Note on the domination number of graphs with forbidden cycles of lengths not divisible by 3

R. Khoeilar H. Karami

Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran khoeilar@azaruniv.ac.ir h.karami@azaruniv.ac.ir

M. CHELLALI

LAMDA-RO Laboratory, Department of Mathematics University of Blida B.P. 270, Blida, Algeria m_chellali@yahoo.com

S.M. Sheikholeslami*

Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran s.m.sheikholeslami@azaruniv.ac.ir

Abstract

In this note, we prove that the domination number of a graph of order n and minimum degree at least 2 that does not contain cycles of length 3r + 2, where $1 \le r \le k$, and cycles of length 3r + 1 for $1 \le r \le 2k + 2$, is at most $\frac{k+2}{3k+5}n$. This improves some previous results.

1 Introduction

In this paper, G = (V, E) is a simple graph with vertex set V of order n and edge set E. The *degree* of a vertex $v \in V$, denoted $\deg_G(v)$ (or simply $\deg(v)$ if no confusion arises), is the number of vertices adjacent to it. Let $\delta = \delta(G)$ denote the minimum degree of G.

A subset $S \subseteq V$ is a *dominating set* of G if every vertex v in V - S has at least one neighbor in S. The *domination* number $\gamma(G)$ equals the minimum cardinality

^{*} Corresponding author.

of a dominating set in G. A dominating set of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set. It is well-known that computing the domination number is NP-complete even for some classes of graphs such as bipartite or split graphs [1], which leads to looking for good upper and lower bounds in general graphs or in graphs with restrictions on the minimum degree or with forbidden induced subgraphs.

Ore's [5] classical upper bound on the domination number says that $\gamma(G) \leq n/2$ for graphs G with $\delta(G) \geq 1$. Restricted to graphs G with $\delta(G) \geq 2$, McCuaig and Shepherd [4] showed that $\gamma(G) \leq 2n/5$, with the exception of seven graphs. In 1996, Reed [6] made another improvement on the upper bound by showing that $\gamma(G) \leq 3n/8$ for graphs G with $\delta(G) \geq 3$. This last upper bound has been extended for graphs of minimum degree at least two with forbidden cycles. Indeed, Harant and Rautenbach [2] showed the following result, which was improved in 2011 by Henning et al. [3].

Theorem 1 ([2]). If G is a graph of order n, minimum degree at least 2 that does not contain cycles of length 4, 5, 7, 10 or 13, then $\gamma(G) \leq 3n/8$.

Theorem 2 ([3]). If G is a (C_4, C_5) -free connected graph of order $n \ge 14$ with $\delta(G) \ge 2$, then $\gamma(G) \le 3n/8$.

In this paper we provide an upper bound on the domination number of graphs with minimum degree at least two that do not contain certain special cycles.

2 Main result

Before stating our main result, we give some definitions and notation that will be useful in the sequel. Let G be a connected graph with $\delta(G) \geq 2$, and let B be the set of vertices of G with degree at least 3. A path $P = v_1 \dots v_k$ in G is called a 2-path if $V(P) \subseteq V(G) - B$, that is, $\deg(v_1) = \cdots = \deg(v_k) = 2$. The 2-path P is said to be maximal if each of the endvertices of P has a neighbor in B. Let P be a (q_1, q_k) -path in G and let q_1, q_2, \ldots, q_k $(k \ge 2)$ be some (distinguished) vertices belonging to P, where q_{i+1} follows q_i in the ordering of vertices of the path P, and let P_i be a subpath of P between q_i and q_{i+1} but not including them such that $|V(P_i)| \equiv 2 \pmod{3}$ and all vertices on P_i have degree 2, for each $i \in \{1, \ldots, k-1\}$. For the sake of simplicity, we will write $P = q_1 P_1 q_2 P_2 \dots q_k$ and call this a special path. Let C be a cycle in G and let q_1, q_2, \ldots, q_k $(k \ge 2)$ be some (distinguished) vertices belonging to C, where q_{i+1} follows q_i in the ordering of vertices of the cycle C, and let P_i be a subpath of C between q_i and q_{i+1} but not including them, such that $|V(P_i)| \equiv 2 \pmod{3}$ and all vertices on P_i have degree 2, for each $i \in \{1, \ldots, k\}$, where P_k connects q_k to q_1 . Again, for the sake of simplicity, we will write $C = q_1 P_1 q_2 P_2 \dots q_k P_k q_1$ and call this a special cycle. Note that the order of a special path is 1 (mod 3) while the order of a special cycle is 0 (mod 3). A cycle C is called a *tailed-cycle* if all vertices of C except one have degree 2. If C is a tailed-triangle and x is the unique vertex of C of degree at least 3, then x is said to be a triangular vertex. It is worth noting that a graph might have more tailed-triangles than triangular vertices.

Let \mathcal{A}_k be the set of all cycles C of G with length $\ell(C) = 3r + 2$ where $1 \le r \le k$, and let \mathcal{B}_k be the set of all cycles C of G with length $\ell(C) = 3r + 1$ where $1 \le r \le k$.

Now we are ready to state and prove the main result.

Theorem 3. Let G be a graph on n vertices with $\delta(G) \geq 2$ and $\mathcal{A}_k \cup \mathcal{B}_{2k+2} = \emptyset$. Then

$$\gamma(G) \le \frac{k+2}{3k+5}n$$

Furthermore, the bound is sharp for an infinite family of graphs.

Proof. Suppose, to the contrary, that there is a graph G with $\delta(G) \geq 2$ and $\mathcal{A}_k \cup \mathcal{B}_{2k+2} = \emptyset$ such that $\gamma(G) > \frac{k+2}{3k+5}n$. We will assume that such a graph G was chosen such that: (i) $|V(G)| + |E(G)| = d^*(G)$ is as small as possible, and (ii) subject to (i), the sum of the number of tailed-triangles and triangular vertices is as large as possible. Clearly, G is a connected graph. Moreover, from the assumption $\gamma(G) > \frac{k+2}{3k+5}n$, we deduce that G is not a cycle (or else, if G is a cycle, then it has length 0 (mod 3), or has length 1 (mod 3) on at least 6k + 10 vertices, or has length 2 (mod 3) on at least 3k + 5 vertices, which leads, according to each situation, to $\gamma(C_n) \leq \frac{k+2}{3k+5}n$ and thus $|B| \geq 1$. Now, if |B| = 1, then G is a graph obtained from a disjoint union of cycles by identifying one vertex from each cycle into one vertex, and clearly in this case $\gamma(G) \leq n/3 < \frac{k+2}{3k+5}n$, a contradiction. Hence $|B| \geq 2$. If there are two adjacent vertices $x, y \in B$, then, by the choice of G, we must have $\gamma(G - xy) \leq \frac{k+2}{3k+5}n$, and since the domination number does not increase by the removal of any edge, we get a contradiction. Hence B is an independent set of G. On the other hand, suppose that there is a (maximal) 2-path $P = v_1 \dots v_t$ between two vertices $x, y \in B$ but not including them, where $xv_1, yv_t \in E(G)$ and $t \equiv 0 \pmod{3}$. By our choice of G, $\gamma(G - V(P)) \leq \frac{k+2}{3k+5}(n-t)$, and, clearly, any $\gamma(G - V(P))$ -set can be extended to a dominating set of G by adding the vertices v_{3i+2} for $0 \leq i \leq t/3 - 1$. It follows that $\gamma(G) \leq \gamma(G - V(P)) + t/3$ and thus

$$\gamma(G) \le \frac{k+2}{3k+5}(n-t) + t/3 < \frac{k+2}{3k+5}(n-t) + \frac{k+2}{3k+5}t = \frac{k+2}{3k+5}n,$$

a contradiction. Therefore we can assume that such a path does not exist. For the remainder, we need to state some claims.

Claim 1. G has no special cycle.

Proof of the claim. Suppose, to the contrary, that $C = q_1 P_1 q_2 P_2 \dots q_t P_t q_1$ $(t \ge 2)$ is a special cycle in G. Note that C cannot be a tailed-cycle because $t \ge 2$. For each $j \in \{1, \dots, t\}$, let $P_j = x_1^j x_2^j \dots x_{s_j}^j$. Let G' be the graph obtained from G, by first deleting, for each j, either the vertices $x_2^j, \dots, x_{s_j-1}^j$ if $s_j \ge 3$ or the edge $x_1^j x_2^j$ if $s_j = 2$, and then adding the edge $x_{s_j}^j x_1^{j+1}$ for each j. Observe that $d^*(G') \le d^*(G)$.

If $d^*(G') = d^*(G)$, then G' would have more tailed-triangles and triangular vertices than G, which contradicts the choice of G. Hence we must have $d^*(G') < d^*(G)$. It follows that $\gamma(G') \leq \frac{k+2}{3k+5}n(G')$ and clearly G' has a $\gamma(G')$ -set S containing the vertices q_1, \ldots, q_t . Moreover, S can be extended to a dominating set of G of size $|S| + \sum_{j=1}^t \frac{s_j-2}{3}$, implying that

$$\gamma(G) \leq \frac{k+2}{3k+5}(n-\sum_{j=1}^{t}(s_j-2)) < \frac{k+2}{3k+5}n,$$

a contradiction.

Claim 2. G has no special path.

Proof of the claim. Suppose, to the contrary, that G has a special path, and let $P = q_1 P_1 q_2 P_2 \dots q_t P_t q_{t+1} \ (t \ge 1)$ be a longest one in G. For each $j \in \{1, \dots, t\}$, let $P_j = x_1^j x_2^j \dots x_{s_i}^j$. We claim that not both q_1 and q_{t+1} can be contained in tailedcycles. Assume, to the contrary, that both q_1 and q_{t+1} are contained in tailed-cycles. Let $C_1 = (q_1 u_1 \dots u_p q_1)$ be a tailed cycle containing q_1 and $C_2 = (q_{t+1} w_1 \dots w_m q_{t+1})$ be a tailed cycle containing q_{t+1} . If $p \equiv 0 \pmod{3}$ and $\deg_G(q_1) \geq 4$, then let $G' = G - \{u_1, \ldots, u_p\}$. By the choice of G, we have $\gamma(G') \leq \frac{k+2}{3k+5}n(G')$ and clearly any $\gamma(G')$ -set can be extended to a dominating set of G by adding the vertices u_{3i-1} for $1 \leq i \leq p/3$, yielding $\gamma(G) < \frac{k+2}{3k+5}n$, a contradiction. Hence $p \not\equiv 0 \pmod{3}$ or $\deg_G(q_1) = 3$. Likewise we have $m \not\equiv 0 \pmod{3}$ or $\deg_G(q_{t+1}) = 3$. Assume first that t = 1, and let G' be the graph obtained from G by deleting the vertices $x_1^1, x_2^1, \ldots, x_{s_1}^1$. By the choice of G, we have $\gamma(G') \leq \frac{k+2}{3k+5}n(G')$. We shall show that G' has a $\gamma(G')$ -set that contains q_1 and q_2 . Let S be a $\gamma(G')$ -set such that $|S \cap \{q_1, q_2\}|$ is as large as possible. If $q_1, q_2 \in S$, then we are done. Hence assume, without loss of generality, that $q_1 \notin S$. This implies that $\deg_G(q_1) \geq 4$. Our earlier assumption implies that $p \not\equiv 0 \pmod{3}$. Since $q_1 \not\in S$, we have $|S \cap \{u_1, \ldots, u_p\}| \geq |p/3| + 1$ and then $(S - \{u_1, \ldots, u_p\}) \cup \{q_1, u_{3i} \mid 1 \leq i \leq \lfloor p/3 \rfloor\}$ is a $\gamma(G')$ -set containing q_1 which contradicts the choice of S. Thus G' has a $\gamma(G')$ -set S that contains q_1 and q_2 . Obviously, S can be extended to a dominating set of G of size $|S| + \frac{s_1-2}{3}$, yielding $\gamma(G) < \frac{k+2}{3k+5}n$, a contradiction. Assume now $t \ge 2$, and let G' be the graph obtained from G by first deleting the vertices $x_1^1, x_{s_t}^t$, as well as, for every j, either the vertices $x_2^j, \ldots, x_{s_j-1}^j$ if $s_j \geq 3$ or the edge $x_1^j x_2^j$ if $s_j = 2$ and then adding the edge $x_{s_j}^j x_1^{j+1}$ for each j. The graph G' satisfies $d^*(G') < d^*(G)$ and thus, by the choice of G, we have $\gamma(G') \leq \frac{k+2}{3k+5}n(G')$. Also since G' has a $\gamma(G')$ -set Scontaining q_1, \ldots, q_t , and such a set S can be extended to a dominating set of G of size $|S| + \sum_{j=1}^{t} \frac{s_j-2}{3}$, we get $\gamma(G) < \frac{k+2}{3k+5}n$, which is a contradiction. Therefore q_1 and q_{t+1} cannot both be contained in tailed-cycles. Now, to achieve the proof of Claim 2, let us assume, without loss of generality, that q_{t+1} is not contained in a tailed-cycle. Since deg $(q_{t+1}) \geq 3$, let a_1, b_1 be two neighbors of q_{t+1} different from $x_{s_t}^t$. By the choice of G and our earlier assumption, a_1 and b_1 belong to 2-paths $Q_1 = a_1 \dots a_p$, $Q_2 = b_1 \dots b_q$, respectively. Let $a_p a, b_q b \in E(G)$, where $a, b \in B$. Note that $a_1 \neq a$ and $b_1 \neq b$. Since G does not contain (maximal) 2-paths of order $\equiv 0 \pmod{3}$, we have $|V(Q_i)| \neq 0 \pmod{3}$. Also, by the choice of P as being longest we have

 $|V(Q_i)| \not\equiv 2 \pmod{3}$. Hence $|V(Q_i)| \equiv 1 \pmod{3}$ for each $i \in \{1, 2\}$.

Consider the following two cases.

Case 1. $a \neq b$.

Let G' be the graph obtained from G by first deleting either the vertices a_2, \ldots, a_p if $p \ge 2$ or the edge a_1a ; either the vertices b_2, \ldots, b_q if $q \ge 2$ or the edge b_1b ; and then adding the edge a_1b_1 . The graph G' satisfies $d^*(G') < d^*(G)$ and thus we have $\gamma(G') \le \frac{k+2}{3k+5}n(G')$. Moreover, G' has a $\gamma(G')$ -set S containing the vertex q_{t+1} , and obviously S can be extended to a dominating set of G of size $|S| + \frac{p-1}{3} + \frac{q-1}{3}$, yielding $\gamma(G) < \frac{k+2}{3k+5}n$, which is a contradiction.

Case 2. a = b.

If $\deg(a) \ge 4$, then using an argument similar to that described in Case 1 leads to the same contradiction. Hence we assume that $\deg(a) = 3$. Let z_1 be the neighbor of a different from a_p, b_q . We distinguish two situations.

Subcase 2.1. $z_1 = q_1$.i

Let G' be the graph obtained from G by first deleting for every j, either the vertices $x_2^j, \ldots, x_{s_j-1}^j$ if $s_j \ge 3$ or the edge $x_1^j x_2^j$ when $s_j = 2$; either the vertices a_2, \ldots, a_p if $p \ge 2$ or the edge $a_1 b$ when p = 1, and the vertices b_1, \ldots, b_q , and then adding the edges $x_1^1 b, a_1 x_{s_t}^t$ and $x_{s_j}^j x_1^{j+1}$ for each j (for an example, see Figure 1). Clearly, G' satisfies $\gamma(G') \le \frac{k+2}{3k+5}n(G')$, and has a $\gamma(G')$ -set S containing vertices q_1, \ldots, q_t . Now, since S can be extended to a dominating set of G of size $|S| + \frac{p-1}{3} + \frac{q-1}{3} + \sum_{j=1}^t \frac{s_j-2}{3}$, we obtain $\gamma(G) < \frac{k+2}{3k+5}n$, a contradiction.

Figure 1: An example of the graphs G and G' in Subcase 2.1

Subcase 2.2. $z_1 \neq q_1$.

Suppose first that q_1 is not contained in a tailed-cycle. By symmetry with vertex q_{t+1} and noting the above situations, we may assume that there are two 2-paths $Q'_1 = a'_1a'_2 \ldots a'_{p_1}$ and $Q'_2 = b'_1b'_2 \ldots b'_{q_1}$ and a vertex a' such that $q_1a'_1, q_1b'_1, a'a'_{p_1}, a'b'_{q_1} \in E(G)$ and $\deg(a') = 3$. Let G' be the graph obtained from G by first deleting either the vertices a_2, \ldots, a_p if $p \ge 2$ or the edge a_1a ; either the vertices a'_2, \ldots, a'_{p_1} if $p_1 \ge 2$

106

or the edge a'_1a' , and for every j either the vertices $x_2^j, \ldots, x_{s_j-1}^j$ if $s_j \geq 3$ or the edge $x_1^j x_2^j$ when $s_j = 2$; and then adding the edges $a_1 x_{s_t}^t, x_1^1 a'_1, x_{s_j-1}^j x_1^{j+1}$ for each j. By the choice of G, we have $\gamma(G') \leq \frac{k+2}{3k+5}n(G')$ and clearly G' has a $\gamma(G')$ -set S containing q_1, \ldots, q_t . Moreover, since S can be extended to a dominating set of G of size $|S| + \frac{p-1}{3} + \frac{p_{1-1}}{3} + \sum_{j=1}^t \frac{s_j-2}{3}$, we deduce that $\gamma(G) < \frac{k+2}{3k+5}n$, a contradiction. Assume now that q_1 is contained in a tailed-cycle C. Let G' be the graph obtained from G by first deleting either the vertices a_2, \ldots, a_p if $p \geq 2$ or the edge a_1a ; for every j, either the vertices $x_2^j, \ldots, x_{s_j-1}^{j+1}$ if $s_j \geq 3$ or the edge $x_1^j x_2^j$ when $s_j = 2$, and then adding the edges $a_1 x_{s_t}^t, x_{s_j-1}^{j+1} x_1^{j+1}$ for each j. Clearly G' is the union of the graph $C + q_1 x_1^1$ and a graph G'' with $\delta(G'') \geq 2$. By the induction hypothesis, G'' satisfies $\gamma(G'') \leq \frac{k+2}{3k+5}n(G'')$ and has a $\gamma(G'')$ -set S_1 containing q_2, \ldots, q_{t+1} . On the other hand, clearly $\gamma(C + q_1 x_1^1) \leq \frac{k+2}{3k+5}n(C + q_1 x_1^1)$ and $C + q_1 x_1^1$ has a $\gamma(C + q_1 x_1^1)$ -set S_2 containing q_1 . Now $S_1 \cup S_2$ can be extended to a dominating set of G of size $|S_1 \cup S_2| + \frac{p-1}{3} + \sum_{j=1}^t \frac{s_j-2}{3}$, which leads to $\gamma(G) < \frac{k+2}{3k+5}n$, a contradiction.

Claim 3. G has no cycle C such that $|V(C) \cap B| \ge 2$.

Proof of the claim. Suppose, to the contrary, that G has a cycle C such that $|V(C) \cap B| \geq 2$. Thus there are vertices $q_1, \ldots, q_k \in B$ and 2-paths P_1, \ldots, P_k such that $C = q_1 P_1 q_2 P_2 \ldots, q_k P_k q_1$. Let $P_j = x_1^j x_2^j \ldots x_{s_j}^j$ for each j. Suppose first that $k \geq 3$. By the argument before Claim 1 and according to Claim 2, G has no 2-path of length $\equiv 0, 2 \pmod{3}$ between two vertices of B and thus we have $|V(P_i)| \equiv 1 \pmod{3}$. Let G' be the graph obtained from G by first deleting either the vertices $x_1^1, \ldots, x_{s_1-1}^1$ if $s_1 \geq 2$ or the edge $q_1 x_1^1$ when $s_1 = 1$, and either the vertices $x_2^2, \ldots, x_{s_2}^2$ if $s_2 \geq 2$ or the edge $q_3 x_{s_2}^2$ when $s_2 = 1$ and then adding the edges $x_{s_1}^1 x_1^2$. The graph G' satisfies $d^*(G') < d^*(G)$ and thus we have $\gamma(G') \leq \frac{k+2}{3k+5}n(G')$. Furthermore, G' has a $\gamma(G')$ -set S containing q_2 and since S can be extended to a dominating set of G of size $|S| + \frac{s_1-1}{3} + \frac{s_2-1}{3}$, we obtain $\gamma(G) < \frac{k+2}{3k+5}n$, a contradiction.

Assume now that k = 2. If $\deg(q_2) \ge 4$, then by considering the graph G' obtained from G by first deleting either the vertices $x_1^2, \ldots, x_{s_1}^{1}$ if $s_1 \ge 2$ or the edge $q_2x_1^1$ if $s_1 = 1$, either the vertices $x_1^2, \ldots, x_{s_{2-1}}^2$ if $s_2 \ge 2$ or the edge $q_2x_{s_2}^2$ if $s_2 = 1$ and then adding the edges $x_{s_2}^2x_1^1$, we get a contradiction as above. Hence let $\deg(q_2) = 3$, and, by symmetry, we have $\deg(q_1) = 3$. Since $C = q_1P_1q_2P_2q_1$ is a cycle of length 3r + 1 for some r, we deduce from the assumption $B_{2k+2} = \emptyset$ that $r \ge 2k + 3$ and so $n \ge 3r + 1 \ge 6k + 10$. If there exists another 2-path $x_1^3x_2^3 \ldots x_{s_3}^3$ between q_1 and q_2 , then we have $B = \{q_1, q_2\}$ and the set $S = \{q_1, q_2\} \cup \{x_{3i}^1, x_{3j}^2, x_{3i}^3 \mid 1 \le i \le (s_1 - 1)/3, 1 \le j \le (s_2 - 1)/3, 1 \le t \le (s_3 - 1)/3\}$ is a dominating set of G of size $\frac{n+1}{3} < \frac{k+2}{3k+5}n$, which leads to a contradiction. Hence we can assume that P_1 and P_2 are the only 2-paths between q_1 and q_2 . Let a_1 be the neighbor of q_1 different from $x_1^1, x_{s_2}^2$ and b_1 be the neighbor of q_2 different from $x_{s_1}^1, x_1^2$. Then a_1 belongs to a 2-path $Q_1 = a_1 \ldots a_p$ and b_1 belongs to a 2-path $Q_2 = b_1 \ldots b_q$. Let $a_p z, b_q z' \in E(G)$ where $z, z' \in B$. By our earlier assumption $p \equiv 1 \pmod{3}$ and $q \equiv 1 \pmod{3}$. Now, if z = z', then G contains a cycle $q_1P_1q_2Q_2zQ_1^{-1}q_1$ which contains three vertices of B, and as above we get a contradiction. Hence, we may assume that $z \neq z'$. In this case, let G' be the graph obtained from G by first deleting either the vertices $x_2^1, \ldots, x_{s_1}^1$ if

 $s_1 \geq 2$ or the edge $x_1^1 q_2$ if $s_1 = 1$, either the vertices $x_2^2, \ldots, x_{s_2}^2$ if $s_2 \geq 2$ or the edge $q_1 x_1^2$ otherwise, either the vertices a_2, \ldots, a_p if $p \geq 2$ or the edge $a_1 z$ otherwise, either the vertices b_2, \ldots, b_q if $q \geq 2$ or the edge $b_1 z'$ otherwise, and then adding the edges $a_1 x_1^1, b_1 x_1^2$. The graph G' has minimum degree at least 2, having in particular two components which are triangles: one contains the vertex q_1 and the other contains the vertex q_2 . Moreover, G' satisfies $d^*(G') < d^*(G)$, and thus $\gamma(G') \leq \frac{k+2}{3k+5}n(G')$. Since G' has a $\gamma(G')$ -set S containing q_1, q_2 , and such a set S can be extended to a dominating set of G of size $|S| + \frac{s_1-1}{3} + \frac{s_2-1}{3} + \frac{p-1}{3} + \frac{q-1}{3}$, we obtain $\gamma(G) < \frac{k+2}{3k+5}n$, which leads to a contradiction again.

We deduce from Claim 3 that all cycles of G are tailed-cycles. Let G_1 be the graph obtained from G by deleting the vertices of all cycles apart from the vertices with degree at least 3. Clearly, G_1 is a tree.

Claim 4. G_1 is a path.

Proof of the claim. We only need to prove that $\Delta(G_1) \leq 2$. Suppose, to the contrary, that G_1 has a vertex x with degree at least 3. Assume that x_1^1, \ldots, x_1^t are the neighbors of x in G_1 . Then for each i, vertex x_1^i belongs to a maximal 2-path $x_1^i x_2^i \ldots x_{s_i}^i$ in G. By our earlier assumption, we have $s_i \equiv 1 \pmod{3}$ for each i. Assume first that x belongs to no cycle in G. In this case, let G' be the graph obtained from G by deleting the vertex x and the vertices $x_1^i, \ldots, x_{s_i}^i$ for each i. Clearly $\delta(G') \geq 2$ and by the choice of G we have $\gamma(G') < \frac{k+2}{3k+5}n(G')$. Obviously, any $\gamma(G')$ -set can be extended to a dominating set of G of size $\gamma(G') + 1 + \sum_{i=1}^t \frac{s_i-1}{3}$ and it follows that $\gamma(G) < \frac{k+2}{3k+5}n$, which is a contradiction. Assume now that x belongs to a cycle C in G. In this case, let G' be the graph obtained from G by deleting the vertex x and the set of x = 0 and x = 0. Suppose, there is a $\gamma(G')$ -set that contains x, and such a set can be extended to a dominating set of G of size $\gamma(G') < \frac{k+2}{3k+5}n(G')$. Moreover, there is a $\gamma(G')$ -set that contains x, and such a set can be extended to a dominating set of G of size $\gamma(G') < \frac{k+2}{3k+5}n(G')$.

Thus G_1 is a path. It follows that all vertices in B contained in a tailed cycle. Let x be a vertex of degree 1 in G_1 , and let $xa_1 \ldots a_p y$ be a subpath of G_1 such that $y \in B$ and deg $(a_i) = 2$ for each $i \in \{1, \ldots, p\}$. By our earlier assumption $p \equiv 1 \pmod{3}$. Let G' be the graph obtained from G by deleting the vertices a_1, \ldots, a_p . By the choice of G, we have $\gamma(G') \leq \frac{k+2}{3k+5}n(G')$ and clearly G' has a $\gamma(G')$ -set S containing x. Now, since S can be extended to a dominating set of G of size $|S| + \frac{p-1}{3}$, we obtain $\gamma(G) < \frac{k+2}{3k+5}n$, which leads to a contradiction. This proves the bound.

To see the sharpness of the bound, let G be the connected graph obtained from $m \geq 2$ disjoint cycles $C_{3k+5}^j = (x_1^j x_2^j \dots x_{3k+5}^j x_1^j), 1 \leq j \leq m$, by adding the edges $x_1^1 x_1^2, \dots, x_1^1 x_1^m$. Clearly, $\delta(G) \geq 2$, $n(G) = m(3k+5), \mathcal{A}_k \cup \mathcal{B}_{2k+2} = \emptyset$ and $\gamma(G) = m(k+2) = \frac{k+2}{3k+5}n(G)$. This completes the proof.

It is worth mentioning that, for k = 1, Theorem 1 immediately follows from Theorem 3. Moreover, for $k \ge 2$, Theorem 3 provides an improvement on the $\frac{3}{8}n$ -upper bound for graphs without special cycles.

We conclude this paper with an open problem and a conjecture.

Problem. Characterize all graphs G on n vertices with $\delta(G) \geq 2$ and with $\mathcal{A}_k \cup \mathcal{B}_{2k+2} = \emptyset$ such that $\gamma(G) = \frac{k+2}{3k+5}n$.

Conjecture. Let k be a nonnegative integer and let G be a multigraph of order $n \ge 6k + 10$ with $\delta(G) \ge 2$. If G has no induced cycle of lengths 3r + 1, 3r + 2 for $0 \le r \le k$, then $\gamma(G) < \frac{k+2}{3k+5}n$.

Acknowledgements

The authors are deeply thankful to the reviewers for their excellent suggestions to improve the quality of this manuscript.

References

- [1] A. A. Bertossi, Dominating sets for split and bipartite graphs, *Inform. Process. Lett.* 19 (1984), 37–40.
- [2] J. Harant and D. Rautenbach, Domination in bipartite graphs, *Discrete Math.* 309 (2009), 113–122.
- [3] M. A. Henning, I. Schiermeyer and A. Yeo, A new bound on the domination number of graphs with minimum degree two, *Electron. J. Comb.* 18 (2011), #P12.
- [4] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989), 749–762.
- [5] O. Ore, *Theory of Graphs*, vol. 38, American Society Colloquium Publications, Providence, RI, 1962.
- [6] B.A. Reed, Paths, stars and the number three, *Combin. Probab. Comput.* 5 (1996), 277–295.
- [7] E. F. Shan, M. Y. Sohn, X. D. Yuan and M. A. Henning, Domination number in graphs with minimum degree two, Acta Mathematica Sinica, English Series 25 (2009), 1253–1268.

(Received 21 Apr 2021; revised 9 Mar 2022)