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1 Introduction

Let c be a non-negative integer. A c-partite or multipartite tournament is a digraph
obtained from a complete c-partite graph by orienting each edge. In 1999, Volk-
mann [3] developed the first contributions in the study of the structure of strongly
connected subtournaments in multipartite tournaments. He proved that every almost
regular c-partite tournament contains a strongly connected subtournament of order
p for each p ∈ {3, 4, . . . , c−1}. In the same paper he also proved that, if each partite
set of an almost regular c-partite tournament has at least 3c

2
− 6 vertices, then there

exists a strong subtournament of order c. In 2008 Volkmann and Winzen [5] proved
that every almost regular c-partite tournament has a strongly connected subtourna-
ment of order c for c ≥ 5. In 2011, Xu et al. [6] proved that every vertex of a regular
c-partite tournament with c ≥ 16 is contained in a strong subtournament of order p
for every p ∈ {3, 4, . . . , c}. The following problem was posed by Volkmann [4]:

Determine further sufficient conditions for (strongly connected) c-partite tourna-
ments to contain a strong subtournament of order p, for some 4 ≤ p ≤ c. How close
to regular must a c-partite tournament be, to secure a strongly connected subtourna-
ment of order c?

In this direction, in [2] in 2016 we proved that for every (not necessarily strongly
connected) balanced c-partite tournament T of order n ≥ 6, if the global irregularity

of T is at most
c√

3c+ 26
, then T contains a strongly connected tournament of

order c. A c-partite tournament is balanced if all partite sets contain the same
number of vertices.

We follow all the definitions and notation of [1]. Let G be a c-partite tournament
of order n with partite sets {Vi}ci=1. We denote by Gr,c a balanced c-partite tourna-
ment satisfying |Vi| = r for every i ∈ [c], where [c] = {1, . . . , c}. Throughout this
paper |Vi| = r for each i ∈ [c].

Let G be a c-partite tournament. For x ∈ V (G) and i ∈ [c], the out-neighborhood
of x in Vi is N+

i (x) = Vi ∩ N+(x); the in-neighborhood of x in Vi is N−
i (x) =

Vi ∩N−(x); d+i (x) = |N+
i (x)|; d−i (x) = |N−

i (x)| and δ(G) = min
x∈V (G)

{d−(x), d+(x)}.
For an oriented graph D, the global irregularity of D is defined as

ig(D) = max
x,y∈V (D)

(
max{d+(x), d−(x)} −min{d+(y), d−(y)}) .

If ig(D) = 0 (ig(D) ≤ 1, respectively) D is regular (almost regular, respectively).
For our study we introduce another irregularity parameter, namely the local partite
irregularity of D, which is defined as

μ(D) = max
x∈V (D)

max
i∈[c]

|d+i (x)− d−i (x)|.

Observe that, for a balanced c-partite tournament Gr,c, we have μ(Gr,c) ≥ ig(Gr,c)
c−1

.

In this paper we consider Volkmann’s problem for balanced c-partite tournaments.
We give sufficient conditions on its regularity to ensure the existence of a strong
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subtournament with minimum degree at least
⌊
c−2
4

⌋
+1. We obtain this result as an

application of counting the number of subtournaments of order c for which a vertex
has minimum out-degree (respectively, in-degree) at most q ≥ 0.

Our main result is the following.

Theorem Let Gr,c be a balanced c-partite tournament, with r ≥ 2, such that
δ(Gr,c) ≥ � c−2

4
	 (r + μ(Gr,c))

c−1
c−2

. Then Gr,c contains a strongly connected tourna-

ment T of order c such that δ(T ) ≥ � c−2
4
	+ 1, whenever

(i) ig(Gr,c) ≤ r
2
and c ≥ 13, c /∈ {14, 15, 18}, or

(ii) ig(Gr,c) ≤ r and c ≥ 17, c /∈ {18, 19, 22}, or
(iii) ig(Gr,c) ≤ 3r

2
and c ≥ 21, c /∈ {22, 23, 26}.

2 Maximal tournaments for which a vertex has minimum
degree at most q

The aim of this section is to give sufficient conditions on the minimum degree, local
partite irregularity and global irregularity to obtain a bound on the number of max-
imal tournaments in a balanced c-partite tournament Gr,c in which a given vertex
x ∈ V (Gr,c) has out-degree (in-degree respectively) at most q, for some given q ≥ 0.

Let x ∈ V (Gr,c). We may asume that x ∈ Vc. A maximal tournament of Gr,c

containing the vertex x can be constructed by choosing a vertex from each partite set
Vi for i ∈ [c− 1]. We assign a vector to each maximal tournament T containing the
vertex x as follows: h = (h1, h2, . . . , hc−1) ∈ {0, 1}c−1 such that hi = 1, if and only if
the vertex of Vi is an out-neighbor of x, see Figure 1. Clearly, different tournaments
can have the same vector and for a given maximal tournament T ,

∑
hi = d+T (x).

V1 V2 V3 V4

x



∗
�



∗
�



∗
�



∗
�

Figure 1: For x ∈ V5. The vectors of the maximal subtournaments containing the
vertex x induced by vertices �, ∗ and 
 respectively are h� = (1, 1, 1, 0), h∗ =
(1, 0, 1, 0) and h� = (0, 0, 1, 0).

For each 0 ≤ k ≤ c−1, letH+
k (x) be the set of such vectors satisfying

∑c−1
i=1 hi = k.

Observe that if, for some 0 ≤ i ≤ c − 1, we have that d+i (x) = r, then hi = 1 for
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every k and every h ∈ H+
k (x), analogously if d+i (x) = 0, then hi = 0 for every k and

every h ∈ H+
k (x).

The number of maximal tournaments for a fixed h = (h1, h2, . . . , hc−1) is i

c−1∏
i=1

d+i (x)
hid−i (x)

1−hi .

Thus we have the following remark.

Remark 1. Let Gr,c be a balanced c-partite tournament and let x ∈ Vc. The number
of maximal tournaments of Gr,c for which x has out-degree k is equal to

∑
h∈H+

k (x)

c−1∏
i=1

d+i (x)
hid−i (x)

1−hi .

Let x ∈ V (Gr,c). For each q ≥ 0, let T+
q (x) (respectively T−

q (x)) be the number
of maximal tournaments of Gr,c for which x has out-degree (respectively in-degree)
at most q. All the following results regarding T+

q (x) can be obtained for T−
q (x) in

an analogous way.

Assume, without loss of generality, that x ∈ Vc. By Remark 1,

T+
q (x) =

q∑
k=0

∑
h∈H+

k (x)

c−1∏
i=1

d+i (x)
hid−i (x)

1−hi.

In order to bound T+
q (x), for any integer r ≥ 2, and g1, g2, . . . , gs real numbers

such that 0 ≤ gi ≤ r, we define

M(g1, . . . , gs; k) =
∑
h∈Hs

k

s∏
i=1

ghi
i (r − gi)

1−hi,

where Hs
k is the set of s-vectors (h1, h2, . . . , hs) ∈ {0, 1}s such that:

i) if gi = r then hi = 1;

ii) if gi = 0 then hi = 0;

iii)
s∑

i=1

hi = k.

Observe that if s = c− 1 and x is a vertex in a balanced c-partite tournament Gr,c

such that d+i (x) = gi for every i ∈ [c− 1], then H+
k (x) = Hs

k.

Lemma 2.1. Let r ≥ 2 be an integer, and let g1, . . . , gs be real numbers such that
0 ≤ gi ≤ r. Let Γ = maxi∈[s] gi and γ = mini∈[s] gi. If, for some integer q ≥ 1, we
have that

∑
i∈[s]

gi ≥ q(r + Γ− γ)− Γ, then

M(g1, . . . , gs; q) ≥ M(g1, . . . , gs; q − 1).



A.P. FIGUEROA ET AL. /AUSTRALAS. J. COMBIN. 82 (3) (2022), 353–365 357

Proof. Without loss of generality we may assume that there are integers t and pr
such that

i) 0 < gi < r if and only if i ∈ [t];

ii) gi = r if and only if t + 1 ≤ i ≤ t + pr;

iii) gi = 0 if and only if t + pr + 1 ≤ i ≤ s.

Observe that for every h = (h1, . . . , hs) ∈ Hs
q−1 and for every h′ = (h′

1, . . . , h
′
s) ∈ Hs

q

we have that hi = h′
i = 1 for t+1 ≤ i ≤ t+ pr and hi = h′

i = 0 for t+ pr +1 ≤ i ≤ s.
Notice that, if pr ≥ q, then Hs

q−1 = ∅, which implies that M(g1, . . . , gs; q − 1) = 0
and the lemma follows. Thus, we may assume that q ≥ pr + 1.

For each h = (h1, . . . , hs) ∈ Hs
q−1, let F (h) = {(h′

1, . . . , h
′
s) ∈ Hs

q : hi ≤
h′
i for all i ∈ [s]} and let a(h) = {j : hj = 1 for j ∈ [t]}. Observe that for ev-

ery h ∈ Hs
q−1, |a(h)| = q − 1− pr.

By the definitions of Hs
q and Hs

q−1, it follows that, given h ∈ Hs
q−1 and h′ ∈

F (h) ⊆ Hs
q, (there is a unique index j0 ∈ [t] \ a(h) such that h′

j0
= hj0 + 1) and

hi = h′
i for every i ∈ [s] \ {j0}.

Thus,

∑
h′∈F(h)

s∏
i=1

g
h′
i

i (r − gi)
1−h′

i

s∏
i=1

ghi
i (r − gi)1−hi

=
∑

h′∈F(h)

s∏
i=1

g
h′
i

i (r − gi)
1−h′

i

s∏
i=1

ghi
i (r − gi)1−hi

=
∑

j∈[t]\a(h)

gj
r − gj

. (1)

Claim 1.
∑

j∈[t]\a(h)
gj

r−gj
≥ q − pr.

Suppose that
∑

j∈[t]\a(h)
gj

r−gj
< q − pr. Let γt = min

i∈[t]
gi. Thus,

∑
j∈[t]\a(h)

gj
r−γt

< q − pr

and therefore
∑

j∈[t]\a(h)
gj < (r − γt)(q − pr). On the other hand,

∑
j∈[s]

gj =
∑
j∈[t]

gi + rpr =
∑

j∈[t]\a(h)
gi +

∑
j∈a(h)

gi + rpr.

Hence,
∑

j∈[t]\a(h)
gi =

∑
j∈[s]

gj −
∑

j∈a(h)
gi − rpr which implies that

(r − γt)(q − pr) >
∑
j∈[s]

gj −
∑

j∈a(h)
gi − rpr

and therefore, after some easy calculations, we see that

rq +
∑

j∈a(h)
gi − γt(q − pr) >

∑
j∈[s]

gj.
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Let Γt = maxi∈[t] gi. Since |a(h)| = q − 1− pr, it follows that

rq + Γt(q − 1− pr)− γt(q − pr) >
∑
j∈[s]

gj.

Since Γ ≥ Γt ≥ γt ≥ γ and pr ≥ 0, we see that

Γt(q − 1− pr)− γt(q − pr) ≤ Γ(q − 1− pr)− γ(q − pr)
= Γ(q − 1)− γq − pr(Γ− γ)
≤ Γ(q − 1)− γq.

Thus ∑
j∈[s]

gj < q(r + Γ− γ)− Γ = rq + Γ(q − 1)− γq,

which, by hypothesis, is not possible, and the claim follows.

From Claim 1 and (1) it follows that for each h = (h1, . . . , hs) ∈ Hs
q−1,

∑
h′∈F(h)

s∏
i=1

g
h′
i

i (r − gi)
1−h′

i ≥ (q − pr)

s∏
i=1

ghi
i (r − gi)

1−hi. (2)

Observe that, for every h′ ∈ Hs
q, we have |{j : h′

j = 1 with j ∈ [t]}| = q − pr.
Therefore, for every h′ ∈ Hs

q, there are exactly q − pr elements h ∈ Hs
q−1 such that

h′ ∈ F(h). Thus,

∑
h∈Hs

q−1

∑
h′∈F(h)

s∏
i=1

g
h′
i

i (r − gi)
1−h′

i = (q − pr)
∑

h′∈Hs
q

s∏
i=1

g
h′
i

i (r − gi)
1−h′

i.

On the other hand, by (2) we see that

∑
h∈Hs

q−1

∑
h′∈F(h)

s∏
i=1

g
h′
i

i (r − gi)
1−h′

i ≥
∑

h∈Hs
q−1

(q − pr)

s∏
i=1

ghi
i (r − gi)

1−hi

implying that

∑
h′∈Hs

q

s∏
i=1

g
h′
i

i (r − gi)
1−h′

i ≥
∑

h∈Hs
q−1

s∏
i=1

ghi
i (r − gi)

1−hi

which, by definition, is equivalent to M(g1, . . . , gs; q) ≥ M(g1, . . . , gs; q− 1), and the
lemma follows.

Corollary 2.2. Let r ≥ 2, c ≥ 3 and Gr,c be a balanced c-partite tournament such
that for some q ≥ 1, δ(Gr,c) ≥ q (r + μ(Gr,c)) . Then, for every x ∈ V (Gr,c), the
number of maximal tournaments in which x has out-degree q is at least equal to the
number of maximal tournaments in which x has out-degree q − 1.
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The following theorem gives a condition regarding the minimum degree and the
local partite irregularity to obtain an upper bound on T+

q (x).

Theorem 2.3. Let r ≥ 2, c ≥ 5 and Gr,c be a balanced c-partite tournament such
that for some q ≥ 0, δ(Gr,c) ≥ q (r + μ(Gr,c))

c−1
c−2

. Then, for every x ∈ V (Gr,c),

T+
q (x) ≤

q∑
k=0

(
c− 1

k

)(
d+(x)

c− 1

)k (
d−(x)
c− 1

)c−1−k

.

Proof. Let x ∈ V (Gr,c) and suppose that x ∈ Vc. By Remark 1, we see that

T+
q (x) =

q∑
k=0

∑
h∈Hk(x)

c−1∏
i=1

d+i (x)
hid−i (x)

1−hi =

q∑
k=0

M(d+1 (x), . . . , d
+
c−1(x); k).

For each i ∈ [c − 1], let gi = d+i (x), and, without loss of generality, assume that
gc−1 = maxi∈[c−1] gi = Γ and gc−2 = mini∈[c−1] gi = γ. Let g′1, g

′
2, . . . , g

′
c−2, g

′
c−1 be real

numbers such that, for i ∈ [c− 3], g′i = gi; and g′c−2 = g′c−1 =
gc−2+gc−1

2
.

Claim 2.
q∑

k=0

M(g1, . . . , gc−1; k) ≤
q∑

k=0

M(g′1, . . . , g
′
c−1; k).

If q = 0,
q∑

k=0

M(g1, . . . , gc−1; 0) =
c−1∏
i=1

(r − gi). Since

(r − gc−2)(r − gc−1) ≤ (r − gc−2 + gc−1

2
)2,

the claim follows. Assume that q ≥ 1. For the sake of readability, in what follows,
g1, . . . , gc−1 and g1, . . . , gc−3 will be denoted as g[c−1] and g[c−3], respectively. Observe
that

M(g[c−1]; 0) = M(g[c−3]; 0)M(gc−2, gc−1; 0);

M(g[c−1]; 1) = M(g[c−3]; 1)M(gc−2, gc−1; 0) +M(g[c−3]; 0)M(gc−2, gc−1; 1)

and for every k ≥ 2,

M(g[c−1]; k) =

2∑
j=0

M(g[c−3]; k − j)M(gc−2, gc−1; j).

Therefore, for q = 1,

q∑
k=0

M(g[c−1]; k) = M(g[c−3]; 0) [M(gc−2, gc−1; 0) +M(gc−2, gc−1; 1)]

+M(g[c−3]; 1)M(gc−2, gc−1; 0);
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and for q ≥ 2,

q∑
k=0

M(g[c−1]; k) =
q−2∑
k=0

M(g[c−3]; k) [M(gc−2, gc−1; 0) +M(gc−2, gc−1; 1)

+ M(gc−2, gc−1; 2)]
+M(g[c−3]; q − 1) [M(gc−2, gc−1; 0) +M(gc−2, gc−1; 1)]
+M(g[c−3]; q)M(gc−2, gc−1; 0).

It is not hard to see that for any pair x, y of reals, 0 ≤ x, y ≤ r,

M(x, y; 0) = (r − x)(r − y); M(x, y; 1) = r(x+ y)− 2xy and M(x, y; 2) = xy.

Therefore
M(x, y; 2) +M(x, y; 1) +M(x, y; 0) = r2.

Since g′i = gi for i ∈ [c− 3] and gc−2 + gc−1 = g′c−2 + g′c−1, we have, after some easy
calculations, that

q∑
k=0

M(g′[c−1]; k)−
q∑

k=0

M(g[c−1]; k) =

M(g[c−3]; q − 1)
[
gc−2gc−1 − g′c−2g

′
c−1

]
+M(g[c−3]; q)

[
g′c−2g

′
c−1 − gc−2gc−1

]
=

(
g′c−2g

′
c−1 − gc−2gc−1

) [
M(g[c−3]; q)−M(g[c−3]; q − 1)

]
.

Since g′c−2g
′
c−1 ≥ gc−2gc−1, it follows that

q∑
k=0

M(g[c−1]; k) ≤
q∑

k=0

M(g′[c−1]; k), if and

only if M(g[c−3]; q − 1) ≤ M(g[c−3]; q).

Since
∑

i∈[c−1]

gi = d+(x) ≥ δ(Gr,c) ≥ q (r + μ(Gr,c))
c−1
c−2

, it follows that

d+(x)
c− 2

c− 1
= d+(x)− d+(x)

c− 1
≥ r + μ(Gr,c).

Therefore, d+(x) ≥ r + μ(Gr,c) +
d+(x)
c−1

. On the one hand, clearly, γ ≤ d+(x)
c−1

and
μ(Gr,c) ≥ Γ− γ. It follows that

∑
i∈[c−1]

gi = d+(x) ≥ q(r+Γ− γ) + γ. Since gc−1 = Γ

and gc−2 = γ, we see that
∑

i∈[c−3]

gi ≥ q(r + Γ− γ)− Γ. On the other hand, observe

that Γ ≥ Γ∗ = maxi∈[c−3] gi and γ ≤ γ∗ = mini∈[c−3] gi. Since q ≥ 1, it follows that
q(r+Γ−γ)−Γ ≥ q(r+Γ∗−γ∗)−Γ∗ which implies that

∑
i∈[c−3]

gi ≥ q(r+Γ∗−γ∗)−Γ∗.

Hence, by Lemma 2.1, M(g[c−3]; q−1) ≤ M(g[c−3]; q), and from here the claim follows.

Observe that Γ ≥ Γ′ = maxi∈[c−1] g
′
i and γ ≤ γ′ = mini∈[c−1] g

′
i. Since

∑
i∈[c−1]

gi =∑
i∈[c−1]

g′i it follows that
∑

i∈[c−1]

g′i ≥ q(r + Γ′ − γ′) c−1
c−2

, and clearly 0 ≤ g′i ≤ r. Hence,

we can iterate this procedure, and by the way that g′c−2 and g′c−1 are defined, we see
that the limit of the difference Γ′ − γ′ by iterating this procedure is zero. Thus, by
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Claim 2, it follows that T+
q (x) is bounded by

q∑
k=0

M(d
+(x)
c−1

, . . . , d+(x)
c−1

; k). Finally, by

definition, for each k ∈ [q],

M
(

d+(x)
c−1

, . . . , d
+(x)
c−1

; k
)

=
∑

h∈Hc−1
k

s∏
i=1

(
d+(x)
c−1

)hi
(
r − d+(x)

c−1

)1−hi

=
∑

h∈Hc−1
k

(
d+(x)
c−1

)k (
r − d+(x)

c−1

)c−1−k

=
(
c−1
k

) (d+(x)
c−1

)k (
r − d+(x)

c−1

)c−1−k

,

and it is not hard to see that r − d+(x)
c−1

= d−(x)
c−1

. From here the result follows.

The following theorem gives a condition regarding the minimum degree, the local
partite irregularity and the global irregularity to obtain an upper bound on T+

q (x).

Theorem 2.4. Let r ≥ 2, c ≥ 5 and Gr,c be a balance c-partite tournament. If for
some q ≥ 0, δ(Gr,c) ≥ q (r + μ(Gr,c))

c−1
c−2

and ig(Gr,c) = r(c − 1)β with 0 ≤ β <
c−2q−2

c
, then, for every x ∈ V (Gr,c), we have that

T+
q (x) ≤

(
c− 1

q + 1

)(r
2

)c−1 (1 + β)c−2−2q (q + 1)

c(1− β)− 2q − 2
.

Proof. Let x ∈ V (Gr,c). By Theorem 2.3, it follows that

T+
q (x) ≤

q∑
k=0

(
c− 1

k

)(
d+(x)

c− 1

)k (
d−(x)
c− 1

)c−1−k

. (3)

Observe that
q∑

k=0

(
c−1
k

) (
d+(x)
c−1

)k (
d−(x)
c−1

)c−1−k

=
(

d−(x)
c−1

)c−1 q∑
k=0

(
c−1
k

) (
d+(x)
d−(x)

)k

. For ev-

ery q, with 0 ≤ q ≤ c− 1, let g(q) =
q∑

k=0

(
c−1
k

) (d+(x)
d−(x)

)k

. Observe that for q < c− 1,

g(q + 1) = 1 +
q+1∑
k=1

(
c−1
k

) (d+(x)
d−(x)

)k

= 1 +
q∑

k=0

(
c−1
k+1

) (d+(x)
d−(x)

)k+1

= 1 + d+(x)
d−(x)

q∑
k=0

(
c−1
k+1

) (
d+(x)
d−(x)

)k

= 1 + d+(x)
d−(x)

q∑
k=0

(
c−1
k

)
c−1−k
k+1

(
d+(x)
d−(x)

)k

.

≥ 1 + d+(x)
d−(x)

q∑
k=0

(
c−1
k

)
c−1−q
q+1

(
d+(x)
d−(x)

)k

= 1 + d+(x)
d−(x)

c−1−q
q+1

q∑
k=0

(
c−1
k

) (d+(x)
d−(x)

)k

> d+(x)
d−(x)

c−1−q
q+1

g(q).
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On the other hand, g(q + 1) = g(q) +
(
c−1
q+1

) (d+(x)
d−(x)

)q+1

. Therefore,

g(q) +

(
c− 1

q + 1

)(
d+(x)

d−(x)

)q+1

>
d+(x)

d−(x)
c− 1− q

q + 1
g(q),

which implies that

(
c− 1

q + 1

)(
d+(x)

d−(x)

)q+1

>

(
d+(x)

d−(x)
c− 1− q

q + 1
− 1

)
g(q). (4)

Clearly, d+(x)
d−(x)

≥ δ(Gr,c)
Δ(Gr,c)

, and since Δ(Gr,c) = r(c−1)+ig(Gr,s)
2

, δ(Gr,c) = r(c−1)−ig(Gr,s)
2

,

and ig(Gr,c) = r(c − 1)β, it is not hard to see that δ(Gr,c)

Δ(Gr,c)
= 1−β

1+β
. Moreover, since

β < c−2q−2
c

, it follows that 1−β
1+β

> 2q+2
2c−2q−2

= q+1
c−q−1

. Therefore 1−β
1+β

c−1−q
q+1

− 1 > 0.

Thus, d+(x)
d−(x)

c−1−q
q+1

− 1 ≥ 1−β
1+β

c−1−q
q+1

− 1 = (1−β)(c−1−q)−(1+β)(q+1)
(1+β)(q+1)

= c(1−β)−2q−2
(1+β)(q+1)

> 0.

Hence, by (4),

(
c− 1

q + 1

)(
d+(x)

d−(x)

)q+1

>
c(1− β)− 2q − 2

(1 + β)(q + 1)
g(q)

and then (
c− 1

q + 1

)(
d+(x)

d−(x)

)q+1
(1 + β)(q + 1)

c(1− β)− 2q − 2
> g(q).

Therefore, it follows that, for q < c− 1,

q∑
k=0

(
c−1
k

) (d+(x)
c−1

)k (
d−(x)
c−1

)c−1−k

=
(

d−(x)
c−1

)c−1 q∑
k=0

(
c−1
k

) (d+(x)
d−(x)

)k

=
(

d−(x)
c−1

)c−1

g(q)

<
(

d−(x)
c−1

)c−1 (
c−1
q+1

) (d+(x)
d−(x)

)q+1
(1+β)(q+1)
c(1−β)−2q−2

.

Thus, by (3),

T+
q (x) <

(
d−(x)
c− 1

)c−1(
c− 1

q + 1

)(
d+(x)

d−(x)

)q+1
(1 + β)(q + 1)

c(1− β)− 2q − 2
.

Finally, observe that

(
d−(x)
c−1

)c−1 (
d+(x)
d−(x)

)q+1

=
(

d−(x)
c−1

)c−1 (
d+(x)
c−1

)q+1 (
c−1
d−(x)

)q+1

=
(

d−(x)
c−1

)c−1−2q−2 (
d+(x)d−(x)

(c−1)2

)q+1

.

On the one hand, since d+(x) + d−(x) = r(c − 1), it follows that d+(x)d−(x)
(c−1)2

≤
r2(c−1)2

4(c−1)2
= r2

4
and therefore

(
d+(x)d−(x)

(c−1)2

)q+1

≤ (
r
2

)2q+2
.
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On the other hand, d−(x) ≤ Δ(Gr,c) =
r(c−1)+ig(Gr,c)

2
= r(c−1)+r(c−1)β

2
= r(c−1)(1+β)

2

and therefore
(

d−(x)
c−1

)c−1−2q−2

≤
(

r(1+β)
2

)c−1−2q−2

=
(
r
2

)c−1−2q−2
(1 + β)c−1−2q−2.

Thus, (
d−(x)
c− 1

)c−1(
d+(x)

d−(x)

)q+1

≤
(r
2

)2q+2 (r
2

)c−1−2q−2

(1 + β)c−1−2q−2

=
(r
2

)c−1

(1 + β)c−1−2q−2

and from here, the result follows.

3 Maximal strong subtournament with minimum degree at
least

⌊
c−2
4

⌋
+ 1

As an application of Theorem 2.4, we give sufficient conditions for the existence of
a maximal subtournament with minimum degree at least

⌊
c−2
4

⌋
+ 1, in a balanced

c-partite tournament. Note that, as a fairly simple consequence of its minimum
degree, such a tournament is strong.

Theorem 3.1. Let Gr,c be a balanced c-partite tournament, with r ≥ 2, such that
δ(Gr,c) ≥ � c−2

4
	 (r + μ(Gr,c))

c−1
c−2

. Then Gr,c contains a strongly connected tourna-

ment T of order c such that δ(T ) ≥ � c−2
4
	+ 1, whenever

i) ig(Gr,c) ≤ r
2
and c ≥ 13, c /∈ {14, 15, 18}, or

ii) ig(Gr,c) ≤ r and c ≥ 17, c /∈ {18, 19, 22}, or
iii) ig(Gr,c) ≤ 3r

2
and c ≥ 21, c /∈ {22, 23, 26}.

Proof. In order to prove this theorem, we first show the following.

Claim 3. Let r ≥ 2 and c ≥ 5. Let Gr,c be a balanced c-partite tournament with

δ(Gr,c) ≥ �c− 2

4
	 (r + μ(Gr,c))

c− 1

c− 2
and ig(Gr,c) ≤ αr/2 (where α ≥ 0). If

2c−2 >

(
c− 1

� c−2
4
	 + 1

)(
2c−2+α
2c−2

)c−2−2� c−2
4

�
(� c−2

4
	+ 1)c

c2c−2−α
2c−2

− 2� c−2
4
	 − 2

,

then Gr,c contains a strongly connected tournament T of order c such that
δ(T ) ≥ � c−2

4
	+ 1.

Let Gr,c be a balanced c-partite tournament as in the statement of the claim, and
suppose that there is no tournament T of order c in Gr,c such that δ(T ) ≥ � c−2

4
	+1.

Thus, each of those tournaments has minimal degree at most � c−2
4
	, and since there

are rc tournaments of order c in Gr,c, it follows that∑
x∈V (Gr,c)

(T+
� c−2

4
�(x) + T−

� c−2
4

�(x)) ≥ rc.
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Since |V (Gr,c)| = rc, by Theorem 2.4, we see that

2rc

(
c− 1

� c−2
4
	 + 1

)(r
2

)c−1

(
1 + ig(Gr,c)

r(c−1)

)c−2−2� c−2
4

�
(� c−2

4
	+ 1)

c
(
1− ig(Gr,c)

r(c−1)

)
− 2� c−2

4
	 − 2

≥ rc,

and since ig(Gr,c) ≤ αr
2
, it follows that ig(Gr,c)

r(c−1)
≤ α

2(c−1)
, and as an easy consequence

we have that 1 + ig(Gr,c)
r(c−1)

≤ 2c−2+α
2c−2

and 1− ig(Gr,c)
r(c−1)

≥ 2c−2−α
2c−2

. Thus,

2rc

(
c− 1

� c−2
4
	 + 1

)(r
2

)c−1
(
2c−2+α
2c−2

)c−2−2� c−2
4

�
(� c−2

4
	+ 1)

c2c−2−α
2c−2

− 2� c−2
4
	 − 2

≥ rc.

Multiplying both sides of the inequality by 2c−1

rc−1
1
2r
, we obtain that

c

(
c− 1

� c−2
4
	+ 1

)(
2c−2+α
2c−2

)c−2−2� c−2
4

�
(� c−2

4
	 + 1)

c2c−2−α
2c−2

− 2� c−2
4
	 − 2

≥ 2c−2

and from here the claim follows.

Let fα(c) =
(

c−1
� c−2

4
�+1

)( 2c−2+α
2c−2 )

c−2−2� c−2
4 �

(� c−2
4

�+1)c

c 2c−2−α
2c−2

−2� c−2
4

�−2
and g(c) = 2c−2. Notice that

fα(c) ≤ fα′(c) for 0 ≤ α ≤ α′ and c ≥ 2.

If ig(Gr,c) ≤ r
2
, it follows that α ≤ 1 and it is not hard to see that f1(c) < g(c)

whenever c ∈ {13, 16, 19, 22}. Analogously, if ig(Gr,c) ≤ r, then α ≤ 2 and f2(c) <
g(c) whenever c ∈ {17, 20, 23, 26}; and if ig(Gr,c) ≤ 3r

2
, then α ≤ 3 and f3(c) < g(c)

whenever c ∈ {21, 24, 27, 30}.
To end the proof, we just need to show that, for α ∈ {1, 2, 3}, if for some c ≥ 13

we have that fα(c) < g(c), then fα(c + 4) < g(c + 4). For this we show that
fα(c+ 4)

fα(c)
≤ g(c+ 4)

g(c)
. Clearly, for every c ≥ 13,

g(c+ 4)

g(c)
= 16. On the other hand,

it is not difficult to see that, for every c ≥ 13,

(
2(c+4)−2+α
2(c+4)−2

)(c+4)−2−2� c+2
4

�

(
2c−2+α
2c−2

)c−2−2� c−2
4

� ≤
(
2c+ 6 + α

2c+ 6

)2

≤ 6

5
,

and with some more effort it is possible to verify that, for c ≥ 13,

( (c+4)−1

� (c+4)−2
4

�+1

)
(� (c+4)−2

4
	+ 1)(c+ 4)(

c−1
� c−2

4
�+1

)
(� c−2

4
	 + 1)c

c2c−2−α
2c−2

− 2� c−2
4
	 − 2

(c+ 4)2(c+4)−2−α
2(c+4)−2

− 2� (c+4)−2
4

	 − 2
≤ 32

3
.

Thus, for c ≥ 13, fα(c+4)
fα(c)

≤ 6
5
32
3
< 16 = g(c+4)

g(c)
and the result follows.

As we can observe from the proof of Claim 3, it is possible to obtain analogous
results to Theorem 3.1 for greater values of global irregularity.
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