · · �C2m (the Cartesian product graph of d copies of

the cycle C2m). G(2m)d is a 2d-regular, connected, bipartite graph of order (2m)d,
and its partite sets, X and Y , satisfy |X| = |Y | = (2m)d−1.

For each i ∈ Z2m, let G(2m)id denote the subgraph of G(2m)d induced by the
vertices of the form v = (v1, . . . , vd−1, i) (i.e., those with an i in coordinate d). We
will refer to each such subgraph as a layer in G(2m)d, so G(2m)d has 2m layers. Note
that G(2m)id

∼= G(2m)d−1, which will be crucial to the many inductive arguments
throughout. The two layers G(2m)i±1

d are said to be the adjacent layers of G(2m)id.
Throughout this paper, we will usually abbreviate G(2m)d and G(2m)id as Gd and
Gi

d, respectively.

The following remark introduces some fundamental facts and terminology used
throughout the paper.

Remark 2.1. If S is a nonempty subset of one of the partite sets of Gd, then we can
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represent S as the union of subsets

S = S0 ∪ S1 ∪ · · · ∪ S2m−1,

where Si = S ∩ V (Gi
d) for each i ∈ Z2m. For ease of notation, where appropriate,

we will use si to denote |Si| and s to denote |S|. Provided s ≥ 2, since at least two
elements of S must differ in some coordinate position, we may assume without loss of
generality that they differ in the last coordinate. Hence when s ≥ 2, we will assume
that there exist distinct i and j such that Si and Sj are nonempty.

Any v ∈ Si has three types of neighbors (all sums that follow are taken modulo
2m): The vertex v− ed, contained in Gi−1

d ; the vertex v+ ed, contained in Gi+1
d ; and

the neighbors of v contained in its own layer. Accordingly, the neighborhood of Si

in Gd can be partitioned into three sets, which we call the left shadow Ni−1(Si), the
right shadow Ni+1(Si), and the local neighborhood Ni(Si), where

Ni−1(Si) = {v − ed : v ∈ Si} ⊂ V (Gi−1
d ),

Ni+1(Si) = {v + ed : v ∈ Si} ⊂ V (Gi+1
d ), and

Ni(Si) = {v ± ej : v ∈ Si, j ∈ {1, . . . , d− 1}} ⊂ V (Gi
d).

Note |Ni−1(Si)| = |Ni+1(Si)| = |Si|. Collectively, the left shadow and right shadow
of Si are the shadows of Si.

In Section 1, we introduced the function fk(G). The goal of this paper is to prove
that fk(G(2m)d) = fk(d), for all 1 ≤ k ≤ d, where fk(d) is defined below. We also
define an additional function, gk(d), that will be used frequently throughout.

Definition 2.2. Let k and d be integers such that 1 ≤ k ≤ d, and let m be a fixed
positive integer where m ≥ 2. Define fk(d) and gk(d) to be the following functions:

fk(d) = k(2d− k) +

(
k − 1

2

)
,

gk(d) =
1

2
(2m)d − fk(d)− (k − 1).

While gk(d) does also depend on m, the value of m throughout the paper will
always be clear from the context, so for convenience of notation it is omitted. Note
that any subset of a single partite set of size at least gk(d) consists of almost all
vertices in that set.

3 Neighborhood sizes in Gd

The general idea behind the proof of the Main Theorem is very similar to that
in [21]. The theorem follows easily after we establish a result showing that most
sets in Gd have a neighborhood size that is sufficiently large to guarantee that Hall’s
condition will be satisfied in Gd even after the endpoints of a k-suitable matching M
are removed:
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Lemma 3.1 (Main Lemma). Let X and Y be the partite sets of G(2m)d, where
m ≥ 3, and let S be an arbitrary subset of X. If 1 ≤ k ≤ d and k ≤ |S| ≤ gk(d),
then

|N(S)| − |S| ≥ fk(d).

In this section, we will prove this lemma. First, we provide a short summary
in order to help the reader navigate it. Our goal is to find “extra” neighbors for
most subsets of V (Gd). The result will essentially follow by induction: When we
restrict a subset S of X to its subsets Si (defined in Remark 2.1) within each (d−1)-
dimensional layer Gi

d, if the inductive hypothesis is satisfied, it guarantees us many
“extra” local neighbors within each (d − 1)-dimensional subgraph. Since none of
these neighborhoods are overlapping, each can contribute to the extra neighbors of
S. However, there are anomalous cases that need to be carefully considered, such
as when a set Si is too small or too large to satisfy the inductive hypothesis. The
lemmas that precede the proof of the Main Lemma will help us prove some of these
cases.

We introduce some machinery that will help with many of the proofs. As dis-
cussed in Remark 2.1, we shall let S0, . . . , S2m−1 be the pairwise disjoint subsets of
S in each (d− 1)-dimensional layer Gi

d. Subdivide Z2m into two sets I0 and I1 such
that Si = ∅ for all i ∈ I0, and |Si| ≥ 1 for all i ∈ I1. Let |I1| = t; recall we may
assume t ≥ 2. For each i ∈ Z2m, the existence of a perfect matching in Gi

d ensures
that we have |Ni(Si)|− |Si| ≥ 0, where Ni(Si) is the local neighborhood of Si. Hence
if we can find a subset S of {Sj : j ∈ I1} such that∑

Si∈S
(|Ni(Si)− |Si|) ≥ fk(d),

then it follows that |N(S)|−|S| ≥ fk(d). In some cases, we may also need to consider
shadows of sets Si where i ∈ I1 but i+ 1 ∈ I0 or i− 1 ∈ I0.

To begin, the following lemma provides a lower bound on the neighborhood size
of subsets of V (Gd) that will be helpful when a set Si is small. There is an analogous
result in [21].

Lemma 3.2. If ∅ �= S ⊆ V (Gd) and S is contained in a single partite set in Gd,
then

|N(S)| ≥ 2ds− 1

2
s2 − 1

2
s+ 1.

Proof. When s = 1, |N(S)| = 2d, so the inequality holds. Consider when s > 1. We
use induction on d. When d = 1, Gd

∼= C2m, so |N(S)| ≥ s. The right side of the
inequality simplifies to 3s

2
− s2

2
+1, which is at most s for all s ≥ 2, so the inequality

holds.

Suppose that d > 1. The induction hypothesis applied to the t subgraphs Gi
d for

i ∈ I1 guarantees at least 2(d−1)si− 1
2
s2i − 1

2
si+1 vertices in the local neighborhood



J. VANDENBUSSCHE ET AL. /AUSTRALAS. J. COMBIN. 82 (3) (2022), 317–334 322

of Si. All of these local neighborhoods are disjoint, so

|N(S)| ≥ 2(d− 1)

(∑
i∈I1

si

)
− 1

2

(∑
i∈I1

s2i

)
− 1

2

(∑
i∈I1

si

)
+ t

= 2(d− 1)s− 1

2

(∑
i∈I1

s2i

)
− s

2
+ t.

For a fixed t, the sum of squares is maximized when exactly one si is equal to s−(t−1)
and all others are equal to 1. Hence

|N(S)| ≥ 2(d− 1)s− 1

2

(
(s− t + 1)2 + t− 1

)− s

2
+ t

= 2ds− s2

2
+

(
t− 7

2

)
s− t2

2
+

3t

2
.

We consider three cases based on t:

Case 1: t = 2. Suppose I1 = {i, j}. Since m ≥ 3, at least one shadow of Si is
disjoint from Gj

d and at least one shadow of Sj is disjoint from Gi
d. Hence these

two shadows contribute an additional si + sj = s neighbors of S not counted
in the local neighborhoods, so

|N(S)| ≥ 2ds− s2

2
− 3s

2
+ 1 + s = 2ds− s2

2
− s

2
+ 1.

Case 2: t = 3. Since m ≥ 3, there exists i ∈ I0 with either i+ 1 ∈ I1 or i− 1 ∈ I1.
Hence a vertex in S has a shadow neighbor in Gi

d, which contributes at least
one more to |N(S)|:

|N(S)| ≥ 2ds− s2

2
− s

2
+ 1.

Case 3: t ≥ 4. It suffices to show that
(
t− 7

2

)
s− t2

2
+ 3t

2
≥ − s

2
+1. Note that s ≥ t

so(
t− 7

2

)
s− t2

2
+

3t

2
+

s

2
− 1 ≥

(
t− 7

2

)
t− t2

2
+

3t

2
+

t

2
− 1 =

1

2
(t2 − 3t− 2).

Since 1
2
(t2 − 3t− 2) ≥ 1 for all t ≥ 4, the inequality holds.

Applying Definition 2.2 to the result of Lemma 3.2, we see that for appropriate
subsets S of V (Gd), |N(S)| − |S| ≥ fs(d). In fact, this proves the Main Lemma for
small sets S:

Corollary 3.3. If 1 ≤ k ≤ |S| ≤ d and S is contained in a single partite set in Gd,
then

|N(S)| − |S| ≥ fk(d).
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Proof. For fixed d, the function fs(d) is increasing on the interval 1 ≤ s ≤ d. Hence
if k ≤ s ≤ d, then fs(d) ≥ fk(d) and the result follows.

Lemma 3.2 is sharp when S is small with respect to d:

Proposition 3.4. For any k such that 1 ≤ k ≤ d, there exists a subset S in a single
partite set in Gd such that |S| = k and

|N(S)| = fk(d) + k.

In particular, S = {e1, . . . , ek} is such a set.

Proof. Clearly all vertices of S are in a single partite set, and |S| = k. Note N(S)
consists of the zero vector 0d, exactly

(
k
2

)
vertices of the form ei + ej where 1 ≤ i <

j ≤ k, and for each vertex v in S, there are 2d−(k−1+1) = 2d−k vertices adjacent
to v and no other vertex in S. Hence,

|N(S)| = 1 +

(
k

2

)
+ k(2d− k) = fk(d) + k.

The following lemma guarantees that a large set Si within Gi
d will have a large

neighborhood. Recall that sets larger than gk(d) contain nearly all vertices of a single
partite set.

Lemma 3.5. Let X and Y be the partite sets of Gd and Xi and Yi be the partite
sets of Gi

d where i ∈ Z2m. Suppose a subset Si of Xi satisfies |Si| > gk−1(d− 1) and
S� ∈ {Si−1, Si+1}. If S ′

i ⊂ Si such that |S ′
i| = gk−1(d − 1), and |Ni(S

′
i)| − |S ′

i| ≥
fk−1(d− 1), then

|Ni(Si)| ≥ |Yi| − (k − 2)

and

|N(Si ∪ S�) ∩
(
V (Gi

d) ∪ V (G�
d)
) | − |Si ∪ S�| ≥ |Yi| − (k − 2)− |S�|.

Proof. Recall that for each subgraph Gi
d, |Xi| = |Yi| = 1

2
(2m)d−1. By the hypothesis

and applying Definition 2.2,

|Ni(S
′
i)| ≥ gk−1(d− 1) + fk−1(d− 1) =

1

2
(2m)d−1 − (k − 2) = |Yi| − (k − 2).

Since S ′
i ⊂ Si, |Ni(Si)| ≥ |Ni(S

′
i)|, so this establishes the first claim. Further,

|Ni(Si)| − |Si| ≥ |Yi| − (k − 2)− |Si|.

By definition, |N�(Si)| = |Si|. Therefore,
|N(Si ∪ S�) ∩

(
V (Gi

d) ∪ V (G�
d)
) | − |Si ∪ S�| ≥ |Ni(Si)| − |Si|+ |N�(Si)| − |S�|

= |Yi| − (k − 2)− |S�|.



J. VANDENBUSSCHE ET AL. /AUSTRALAS. J. COMBIN. 82 (3) (2022), 317–334 324

We will require the following elementary result (a proof can be found in [21]).

Proposition 3.6. Let G be a bipartite graph with partite sets X and Y , where
|X| = |Y |. If S ⊆ X and T = Y −N(S), then

|N(S)| − |S| ≥ |N(T )| − |T |.

We apply the proposition in the following way.

Remark 3.7. Suppose S ⊆ X and |S| ≥ (2m)d/4, and let T = Y − N(S). The
graph Gd satisfies Hall’s condition, so |N(S)| ≥ |S|, hence |T | ≤ (2m)d/4. Then by
Proposition 3.6, it would suffice to verify the Main Lemma holds for T instead of
S. Hence, in the proofs of Lemmas 3.8, 3.9, and the Main Lemma, we may further
assume that |S| ≤ (2m)d/4. Recall that we also assume m ≥ 3.

The next two lemmas will serve as the basis step in the inductive proof of the
Main Lemma.

Lemma 3.8. Let X and Y be the partite sets of Gd and let S ⊆ X. If 1 ≤ k ≤ d ≤ 2
and k ≤ |S| ≤ gk(d), then

|N(S)| − |S| ≥ fk(d).

Proof. When d = 1, Gd
∼= C2m, and it is easy to verify that |N(S)|− |S| ≥ 1 = f1(1)

for every nonempty subset S of X satisfying |S| ≤ m− 1 = g1(1).

When d = 2, Gd
∼= C2m � C2m. Consider the typical representation of such

a graph with V (Gd) = {(i, j) : 0 ≤ i ≤ 2m − 1, 0 ≤ j ≤ 2m − 1}. (All sums
involving pairs (i, j) indicated in this proof are taken mod 2m and m ≥ 3.) If
|S| = 1, then k = 1, and f1(2) = 3; a single vertex has four neighbors, and the result
holds. Suppose |S| ≥ 2. Furthermore, by Remark 3.7, we may assume |S| ≤ m2.
Mathematica [22] directly verified that the result is true for m = 3: For all S such
that 2 ≤ |S| ≤ 9, |N(S)|− |S| ≥ 4 = f2(2) (This claim can also be verified by hand.)
Assume now that m ≥ 4. Note 4 ≥ fk(2), so it suffices to show |N(S)| − |S| ≥ 4.
Define a column Cj = {(i, j) : 0 ≤ i ≤ 2m − 1} and define Cj(X) = Cj ∩ X. We
say a column Cj is either full (if Cj(X) ∩ S = Cj(X)), empty (if Cj(X) ∩ S = ∅),
or partial (otherwise). Let N+(S) = {(i + 1, j) : (i, j) ∈ S}; we call such vertices
down neighbors of S. Clearly |N+(S)| = |S| and N+(S) ⊆ N(S). We now show
|N(S)−N+(S)| ≥ 4, which will complete the proof.

If some Cj is a partial column, then there exists an i such that (i, j) ∈ S and
(i− 2, j) /∈ S. Hence Cj contributes an additional neighbor, the vertex (i− 1, j) (we
call such vertices up neighbors) to N(S)− N+(S). Hence we may assume there are
at most three partial columns, otherwise the result holds.

If some Cj is full and Cj+1 (or symmetrically Cj−1) is empty, then we are also
done; matching (i, j) to (i, j + 1) (or symmetrically to (i, j − 1)) produces m extra
neighbors (we call such vertices side neighbors), which is enough as m ≥ 4. Therefore
we may assume there are no full columns adjacent to any empty columns. Moreover,
we may assume there are at most m− 1 full columns (for otherwise either |S| = m2,
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which forces a full column to be adjacent to an empty column, or |S| > m2, which
is contrary to our assumption on |S|), and since there are at most three partial
columns, there must be at least m−2 ≥ 2 empty columns. In particular, there must
be at least two partial columns, each adjacent to a different empty column. Each
partial column provides at least one up neighbor and at least one side neighbor. This
contributes at least 4 extra neighbors, so |N(S)−N+(S)| ≥ 4.

Lemma 3.9. Let d ≥ 1 and let X and Y be the partite sets of Gd. If S ⊆ X and
1 ≤ |S| ≤ g1(d), then

|N(S)| − |S| ≥ f1(d).

Proof. We will induct on d. Lemma 3.8 establishes the basis for d = 1 and d = 2.
Therefore, suppose that d ≥ 3 and S is an arbitrary subset of X such that 1 ≤ |S| ≤
g1(d). Recall from Remark 3.7, we may also assume |S| ≤ (2m)d/4. We need to show
|N(S)| − |S| ≥ f1(d) = 2d− 1. Note a subset Si satisfies the induction hypothesis if
1 ≤ |Si| ≤ g1(d− 1).

Case 1: No subset satisfies the induction hypothesis. Here, for each i ∈ Z2m, Si is
either empty or contains more than g1(d− 1) vertices. If every Si is nonempty,
then

|S| > 2m · g1(d− 1) ≥ (2m)d/4,

contradicting our upper bound on S.

Hence there must exist an i such that |Si| > g1(d− 1) and either i− 1 ∈ I0 or
i+1 ∈ I0. This implies some shadow of Si contains more than g1(d−1) ≥ 2d−1
vertices, and since these vertices are not in the local neighborhood of any Sj,
|N(S)| − |S| ≥ 2d− 1.

Case 2: At least one subset satisfies the induction hypothesis. If there are two such
sets, then the inductive hypothesis guarantees∑

i∈I1
(|Ni(Si)| − |Si|) ≥ 4d− 6,

and this is at least 2d − 1 when d ≥ 3. If not, the set Si satisfying the
inductive hypothesis provides |Ni(Si)|−|Si| ≥ 2d−3, and we seek two additional
“extra” neighbors. If some Sj is empty, then again we obtain at least two extra
neighbors: Choose an empty Sj such that either Sj+1 or Sj−1 is nonempty.
Since only Si satisfies the inductive hypothesis, either |Sj−1| ≥ 2 or |Sj+1| ≥ 2.
Hence either the right shadow of Sj−1 or the left shadow of Sj+1 contributes
two additional vertices.

Otherwise, all sets Sj, where i �= j, have more than g1(d − 1) elements. Each
contains a subset S ′

j of size g1(d−1), so by the induction hypothesis, |Nj(S
′
j)|−

|S ′
j | ≥ f1(d−1). Hence applying Lemma 3.5, for each Sj with j �= i, |Nj(Sj)| =

|Yj| = |Xi|. If there exists a j �= i such that |Sj| ≤ |Xi|−2, then Sj contributes
an additional two local neighbors. If there exists two sets Sj1 and Sj2 , where
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j1 �= j2 �= i, such that each has size at most |Xi| − 1, then each will contribute
at least one additional local neighbor. Otherwise, for each j �= i, Sj = Xj,
except for possibly one set, S�, which contains all but one vertex from X�. But
in this case, since |Si| ≥ 1,

|S| ≥ 1 + (2m− 1)
1

2
(2m)d−1 − 1 >

1

4
(2m)d,

which contradicts our upper bound on S.

We now prove the Main Lemma which will serve as the foundation for the proof
of the Main Theorem.

Proof of Lemma 3.1. Let S be an arbitrary subset of X such that k ≤ |S| ≤ gk(d).
If |S| ≤ d, then the result is immediate from Corollary 3.3. Therefore, together with
Remark 3.7, we can assume d < |S| ≤ (2m)d/4.

Divide S into sets S0, . . . , S2m−1 as discussed in Remark 2.1, and recall we sub-
divide Z2m into two sets I0 and I1 such that Si = ∅ for all i ∈ I0, and |Si| ≥ 1 for
all i ∈ I1. We proceed by induction on d. Lemmas 3.8 and 3.9 establish the basis:
d ≥ 1 and k = 1 and d = 2 and k = 1, 2. Therefore suppose that d is an arbitrary
integer such that d ≥ 3 and 2 ≤ k ≤ d.

Note that when we apply the inductive hypothesis to the sets Si within each Gi
d,

we will also need to reduce k so that it does not exceed the dimension. A subset
Si ⊂ S satisfies the induction hypothesis if k − 1 ≤ |Si| ≤ gk−1(d − 1). We consider
four cases, based on how many nonempty subsets Si satisfy the induction hypothesis
in the corresponding subgraphs Gi

d
∼= Gd−1. In Cases 2 through 4, we say a subset

Si is too small if |Si| < k − 1 or too big if |Si| > gk−1(d− 1).

Case 1: There exist at least two subsets that satisfy the induction hypothesis.

Considering local neighbors only in these two layers, we obtain

|N(S)| − |S| ≥
∑
i∈I1

(|Ni(Si)| − |Si|) ≥ 2fk−1(d− 1).

Note that

2fk−1(d− 1)− fk(d) = 2d(k − 2)− 1

2
k(k + 7) + 7,

and since d ≥ k, the expression above is at least 1
2
(3k2 − 15k + 14) which is

positive when k ≥ 4. Furthermore, if d > k, then 2d(k − 2)− 1
2
k(k + 7) + 7 ≥

1
2
(3k−2)(k−3) which is non-negative for all k ≥ 3. Hence 2fk−1(d−1) ≥ fk(d)

when k ≥ 4 or d > k.

When d = k = 3 or d = 3 and k = 2, we follow the argument from Case
2 of Lemma 3.9. From the above calculation, the local neighbors of the two
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sets Si and Sj satisfying the inductive hypothesis collectively provide at least
2fk−1(d−1) extra neighbors. In both cases, 2fk−1(d−1) = fk(d)−2, and we seek
two more neighbors. If there is a third set satisfying the inductive hypothesis,
we obtain two more extra local neighbors. If k = 3 and there is a set with
|Sa| = 1, we also obtain two extra local neighbors by applying Corollary 3.3. If
Sa is empty for some a, we obtain two extra neighbors from a shadow. Hence
we may assume there are two sets satisfying the inductive hypothesis and for
all others, |Sa| > gk(d). As long as there is some set satisfying |Sa| ≤ |Xa| − 2
or two sets Sa1 , Sa2 with |Sai | ≤ |Xai | − 1, applying the reasoning in Case 2 of
Lemma 3.9 yields two extra local neighbors. Otherwise, there are 2m− 3 sets
of cardinality 1

2
(2m)d−1 and one of cardinality at least 1

2
(2m)d−1−1. Therefore,

since m ≥ 3 and k ≥ 2,

|S| ≥ |Si|+ |Sj|+ (2m− 2)
1

2
(2m)d−1 − 1

≥ 2(k − 1) +
1

2
(2m)d − (2m)d−1 − 1 >

1

4
(2m)d,

contradicting our assumption that |S| ≤ (2m)d/4.

Case 2: No subset satisfies the induction hypothesis because all are too small.

Here, 1 ≤ |Si| ≤ k − 2 for all i ∈ I1, so k ≥ 3. Recall |Si| = si and |S| = s. By
applying Lemma 3.2 to count local neighbors for each Si we obtain

|N(S)| − |S| ≥
∑
i∈I1

(|Ni(Si)| − |Si|) ≥
∑
i∈I1

(
2(d− 1)si − 1

2
s2i −

3

2
si + 1

)

= 2(d− 1)s− 3

2
s+ t− 1

2

∑
i∈I1

s2i .

This quantity is minimized when t− 1
2

∑
i∈I1 s

2
i is minimized. This occurs when

t = �s/(k − 2)�, and there are s/(k − 2)� sets of size k − 2 and one of size �,
where � = s mod (k − 2). (Otherwise, we can assume 1 ≤ s1 ≤ s2 < k − 2,
and replacing s1 with s1−1 and s2 with s2+1 yields (s1−1)2+(s2+1)2 > s21+s22
without increasing t.)

Thus, setting ε = 0 when � = 0 and ε = 1 otherwise, t = s−�
k−2

+ ε, and

|N(S)| − |S| ≥ 2(d− 1)s− 3

2
s+

s− �

k − 2
+ ε− 1

2

(
s− �

k − 2
(k − 2)2 + �2

)

=

(
2d− 5

2
− k

2
+

1

k − 2

)
s+

(
k − 2

2
− 1

k − 2

)
�− 1

2
�2 + ε.

This expression is quadratic in �, and it is maximized when � =
(
k−2
2

− 1
k−2

)
and minimized at the boundary: � = 0 and � = k − 3. Hence is suffices to
establish the result when � ∈ {0, k − 3}.
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When � = ε = 0, we have

|N(S)| − |S| ≥ θ(k, d, s),

where θ(k, d, s) =
(
2d− 5

2
− k

2
+ 1

k−2

)
s. Since d ≥ k ≥ 3, the coefficient on s

in θ is positive. Hence for fixed k and d, θ(k, d, s) is an increasing function of s.
Since s > d, we have s ≥ k+1, and thus θ(k, d, s)−fk(d) ≥ 0 for all 3 ≤ k ≤ d
and d ≥ 3.

When � = k − 3 (and thus ε = 1),

|N(S)| − |S| ≥ θ(k, d, s) +

(
k − 2

2
− 1

k − 2

)
(k − 3)− 1

2
(k − 3)2 + 1.

In an almost identical calculation to the one used in the case � = 0, by the
hypotheses on k, d, and s, the right side of the inequality above is at least fk(d)
for all 3 ≤ k ≤ d and d ≥ 3.

Case 3: Exactly one subset satisfies the induction hypothesis and all other subsets
are too small.

Suppose for some Si, k − 1 ≤ |Si| ≤ gk−1(d − 1), and |Sj| < k − 1 for all
j ∈ I1 \ {i}. Applying the induction hypothesis to Si yields

|Ni(Si)| − |Si| ≥ fk−1(d− 1).

Note fk−1(d− 1)− fk(d) = −2d− k + 3, hence it suffices to show that∑
j∈I1\{i}

(|Nj(Sj)| − |Sj|) ≥ 2d+ k − 3.

Since each Sj is nonempty, applying Corollary 3.3 with k = 1 for each j �= i,

|Nj(Sj)| − |Sj| ≥ f1(d− 1) = 2d− 3.

Hence if t ≥ 3, then∑
j∈I1\{i}

(|Nj(Sj)| − |Sj|) ≥ 2(2d− 3) = 4d− 6.

Since d ≥ 3 and k ≤ d, we have 4d− 6 ≥ 2d+ k − 3.

If t = 2, suppose Sj (j �= i) is the other nonempty subset of S. Note m ≥ 3
implies there are at least four layers containing no elements of S. We obtain
at least 2d− 3 additional neighbors from the local neighborhood of Sj, and at
least |Si| + |Sj| ≥ (k − 1) + 1 = k additional neighbors from the shadows of
Si and Sj in layers that contain no elements of S. Hence again we obtain the
needed 2d+ k − 3 additional neighbors.
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Case 4: At most one subset satisfies the induction hypothesis and at least one subset
is too big.

From the proof of Lemma 3.5, any subset Si which satisfies |Si| > gk−1(d − 1)
has the property that

|N(Si ∪ S�) ∩ (V (Gi
d) ∪ V (G�

d))| − |Si ∪ S�| ≥ 1

2
(2m)d−1 − (k − 2)− |S�|,

where S� ∈ {Si−1, Si+1}. Out of all such sets Si, let Sj be one such that |S�| is
minimum (where S� ∈ {Sj−1, Sj+1}). Define

φ(m, k, d) =
1

2
(2m)d−1 − (k − 2)− fk(d) =

1

2
(2m)d−1 − 2dk +

1

2
(k2 + k) + 1.

If |S�| ≤ φ(m, k, d), then 1
2
(2m)d−1 − (k − 2)− |S�| ≥ fk(d), and we are done.

Otherwise, we may assume |S�| > φ(m, k, d). We claim that |S�| ≥ k − 1.
Otherwise, if |S�| < k − 1, then since k ≤ d, m ≥ 3 and d ≥ 3,

|S�| − φ(m, k, d) < k − 1− φ(m, k, d) < 0,

a contradiction.

Hence, we may assume that |S�| ≥ k − 1 and also that |S�| > φ(m, k, d). By
the minimality of |S�| and our assumption that at most one set satisfies the
induction hypothesis, every Si other than S� has |Si| > gk−1(d− 1). We show
that this situation leads to a contradiction regarding |S|. Observe

|S| > (2m− 1) · gk−1(d− 1) + φ(m, k, d)

=
1

2
(2m)d +m(−4d(k − 1) + k2 + 3k − 4)− 2d+ 3− k.

Since k2 + 3k − 4 ≥ 0 and k ≤ d,

|S| > 1

2
(2m)d −m(4d(d− 1))− 3d+ 3

=
1

4
(2m)d +

1

4
(2m)d −m(d− 1)

(
4d+

3

m

)
.

Since m ≥ 3,

1

4
(2m)d −m(d− 1)

(
4d+

3

m

)
≥ m

(
1

2
(2m)d−1 − (d− 1)(4d+ 1)

)
> 0

when d ≥ 4. When d = 3, we must have k = 2 or k = 3, and it is straightfor-
ward to verify that 1

4
(2m)d +m(−4d(k − 1) + k2 + 3k − 4) − 2d + 3 − k > 0

when m ≥ 3. In both cases, this contradicts |S| ≤ (2m)d/4.

Having established |N(S)| − |S| ≥ fk(d) in all cases, this completes the proof.
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4 Extendability of k-suitable matchings in Gd

We are now ready to prove our Main Theorem. Recall that X and Y are the partite
sets of Gd, and |X| = |Y | = (2m)d−1.

Proof of Theorem 1.2. When m = 2, the result is true by Theorem 1.1. Hence, we
may assume m ≥ 3. Suppose M is a k-suitable matching in Gd with at most fk(d)
edges, 1 ≤ k ≤ d, and let UM be the endpoints of the edges inM . By Hall’s Theorem,
it suffices to show that Gd − UM satisfies Hall’s Condition.

Let S be an arbitrary subset of a single partite set in Gd − UM . Assume by
symmetry that S ⊆ X. Let N(S) be the neighborhood of S in Gd, and let NU(S) be
the neighborhood of S in Gd − UM . If |S| < k, then by the definition of k-suitable,
|NU(S)| ≥ |S|. If k ≤ |S| ≤ gk(d), then by the Main Lemma, |N(S)| − |S| ≥ fk(d),
hence |N(S)| ≥ |S|+ fk(d). Since S has at most fk(d) neighbors in UM , this implies
|NU(S)| ≥ |S|.

Finally, consider |S| > gk(d). Take a subset S ′ with |S ′| = gk(d). By the Main
Lemma, |N(S ′)| − |S ′| ≥ fk(d), hence

|N(S)| ≥ |N(S ′)| ≥ |S ′|+ fk(d) = gk(d) + fk(d) =
(2m)d

2
− (k − 1).

Hence |Y −N(S)| < k, and setting T = Y −N(S)−UM and applying Proposition 3.6,
we see that |NU(S)| − |S| ≥ |NU(T )| − |T |. Since M is k-suitable and |T | < k,
|NU(T )| − |T | ≥ 0, and it follows that |NU(S)| − |S| ≥ 0 as needed.

The theorem below shows that a slight modification of the construction used to
prove sharpness in the hypercube result extends to this family of graphs. Note that
both the construction and its verification follow the hypercube result closely.

Theorem 4.1. For all integers k and d such that 1 ≤ k ≤ d, there exists a k-
suitable matching of size fk(d) + 1 that does not extend to a perfect matching in
G(2m)d, unless d = 1 and m = 2.

Proof. Recall any matching is trivially 1-suitable. If d = 1 and m = 2, then
Gd = G(4)1 = C4, k = 1, and any matching of size f1(1) + 1 = 2 is already a
perfect matching, establishing the exceptional case. Furthermore, for any m ≥ 3,
any matching of size 2 that covers the neighborhood of a vertex does not extend to
a perfect matching in G(2m)1 = C2m.

For the remainder of the proof, suppose d ≥ 2. Moreover, the case m = 2 is
established by Theorem 1.1, so we shall assume m ≥ 3. When k = 1, any matching
that has size 2d and covers the neighborhood of a fixed vertex cannot extend to a
perfect matching. Since f1(d)+1 = 2d, the result is true. Therefore, we may suppose
that k ≥ 2. Let S = {e1, . . . , ek} and define the matching:

M = {{v, v − e1} : v ∈ N(S) \ {e1 + ei : 1 ≤ i ≤ k}} ∪ {{2e1, 2e1 − e2}}.
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By definition, each edge in M has one endpoint in N(S) and the other endpoint in
V (Gd) \ (N(S) ∪ S). Additionally, |M | = |N(S)| − (k − 1), and by Proposition 3.4,
|N(S)| = fk(d)+k, so |M | = fk(d)+1. Finally, M leaves only k−1 vertices in N(S)
uncovered, those of the form e1 + ei where 2 ≤ i ≤ k. Since the k vertices in S will
have only k − 1 uncovered neighbors, M will not extend to a perfect matching.

It remains to verify that M is k-suitable. Let UM be the endpoints of the edges
in M , and let T be an arbitrary subset of V (Gd) \ UM containing at most k − 1
vertices. We must verify |N(T )| ≥ |T | in Gd−UM . Note first that we may assume T
is contained entirely within a single partite set, X \UM or Y \UM , in Gd−UM , since
otherwise we can verify the result separately for the vertices in each partite set. We
define an injection φ : T → V (Gd) \ UM such that φ(v) ∈ N(v) \ UM , establishing
|N(T )| ≥ |T | in Gd−UM . Without loss of generality, suppose S ⊂ X \UM . Consider
two cases:

Case 1: T ⊂ X \UM . As |T | < |S|, at least one element of S is not in T . If e1 /∈ T ,
then define φ(v) = v+ e1 for all v ∈ T . If e1 ∈ T , then for some i ∈ {2, . . . , k},
ei /∈ T . In this case define φ(v) = v+e1 for all v ∈ T \{e1} and φ(e1) = e1+ei. φ
is clearly an injection into N(T ). We must verify φ(v) /∈ UM . If φ(v) ∈ UM and
v �= e1, then v + e1 = u for some u ∈ N(S) \ {e1 + ei : 2 ≤ i ≤ k} ∪ {2e1}. But
then either v = u− e1 ∈ UM , or u = 2e1 meaning v = e1, both contradictions.
Lastly, by definition of M , ei ∈ S implies φ(e1) = e1 + ei /∈ UM .

Case 2: T ⊂ Y \UM . If T = {3e1−e2}∪{4e1−e2−ei : 3 ≤ i ≤ k}, then |T | = k−1
and define φ(v) = v + e2 for all v ∈ T . Then φ(T ) = {3e1} ∪ {4e1 − ei : 3 ≤
i ≤ k}. Note φ(T ) ∩ UM = ∅ when m ≥ 3.

Otherwise, since |T | ≤ k − 1, there exists u ∈ {3e1 − e2} ∪ {4e1 − e2 − ei :
3 ≤ i ≤ k} such that u /∈ T . If 3e1 − e2 /∈ T then define φ(v) = v − e1 for
all v ∈ T . Otherwise, u = 4e1 − e2 − ei for some i ∈ {3, . . . , k}, and define
φ(v) = v − e1 for all v ∈ T \ {3e1 − e2} and define φ(3e1 − e2) = 3e1 − e2 − ei.
Again φ(T ) ∩ UM = ∅.

In all cases, φ defines an injection. Hence Gd − UM has no deficient sets of size less
than k, thus M is k-suitable.

Having completed the proof, we return to a discussion of the hypothesis in the
Main Lemma and the Main Theorem that k ≤ d. This contrasts with the analog in
the hypercube result from Theorem 1.1 in which k ≤ 2d− 3 is sufficient. We should
note that all of our arguments throughout the paper easily extend if we replace the
hypothesis with k ≤ 2d − 3, with the exception of Case 2 in the proof of the Main
Lemma. While we believe the result holds for k ≤ 2d − 3 (or at least k ≤ 2d − c
for some small constant c), we did not feel the slightly stronger result merited the
additional case analysis required to establish that case.

Finally, as mentioned in the introduction, although it is true that in Qd (and
therefore in G(4)d/2), every induced matching extends to a perfect matching, this is
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not true for G(2m)d when m > 2. Observe that the matching

M = {{ei, 2ei} : 1 ≤ i ≤ d} ∪ {{−ei,−2ei} : 1 ≤ i ≤ d}
is an induced matching. However, all neighbors of the vertex 0d are covered by the
matching, so M does not extend to a perfect matching.

5 Open questions

This paper is an example of a natural extension of the study of k-suitable matchings
in hypercubes. There are many other bipartite graphs for which this idea could be
studied. Those with a high degree of symmetry are natural candidates. Accordingly,
we close with a few questions about the extremal function fk(G).

1. Extendability of Cayley graphs has been studied, though not in the explicit
context of k-suitability. Both hypercubes and the family studied in this paper
are Cayley graphs on direct products of cyclic groups. The usage of suitability
could potentially be useful for exploring extendability in other bipartite Cay-
ley graph families. For example, many connected 4-regular Cayley graphs are
isomorphic to a pseudo-Cartesian product of two cycles (see [15]), a general-
ization of the Cartesian graph product. Can we determine fk(G) where G is
a 4-regular bipartite Cayley graph? Note this would also tie into the study of
quadrangulations of the torus (see [4]).

2. If G is a Cayley graph, G = Cay(G;S) and H is a quotient graph of G, H =
Cay(G/H;S), how might fk(G) and fk(H) be related?

3. More generally, we propose the following for study. Suppose G is a bipartite
graph. What lower bound on fk(G�K2) or fk(G�G) can be determined if
we know fk(G)?

4. Extendability of graphs on surfaces has been well-studied, but to our knowl-
edge, the idea of extending k-suitable matchings in these graphs has not been
investigated. What, for example, can be said about fk(G) if G is a bipartite
planar graph?
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