Note on the domination number of graphs with forbidden cycles of lengths not divisible by 3

R. Khoeilar H. Karami
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
khoeilar@azaruniv.ac.ir h.karami@azaruniv.ac.ir
M. Chellali
LAMDA-RO Laboratory, Department of Mathematics
University of Blida
B.P. 270, Blida, Algeria
m_chellali@yahoo.com
S.M. Sheikholeslami*
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
s.m.sheikholeslami@azaruniv.ac.ir

Abstract

In this note, we prove that the domination number of a graph of order n and minimum degree at least 2 that does not contain cycles of length $3 r+2$, where $1 \leq r \leq k$, and cycles of length $3 r+1$ for $1 \leq r \leq 2 k+2$, is at most $\frac{k+2}{3 k+5} n$. This improves some previous results.

1 Introduction

In this paper, $G=(V, E)$ is a simple graph with vertex set V of order n and edge set E. The degree of a vertex $v \in V$, denoted $\operatorname{deg}_{G}(v)$ (or $\operatorname{simply} \operatorname{deg}(v)$ if no confusion arises), is the number of vertices adjacent to it. Let $\delta=\delta(G)$ denote the minimum degree of G.

A subset $S \subseteq V$ is a dominating set of G if every vertex v in $V-S$ has at least one neighbor in S. The domination number $\gamma(G)$ equals the minimum cardinality

[^0]of a dominating set in G. A dominating set of cardinality $\gamma(G)$ is called a $\gamma(G)$-set. It is well-known that computing the domination number is NP-complete even for some classes of graphs such as bipartite or split graphs [1], which leads to looking for good upper and lower bounds in general graphs or in graphs with restrictions on the minimum degree or with forbidden induced subgraphs.

Ore's [5] classical upper bound on the domination number says that $\gamma(G) \leq n / 2$ for graphs G with $\delta(G) \geq 1$. Restricted to graphs G with $\delta(G) \geq 2$, McCuaig and Shepherd [4] showed that $\gamma(G) \leq 2 n / 5$, with the exception of seven graphs. In 1996, Reed [6] made another improvement on the upper bound by showing that $\gamma(G) \leq 3 n / 8$ for graphs G with $\delta(G) \geq 3$. This last upper bound has been extended for graphs of minimum degree at least two with forbidden cycles. Indeed, Harant and Rautenbach [2] showed the following result, which was improved in 2011 by Henning et al. [3].

Theorem 1 ([2]). If G is a graph of order n, minimum degree at least 2 that does not contain cycles of length $4,5,7,10$ or 13 , then $\gamma(G) \leq 3 n / 8$.

Theorem 2 ([3]). If G is a $\left(C_{4}, C_{5}\right)$-free connected graph of order $n \geq 14$ with $\delta(G) \geq 2$, then $\gamma(G) \leq 3 n / 8$.

In this paper we provide an upper bound on the domination number of graphs with minimum degree at least two that do not contain certain special cycles.

2 Main result

Before stating our main result, we give some definitions and notation that will be useful in the sequel. Let G be a connected graph with $\delta(G) \geq 2$, and let B be the set of vertices of G with degree at least 3. A path $P=v_{1} \ldots v_{k}$ in G is called a 2-path if $V(P) \subseteq V(G)-B$, that is, $\operatorname{deg}\left(v_{1}\right)=\cdots=\operatorname{deg}\left(v_{k}\right)=2$. The 2 -path P is said to be maximal if each of the endvertices of P has a neighbor in B. Let P be a $\left(q_{1}, q_{k}\right)$-path in G and let $q_{1}, q_{2}, \ldots, q_{k}(k \geq 2)$ be some (distinguished) vertices belonging to P, where q_{i+1} follows q_{i} in the ordering of vertices of the path P, and let P_{i} be a subpath of P between q_{i} and q_{i+1} but not including them such that $\left|V\left(P_{i}\right)\right| \equiv 2(\bmod 3)$ and all vertices on P_{i} have degree 2 , for each $i \in\{1, \ldots, k-1\}$. For the sake of simplicity, we will write $P=q_{1} P_{1} q_{2} P_{2} \ldots q_{k}$ and call this a special path. Let C be a cycle in G and let $q_{1}, q_{2}, \ldots, q_{k}(k \geq 2)$ be some (distinguished) vertices belonging to C, where q_{i+1} follows q_{i} in the ordering of vertices of the cycle C, and let P_{i} be a subpath of C between q_{i} and q_{i+1} but not including them, such that $\left|V\left(P_{i}\right)\right| \equiv 2(\bmod 3)$ and all vertices on P_{i} have degree 2 , for each $i \in\{1, \ldots, k\}$, where P_{k} connects q_{k} to q_{1}. Again, for the sake of simplicity, we will write $C=q_{1} P_{1} q_{2} P_{2} \ldots q_{k} P_{k} q_{1}$ and call this a special cycle. Note that the order of a special path is $1(\bmod 3)$ while the order of a special cycle is $0(\bmod 3)$. A cycle C is called a tailed-cycle if all vertices of C except one have degree 2 . If C is a tailed-triangle and x is the unique vertex of C of degree at least 3 , then x is said to be a triangular vertex. It is worth noting that a graph might have more tailed-triangles than triangular vertices.

Let \mathcal{A}_{k} be the set of all cycles C of G with length $\ell(C)=3 r+2$ where $1 \leq r \leq k$, and let \mathcal{B}_{k} be the set of all cycles C of G with length $\ell(C)=3 r+1$ where $1 \leq r \leq k$.

Now we are ready to state and prove the main result.
Theorem 3. Let G be a graph on n vertices with $\delta(G) \geq 2$ and $\mathcal{A}_{k} \cup \mathcal{B}_{2 k+2}=\emptyset$. Then

$$
\gamma(G) \leq \frac{k+2}{3 k+5} n
$$

Furthermore, the bound is sharp for an infinite family of graphs.
Proof. Suppose, to the contrary, that there is a graph G with $\delta(G) \geq 2$ and $\mathcal{A}_{k} \cup \mathcal{B}_{2 k+2}=\emptyset$ such that $\gamma(G)>\frac{k+2}{3 k+5} n$. We will assume that such a graph G was chosen such that: (i) $|V(G)|+|E(G)|=d^{*}(G)$ is as small as possible, and (ii) subject to (i), the sum of the number of tailed-triangles and triangular vertices is as large as possible. Clearly, G is a connected graph. Moreover, from the assumption $\gamma(G)>\frac{k+2}{3 k+5} n$, we deduce that G is not a cycle (or else, if G is a cycle, then it has length $0(\bmod 3)$, or has length $1(\bmod 3)$ on at least $6 k+10$ vertices, or has length $2(\bmod 3)$ on at least $3 k+5$ vertices, which leads, according to each situation, to $\left.\gamma\left(C_{n}\right) \leq \frac{k+2}{3 k+5} n\right)$ and thus $|B| \geq 1$. Now, if $|B|=1$, then G is a graph obtained from a disjoint union of cycles by identifying one vertex from each cycle into one vertex, and clearly in this case $\gamma(G) \leq n / 3<\frac{k+2}{3 k+5} n$, a contradiction. Hence $|B| \geq 2$. If there are two adjacent vertices $x, y \in B$, then, by the choice of G, we must have $\gamma(G-x y) \leq \frac{k+2}{3 k+5} n$, and since the domination number does not increase by the removal of any edge, we get a contradiction. Hence B is an independent set of G. On the other hand, suppose that there is a (maximal) 2-path $P=v_{1} \ldots v_{t}$ between two vertices $x, y \in B$ but not including them, where $x v_{1}, y v_{t} \in E(G)$ and $t \equiv 0(\bmod 3)$. By our choice of $G, \gamma(G-V(P)) \leq \frac{k+2}{3 k+5}(n-t)$, and, clearly, any $\gamma(G-V(P))$-set can be extended to a dominating set of G by adding the vertices $v_{3 i+2}$ for $0 \leq i \leq t / 3-1$. It follows that $\gamma(G) \leq \gamma(G-V(P))+t / 3$ and thus

$$
\begin{aligned}
\gamma(G) & \leq \frac{k+2}{3 k+5}(n-t)+t / 3 \\
& <\frac{k+2}{3 k+5}(n-t)+\frac{k+2}{3 k+5} t \\
& =\frac{k+2}{3 k+5} n
\end{aligned}
$$

a contradiction. Therefore we can assume that such a path does not exist. For the remainder, we need to state some claims.
Claim 1. G has no special cycle.
Proof of the claim. Suppose, to the contrary, that $C=q_{1} P_{1} q_{2} P_{2} \ldots q_{t} P_{t} q_{1}(t \geq 2)$ is a special cycle in G. Note that C cannot be a tailed-cycle because $t \geq 2$. For each $j \in\{1, \ldots, t\}$, let $P_{j}=x_{1}^{j} x_{2}^{j} \ldots x_{s_{j}}^{j}$. Let G^{\prime} be the graph obtained from G, by first deleting, for each j, either the vertices $x_{2}^{j}, \ldots, x_{s_{j}-1}^{j}$ if $s_{j} \geq 3$ or the edge $x_{1}^{j} x_{2}^{j}$ if $s_{j}=2$, and then adding the edge $x_{s_{j}}^{j} i_{1}^{j+1}$ for each j. Observe that $d^{*}\left(G^{\prime}\right) \leq d^{*}(G)$.

If $d^{*}\left(G^{\prime}\right)=d^{*}(G)$, then G^{\prime} would have more tailed-triangles and triangular vertices than G, which contradicts the choice of G. Hence we must have $d^{*}\left(G^{\prime}\right)<d^{*}(G)$. It follows that $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$ and clearly G^{\prime} has a $\gamma\left(G^{\prime}\right)$-set S containing the vertices q_{1}, \ldots, q_{t}. Moreover, S can be extended to a dominating set of G of size $|S|+\sum_{j=1}^{t} \frac{s_{j}-2}{3}$, implying that

$$
\gamma(G) \leq \frac{k+2}{3 k+5}\left(n-\sum_{j=1}^{t}\left(s_{j}-2\right)\right)<\frac{k+2}{3 k+5} n
$$

a contradiction.
Claim 2. G has no special path.
Proof of the claim. Suppose, to the contrary, that G has a special path, and let $P=q_{1} P_{1} q_{2} P_{2} \ldots q_{t} P_{t} q_{t+1}(t \geq 1)$ be a longest one in G. For each $j \in\{1, \ldots, t\}$, let $P_{j}=x_{1}^{j} x_{2}^{j} \ldots x_{s_{j}}^{j}$. We claim that not both q_{1} and q_{t+1} can be contained in tailedcycles. Assume, to the contrary, that both q_{1} and q_{t+1} are contained in tailed-cycles. Let $C_{1}=\left(q_{1} u_{1} \ldots u_{p} q_{1}\right)$ be a tailed cycle containing q_{1} and $C_{2}=\left(q_{t+1} w_{1} \ldots w_{m} q_{t+1}\right)$ be a tailed cycle containing q_{t+1}. If $p \equiv 0(\bmod 3)$ and $\operatorname{deg}_{G}\left(q_{1}\right) \geq 4$, then let $G^{\prime}=G-\left\{u_{1}, \ldots, u_{p}\right\}$. By the choice of G, we have $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$ and clearly any $\gamma\left(G^{\prime}\right)$-set can be extended to a dominating set of G by adding the vertices $u_{3 i-1}$ for $1 \leq i \leq p / 3$, yielding $\gamma(G)<\frac{k+2}{3 k+5} n$, a contradiction. Hence $p \not \equiv 0(\bmod 3)$ or $\operatorname{deg}_{G}\left(q_{1}\right)=3$. Likewise we have $m \not \equiv 0(\bmod 3)$ or $\operatorname{deg}_{G}\left(q_{t+1}\right)=3$. Assume first that $t=1$, and let G^{\prime} be the graph obtained from G by deleting the vertices $x_{1}^{1}, x_{2}^{1}, \ldots, x_{s_{1}}^{1}$. By the choice of G, we have $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$. We shall show that G^{\prime} has a $\gamma\left(G^{\prime}\right)$-set that contains q_{1} and q_{2}. Let S be a $\gamma\left(G^{\prime}\right)$-set such that $\left|S \cap\left\{q_{1}, q_{2}\right\}\right|$ is as large as possible. If $q_{1}, q_{2} \in S$, then we are done. Hence assume, without loss of generality, that $q_{1} \notin S$. This implies that $\operatorname{deg}_{G}\left(q_{1}\right) \geq 4$. Our earlier assumption implies that $p \not \equiv 0(\bmod 3)$. Since $q_{1} \notin S$, we have $\left|S \cap\left\{u_{1}, \ldots, u_{p}\right\}\right| \geq\lfloor p / 3\rfloor+1$ and then $\left(S-\left\{u_{1}, \ldots, u_{p}\right\}\right) \cup\left\{q_{1}, u_{3 i} \mid 1 \leq i \leq\lfloor p / 3\rfloor\right\}$ is a $\gamma\left(G^{\prime}\right)$-set containing q_{1} which contradicts the choice of S. Thus G^{\prime} has a $\gamma\left(G^{\prime}\right)$-set S that contains q_{1} and q_{2}. Obviously, S can be extended to a dominating set of G of size $|S|+\frac{s_{1}-2}{3}$, yielding $\gamma(G)<\frac{k+2}{3 k+5} n$, a contradiction. Assume now $t \geq 2$, and let G^{\prime} be the graph obtained from G by first deleting the vertices $x_{1}^{1}, x_{s_{t}}^{t}$, as well as, for every j, either the vertices $x_{2}^{j}, \ldots, x_{s_{j}-1}^{j}$ if $s_{j} \geq 3$ or the edge $x_{1}^{j} x_{2}^{j}$ if $s_{j}=2$ and then adding the edge $x_{s_{j}}^{j} x_{1}^{j+1}$ for each j. The graph G^{\prime} satisfies $d^{*}\left(G^{\prime}\right)<d^{*}(G)$ and thus, by the choice of G, we have $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$. Also since G^{\prime} has a $\gamma\left(G^{\prime}\right)$-set S containing q_{1}, \ldots, q_{t}, and such a set S can be extended to a dominating set of G of size $|S|+\sum_{j=1}^{t} \frac{s_{j}-2}{3}$, we get $\gamma(G)<\frac{k+2}{3 k+5} n$, which is a contradiction. Therefore q_{1} and q_{t+1} cannot both be contained in tailed-cycles. Now, to achieve the proof of Claim 2, let us assume, without loss of generality, that q_{t+1} is not contained in a tailed-cycle. Since $\operatorname{deg}\left(q_{t+1}\right) \geq 3$, let a_{1}, b_{1} be two neighbors of q_{t+1} different from $x_{s_{t}}^{t}$. By the choice of G and our earlier assumption, a_{1} and b_{1} belong to 2-paths $Q_{1}=a_{1} \ldots a_{p}$, $Q_{2}=b_{1} \ldots b_{q}$, respectively. Let $a_{p} a, b_{q} b \in E(G)$, where $a, b \in B$. Note that $a_{1} \neq a$ and $b_{1} \neq b$. Since G does not contain (maximal) 2 -paths of order $\equiv 0(\bmod 3)$, we have $\left|V\left(Q_{i}\right)\right| \not \equiv 0(\bmod 3)$. Also, by the choice of P as being longest we have
$\left|V\left(Q_{i}\right)\right| \not \equiv 2(\bmod 3)$. Hence $\left|V\left(Q_{i}\right)\right| \equiv 1(\bmod 3)$ for each $i \in\{1,2\}$.
Consider the following two cases.
Case 1. $a \neq b$.
Let G^{\prime} be the graph obtained from G by first deleting either the vertices a_{2}, \ldots, a_{p} if $p \geq 2$ or the edge $a_{1} a$; either the vertices b_{2}, \ldots, b_{q} if $q \geq 2$ or the edge $b_{1} b$; and then adding the edge $a_{1} b_{1}$. The graph G^{\prime} satisfies $d^{*}\left(G^{\prime}\right)<d^{*}(G)$ and thus we have $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$. Moreover, G^{\prime} has a $\gamma\left(G^{\prime}\right)$-set S containing the vertex q_{t+1}, and obviously S can be extended to a dominating set of G of size $|S|+\frac{p-1}{3}+\frac{q-1}{3}$, yielding $\gamma(G)<\frac{k+2}{3 k+5} n$, which is a contradiction.
Case 2. $a=b$.
If $\operatorname{deg}(a) \geq 4$, then using an argument similar to that described in Case 1 leads to the same contradiction. Hence we assume that $\operatorname{deg}(a)=3$. Let z_{1} be the neighbor of a different from a_{p}, b_{q}. We distinguish two situations.

Subcase 2.1. $z_{1}=q_{1} . \mathrm{i}$
Let G^{\prime} be the graph obtained from G by first deleting for every j, either the vertices $x_{2}^{j}, \ldots, x_{s_{j}-1}^{j}$ if $s_{j} \geq 3$ or the edge $x_{1}^{j} x_{2}^{j}$ when $s_{j}=2$; either the vertices a_{2}, \ldots, a_{p} if $p \geq 2$ or the edge $a_{1} b$ when $p=1$, and the vertices b_{1}, \ldots, b_{q}, and then adding the edges $x_{1}^{1} b, a_{1} x_{s_{t}}^{t}$ and $x_{s_{j}}^{j} x_{1}^{j+1}$ for each j (for an example, see Figure 1). Clearly, G^{\prime} satisfies $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$, and has a $\gamma\left(G^{\prime}\right)$-set S containing vertices q_{1}, \ldots, q_{t}. Now, since S can be extended to a dominating set of G of size $|S|+\frac{p-1}{3}+\frac{q-1}{3}+\sum_{j=1}^{t} \frac{s_{j}-2}{3}$, we obtain $\gamma(G)<\frac{k+2}{3 k+5} n$, a contradiction.

Figure 1: An example of the graphs G and G^{\prime} in Subcase 2.1
Subcase 2.2. $z_{1} \neq q_{1}$.
Suppose first that q_{1} is not contained in a tailed-cycle. By symmetry with vertex q_{t+1} and noting the above situations, we may assume that there are two 2-paths $Q_{1}^{\prime}=$ $a_{1}^{\prime} a_{2}^{\prime} \ldots a_{p_{1}}^{\prime}$ and $Q_{2}^{\prime}=b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q_{1}}^{\prime}$ and a vertex a^{\prime} such that $q_{1} a_{1}^{\prime}, q_{1} b_{1}^{\prime}, a^{\prime} a_{p_{1}}^{\prime}, a^{\prime} b_{q_{1}}^{\prime} \in$ $E(G)$ and $\operatorname{deg}\left(a^{\prime}\right)=3$. Let G^{\prime} be the graph obtained from G by first deleting either the vertices a_{2}, \ldots, a_{p} if $p \geq 2$ or the edge $a_{1} a$; either the vertices $a_{2}^{\prime}, \ldots, a_{p_{1}}^{\prime}$ if $p_{1} \geq 2$
or the edge $a_{1}^{\prime} a^{\prime}$, and for every j either the vertices $x_{2}^{j}, \ldots, x_{s_{j}-1}^{j}$ if $s_{j} \geq 3$ or the edge $x_{1}^{j} x_{2}^{j}$ when $s_{j}=2$; and then adding the edges $a_{1} x_{s_{t}}^{t}, x_{1}^{1} a_{1}^{\prime}, x_{s_{j}-1}^{j} x_{1}^{j+1}$ for each j. By the choice of G, we have $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$ and clearly G^{\prime} has a $\gamma\left(G^{\prime}\right)$-set S containing q_{1}, \ldots, q_{t}. Moreover, since S can be extended to a dominating set of G of size $|S|+\frac{p-1}{3}+\frac{p_{1}-1}{3}+\sum_{j=1}^{t} \frac{s_{j}-2}{3}$, we deduce that $\gamma(G)<\frac{k+2}{3 k+5} n$, a contradiction. Assume now that q_{1} is contained in a tailed-cycle C. Let G^{\prime} be the graph obtained from G by first deleting either the vertices a_{2}, \ldots, a_{p} if $p \geq 2$ or the edge $a_{1} a$; for every j, either the vertices $x_{2}^{j}, \ldots, x_{s_{j}-1}^{j}$ if $s_{j} \geq 3$ or the edge $x_{1}^{j} x_{2}^{j}$ when $s_{j}=2$, and then adding the edges $a_{1} x_{s_{t}}^{t}, x_{s_{j}-1}^{j} x_{1}^{j+1}$ for each j. Clearly G^{\prime} is the union of the graph $C+q_{1} x_{1}^{1}$ and a graph $G^{\prime \prime}$ with $\delta\left(G^{\prime \prime}\right) \geq 2$. By the induction hypothesis, $G^{\prime \prime}$ satisfies $\gamma\left(G^{\prime \prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime \prime}\right)$ and has a $\gamma\left(G^{\prime \prime}\right)$-set S_{1} containing q_{2}, \ldots, q_{t+1}. On the other hand, clearly $\gamma\left(C+q_{1} x_{1}^{1}\right) \leq \frac{k+2}{3 k+5} n\left(C+q_{1} x_{1}^{1}\right)$ and $C+q_{1} x_{1}^{1}$ has a $\gamma\left(C+q_{1} x_{1}^{1}\right)$ set S_{2} containing q_{1}. Now $S_{1} \cup S_{2}$ can be extended to a dominating set of G of size $\left|S_{1} \cup S_{2}\right|+\frac{p-1}{3}+\sum_{j=1}^{t} \frac{s_{j}-2}{3}$, which leads to $\gamma(G)<\frac{k+2}{3 k+5} n$, a contradiction.
Claim 3. G has no cycle C such that $|V(C) \cap B| \geq 2$.
Proof of the claim. Suppose, to the contrary, that G has a cycle C such that $\mid V(C) \cap$ $B \mid \geq 2$. Thus there are vertices $q_{1}, \ldots, q_{k} \in B$ and 2-paths P_{1}, \ldots, P_{k} such that $C=q_{1} P_{1} q_{2} P_{2} \ldots, q_{k} P_{k} q_{1}$. Let $P_{j}=x_{1}^{j} x_{2}^{j} \ldots x_{s_{j}}^{j}$ for each j. Suppose first that $k \geq 3$. By the argument before Claim 1 and according to Claim 2, G has no 2-path of length $\equiv 0,2(\bmod 3)$ between two vertices of B and thus we have $\left|V\left(P_{i}\right)\right| \equiv 1(\bmod 3)$. Let G^{\prime} be the graph obtained from G by first deleting either the vertices $x_{1}^{1}, \ldots, x_{s_{1}-1}^{1}$ if $s_{1} \geq 2$ or the edge $q_{1} x_{1}^{1}$ when $s_{1}=1$, and either the vertices $x_{2}^{2}, \ldots, x_{s_{2}}^{2}$ if $s_{2} \geq 2$ or the edge $q_{3} x_{s_{2}}^{2}$ when $s_{2}=1$ and then adding the edges $x_{s_{1}}^{1} x_{1}^{2}$. The graph G^{\prime} satisfies $d^{*}\left(G^{\prime}\right)<d^{*}(G)$ and thus we have $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$. Furthermore, G^{\prime} has a $\gamma\left(G^{\prime}\right)$-set S containing q_{2} and since S can be extended to a dominating set of G of size $|S|+\frac{s_{1}-1}{3}+\frac{s_{2}-1}{3}$, we obtain $\gamma(G)<\frac{k+2}{3 k+5} n$, a contradiction.

Assume now that $k=2$. If $\operatorname{deg}\left(q_{2}\right) \geq 4$, then by considering the graph G^{\prime} obtained from G by first deleting either the vertices $x_{2}^{1}, \ldots, x_{s_{1}}^{1}$ if $s_{1} \geq 2$ or the edge $q_{2} x_{1}^{1}$ if $s_{1}=1$, either the vertices $x_{1}^{2}, \ldots, x_{s_{2}-1}^{2}$ if $s_{2} \geq 2$ or the edge $q_{2} x_{s_{2}}^{2}$ if $s_{2}=1$ and then adding the edges $x_{s_{2}}^{2} x_{1}^{1}$, we get a contradiction as above. Hence let $\operatorname{deg}\left(q_{2}\right)=3$, and, by symmetry, we have $\operatorname{deg}\left(q_{1}\right)=3$. Since $C=q_{1} P_{1} q_{2} P_{2} q_{1}$ is a cycle of length $3 r+1$ for some r, we deduce from the assumption $B_{2 k+2}=\emptyset$ that $r \geq 2 k+3$ and so $n \geq 3 r+1 \geq 6 k+10$. If there exists another 2-path $x_{1}^{3} x_{2}^{3} \ldots x_{s_{3}}^{3}$ between q_{1} and q_{2}, then we have $B=\left\{q_{1}, q_{2}\right\}$ and the set $S=\left\{q_{1}, q_{2}\right\} \cup\left\{x_{3 i}^{1}, x_{3 j}^{2}, x_{3 t}^{3} \mid 1 \leq i \leq\right.$ $\left.\left(s_{1}-1\right) / 3,1 \leq j \leq\left(s_{2}-1\right) / 3,1 \leq t \leq\left(s_{3}-1\right) / 3\right\}$ is a dominating set of G of size $\frac{n+1}{3}<\frac{k+2}{3 k+5} n$, which leads to a contradiction. Hence we can assume that P_{1} and P_{2} are the only 2 -paths between q_{1} and q_{2}. Let a_{1} be the neighbor of q_{1} different from $x_{1}^{1}, x_{s_{2}}^{2}$ and b_{1} be the neighbor of q_{2} different from $x_{s_{1}}^{1}, x_{1}^{2}$. Then a_{1} belongs to a 2-path $Q_{1}=a_{1} \ldots a_{p}$ and b_{1} belongs to a 2-path $Q_{2}=b_{1} \ldots b_{q}$. Let $a_{p} z, b_{q} z^{\prime} \in E(G)$ where $z, z^{\prime} \in B$. By our earlier assumption $p \equiv 1(\bmod 3)$ and $q \equiv 1(\bmod 3)$. Now, if $z=z^{\prime}$, then G contains a cycle $q_{1} P_{1} q_{2} Q_{2} z Q_{1}^{-1} q_{1}$ which contains three vertices of B, and as above we get a contradiction. Hence, we may assume that $z \neq z^{\prime}$. In this case, let G^{\prime} be the graph obtained from G by first deleting either the vertices $x_{2}^{1}, \ldots, x_{s_{1}}^{1}$ if
$s_{1} \geq 2$ or the edge $x_{1}^{1} q_{2}$ if $s_{1}=1$, either the vertices $x_{2}^{2}, \ldots, x_{s_{2}}^{2}$ if $s_{2} \geq 2$ or the edge $q_{1} x_{1}^{2}$ otherwise, either the vertices a_{2}, \ldots, a_{p} if $p \geq 2$ or the edge $a_{1} z$ otherwise, either the vertices b_{2}, \ldots, b_{q} if $q \geq 2$ or the edge $b_{1} z^{\prime}$ otherwise, and then adding the edges $a_{1} x_{1}^{1}, b_{1} x_{1}^{2}$. The graph G^{\prime} has minimum degree at least 2 , having in particular two components which are triangles: one contains the vertex q_{1} and the other contains the vertex q_{2}. Moreover, G^{\prime} satisfies $d^{*}\left(G^{\prime}\right)<d^{*}(G)$, and thus $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$. Since G^{\prime} has a $\gamma\left(G^{\prime}\right)$-set S containing q_{1}, q_{2}, and such a set S can be extended to a dominating set of G of size $|S|+\frac{s_{1}-1}{3}+\frac{s_{2}-1}{3}+\frac{p-1}{3}+\frac{q-1}{3}$, we obtain $\gamma(G)<\frac{k+2}{3 k+5} n$, which leads to a contradiction again.

We deduce from Claim 3 that all cycles of G are tailed-cycles. Let G_{1} be the graph obtained from G by deleting the vertices of all cycles apart from the vertices with degree at least 3. Clearly, G_{1} is a tree.
Claim 4. G_{1} is a path.
Proof of the claim. We only need to prove that $\Delta\left(G_{1}\right) \leq 2$. Suppose, to the contrary, that G_{1} has a vertex x with degree at least 3 . Assume that $x_{1}^{1}, \ldots, x_{1}^{t}$ are the neighbors of x in G_{1}. Then for each i, vertex x_{1}^{i} belongs to a maximal 2-path $x_{1}^{i} x_{2}^{i} \ldots x_{s_{i}}^{i}$ in G. By our earlier assumption, we have $s_{i} \equiv 1(\bmod 3)$ for each i. Assume first that x belongs to no cycle in G. In this case, let G^{\prime} be the graph obtained from G by deleting the vertex x and the vertices $x_{1}^{i}, \ldots, x_{s_{i}}^{i}$ for each i. Clearly $\delta\left(G^{\prime}\right) \geq 2$ and by the choice of G we have $\gamma\left(G^{\prime}\right)<\frac{k+2}{3 k+5} n\left(G^{\prime}\right)$. Obviously, any $\gamma\left(G^{\prime}\right)$-set can be extended to a dominating set of G of size $\gamma\left(G^{\prime}\right)+1+\sum_{i=1}^{t} \frac{s_{i}-1}{3}$ and it follows that $\gamma(G)<\frac{k+2}{3 k+5} n$, which is a contradiction. Assume now that x belongs to a cycle C in G. In this case, let G^{\prime} be the graph obtained from G by deleting the vertices $x_{1}^{i}, \ldots, x_{s_{i}}^{i}$ for each i. Clearly $\delta\left(G^{\prime}\right) \geq 2$ and G satisfies $\gamma\left(G^{\prime}\right)<\frac{k+2}{3 k+5} n\left(G^{\prime}\right)$. Moreover, there is a $\gamma\left(G^{\prime}\right)$-set that contains x, and such a set can be extended to a dominating set of G of size $\gamma\left(G^{\prime}\right)+\sum_{i=1}^{t} \frac{s_{i}-1}{3}$, which leads as before to a contradiction.

Thus G_{1} is a path. It follows that all vertices in B contained in a tailed cycle. Let x be a vertex of degree 1 in G_{1}, and let $x a_{1} \ldots a_{p} y$ be a subpath of G_{1} such that $y \in B$ and $\operatorname{deg}\left(a_{i}\right)=2$ for each $i \in\{1, \ldots, p\}$. By our earlier assumption $p \equiv 1(\bmod 3)$. Let G^{\prime} be the graph obtained from G by deleting the vertices a_{1}, \ldots, a_{p}. By the choice of G, we have $\gamma\left(G^{\prime}\right) \leq \frac{k+2}{3 k+5} n\left(G^{\prime}\right)$ and clearly G^{\prime} has a $\gamma\left(G^{\prime}\right)$-set S containing x. Now, since S can be extended to a dominating set of G of size $|S|+\frac{p-1}{3}$, we obtain $\gamma(G)<\frac{k+2}{3 k+5} n$, which leads to a contradiction. This proves the bound.

To see the sharpness of the bound, let G be the connected graph obtained from $m \geq 2$ disjoint cycles $C_{3 k+5}^{j}=\left(x_{1}^{j} x_{2}^{j} \ldots x_{3 k+5}^{j} x_{1}^{j}\right), 1 \leq j \leq m$, by adding the edges $x_{1}^{1} x_{1}^{2}, \ldots, x_{1}^{1} x_{1}^{m}$. Clearly, $\delta(G) \geq 2, n(G)=m(3 k+5), \mathcal{A}_{k} \cup \mathcal{B}_{2 k+2}=\emptyset$ and $\gamma(G)=$ $m(k+2)=\frac{k+2}{3 k+5} n(G)$. This completes the proof.

It is worth mentioning that, for $k=1$, Theorem 1 immediately follows from Theorem 3. Moreover, for $k \geq 2$, Theorem 3 provides an improvement on the $\frac{3}{8} n$ upper bound for graphs without special cycles.

We conclude this paper with an open problem and a conjecture.
Problem. Characterize all graphs G on n vertices with $\delta(G) \geq 2$ and with $\mathcal{A}_{k} \cup \mathcal{B}_{2 k+2}=\emptyset$ such that $\gamma(G)=\frac{k+2}{3 k+5} n$.

Conjecture. Let k be a nonnegative integer and let G be a multigraph of order $n \geq 6 k+10$ with $\delta(G) \geq 2$. If G has no induced cycle of lengths $3 r+1,3 r+2$ for $0 \leq r \leq k$, then $\gamma(G)<\frac{k+2}{3 k+5} n$.

Acknowledgements

The authors are deeply thankful to the reviewers for their excellent suggestions to improve the quality of this manuscript.

References

[1] A. A. Bertossi, Dominating sets for split and bipartite graphs, Inform. Process. Lett. 19 (1984), 37-40.
[2] J. Harant and D. Rautenbach, Domination in bipartite graphs, Discrete Math. 309 (2009), 113-122.
[3] M. A. Henning, I. Schiermeyer and A. Yeo, A new bound on the domination number of graphs with minimum degree two, Electron. J. Comb. 18 (2011), \#P12.
[4] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989), 749-762.
[5] O. Ore, Theory of Graphs, vol. 38, American Society Colloquium Publications, Providence, RI, 1962.
[6] B. A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996), 277-295.
[7] E.F. Shan, M. Y. Sohn, X. D. Yuan and M. A. Henning, Domination number in graphs with minimum degree two, Acta Mathematica Sinica, English Series 25 (2009), 1253-1268.

[^0]: * Corresponding author.

