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Abstract

Koh and Tay proved a fundamental classification ofG vertex-multiplications
into three classes C0, C1 and C2. In this paper, we prove that vertex-
multiplications of Cartesian products of graphs G×H lie in C0 (respec-
tively, C0∪C1) if G

(2) ∈ C0 (respectively, C1), d(G) ≥ 2 and d(G×H) ≥ 4,
providing further support for a conjecture by Koh and Tay. We also focus
on Cartesian products involving trees, paths and cycles and show that
most of them lie in C0.

1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). In this paper, we consider
only graphs with no loops or parallel edges. For any vertices v, x ∈ V (G), the distance
from v to x, dG(v, x), is defined as the length of a shortest path from v to x. For
v ∈ V (G), its eccentricity eG(v) is defined as eG(v) := max{dG(v, x) | x ∈ V (G)}. A
vertex x is called an eccentric vertex of v if dG(v, x) = eG(v). The diameter of G,
denoted by d(G), is defined as d(G) := max{eG(v) | v ∈ V (G)} while the radius of G,
denoted by r(G), is defined as r(G) := min{eG(v) | v ∈ V (G)}. The above notions
are defined similarly for a digraph D; and we refer the reader to [1] for any undefined
terminology. For a digraph D, a vertex x is said to be reachable from another vertex
v if dD(v, x) < ∞. The outset and inset of a vertex v ∈ V (D) are defined to be
OD(v) := {x ∈ V (D) | v → x} and ID(v) := {y ∈ V (D) | y → v} respectively. If
there is no ambiguity, we shall omit the subscript for the above notation.

An orientation D of a graph G is a digraph obtained from G by assigning a
direction to every edge e ∈ E(G). An orientation D of G is said to be strong if
every two vertices in V (D) are mutually reachable. An edge e ∈ E(G) is a bridge
if G − e is disconnected. Robbins’ well-known One-way Street Theorem [17] states
that a connected graph G has a strong orientation if and only if G is bridgeless.
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Given a connected and bridgeless graph G, let D(G) be the family of strong
orientations of G. The orientation number of G is defined as

d̄(G) := min{d(D) | D ∈ D(G)}.

Any orientation D in D(G) with d(D) = d̄(G) is called an optimal orientation of G.
The general problem of finding the orientation number of a connected and bridgeless
graph is very difficult. Moreover, Chvátal and Thomassen [3] proved that it is NP-
hard to determine whether a graph admits an orientation of diameter 2. Hence, it is
natural to focus on special classes of graphs. The orientation number was evaluated
for various classes of graphs, such as the complete graphs [2, 14, 16] and complete
bipartite graphs [4, 19].

In 2000, Koh and Tay [11] introduced a new family of graphs, G vertex-multiplic-
ations, and extended the results on the orientation number of complete n-partite
graphs. Let G be a given connected graph with vertex set V (G) = {v1, v2, . . . , vn}.
For any sequence of n positive integers (si), a G vertex-multiplication, denoted by
G(s1, s2, . . . , sn), is the graph with vertex set V ∗ =

⋃n
i=1 Vi and edge set E∗, where

Vi’s are pairwise disjoint sets with |Vi| = si, for i = 1, 2, . . . , n; and for any u, v ∈ V ∗,
uv ∈ E∗ if and only if u ∈ Vi and v ∈ Vj for some i, j ∈ {1, 2, . . . , n} with i �= j
such that vivj ∈ E(G). For instance, if G ∼= Kn, then the graph G(s1, s2, . . . , sn)
is a complete n-partite graph with partite sizes s1, s2, . . . , sn. Also, we say G is a
parent graph of a graph H if H ∼= G(s1, s2, . . . , sn) for some sequence (si) of positive
integers.

For i = 1, 2, . . . , n, we denote the k-th vertex in Vi by (k, vi), i.e. Vi = {(k, vi) |
k = 1, 2, . . . , si}. Hence, two vertices (k, vi) and (l, vj) in V ∗ are adjacent in
G(s1, s2, . . . , sn) if and only if i �= j and vivj ∈ E(G). We will loosely use the
two notations of a vertex, for example, if vi = j, then vi = vj and si = sj. For
convenience, we write G(s) in place of G(s, s, . . . , s) for any positive integer s, and it
is understood that the number of s is equal to the order n of G. Thus, G(1) is simply
the graph G itself.

G vertex-multiplications are a natural generalisation of complete multipartite
graphs. Optimal orientations minimising the diameter can also be used to solve a
variant of the Gossip Problem on a graph G. The Gossip Problem attributed to
Boyd by Hajnal et al. [6] is stated as follows:

“There are n ladies, and each one of them knows an item of scandal which
is not known to any of the others. They communicate by telephone, and
whenever two ladies make a call, they pass on to each other, as much
scandal as they know at that time. How many calls are needed before all
ladies know all the scandal?”

The Problem has been the source of many papers that have studied the spread of
information by telephone calls, conference calls, letters and computer networks. One
can imagine a network of people modelled by a G vertex-multiplication where the
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parent graph is G and persons within a partite set are not allowed to communicate
directly with each other, for perhaps secrecy or disease containment reasons.

The following theorem by Koh and Tay [11] provides a fundamental classification
on G vertex-multiplications.

Theorem 1.1. (Koh and Tay [11]) Let G be a connected graph of order n ≥ 3. If
si ≥ 2 for i = 1, 2, . . . , n, then d(G) ≤ d̄(G(s1, s2, . . . , sn)) ≤ d(G) + 2.

In view of Theorem 1.1, all graphs of the form G(s1, s2, . . . , sn), with si ≥ 2 for
all i = 1, 2, . . . , n, can be classified into three classes Cj , where

Cj = {G(s1, s2, . . . , sn) | d̄(G(s1, s2, . . . , sn)) = d(G) + j},
for j = 0, 1, 2. Henceforth, we assume si ≥ 2 for i = 1, 2, . . . , n. The following lemma
was found useful in proving Theorem 1.1.

Lemma 1.2. (Koh and Tay [11]) Let si, ti be integers such that si ≤ ti for i =
1, 2, . . . , n. If the graph G(s1, s2, . . . , sn) admits an orientation F in which ev-
ery vertex v lies on a cycle of length not exceeding m, then d̄(G(t1, t2, . . . , tn)) ≤
max{m, d(F )}.

Koh and Tay [11] made the following conjecture and proved it for some families
of graphs, including cycles.

Conjecture A. (Koh and Tay [11]) If G is a graph such that d(G) ≥ 3 and si ≥ 2
for i = 1, 2, . . . , n, then G(s1, s2, . . . , sn) �∈ C2.

These results and conjecture were generalised to digraphs by Gutin et al. [5]. Ng
and Koh [15] examined cycle vertex-multiplications and Koh and Tay [13] investi-
gated tree vertex-multiplications. Since trees with diameter at most 2 are parent
graphs of complete bipartite graphs and are completely solved, they considered trees
of diameter at least 3 and proved Conjecture A for trees.

Theorem 1.3. (Koh and Tay [13])
If T is a tree of order n and 3 ≤ d(T ) ≤ 5, then T (s1, s2, . . . , sn) ∈ C0 ∪ C1.

Theorem 1.4. (Koh and Tay [13])
If T is a tree of order n and d(T ) ≥ 6, then T (s1, s2, . . . , sn) ∈ C0.

In [20], Wong and Tay proved a characterisation for vertex-multiplications of
trees with diameter 5 in C0 and C1. In [21], they almost completely characterised
vertex-multiplications of trees with diameter 4.

In this paper, we examine vertex-multiplications of Cartesian products of graphs
and provide further support for Conjecture A. Our main approach is a nimble appli-
cation of Lemma 1.2 via some elementary orientations (see Definition 2.1) leveraging
on the neat structure enjoyed by Cartesian products of graphs. We also focus on
Cartesian products involving trees, paths and cycles and show that most of them lie
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in C0. The Cartesian product of two graphs G and H is denoted by G ×H , where
V (G × H) = {〈u, x〉 | u ∈ V (G), x ∈ V (H)} and E(G) = {〈u, x〉〈v, y〉 | u = v and
xy ∈ E(H), or uv ∈ E(G) and x = y}. Since Cartesian products of disconnected
graphs are disconnected, we concern ourselves with only connected graphs. We shall
denote a path (respectively, cycle, complete graph) of order n as Pn (respectively,
Cn, Kn) while Td represents a tree of diameter d. Since the orientation number of
complete bipartite graphs K(p, q) has been characterised by Šoltés [19] and Gutin [4]
and P2 × P2

∼= K(2, 2), we shall exclude P2 × P2 from our discussion. In Section 2,
we consider Cartesian products of graphs in the general setting.

Theorem 1.5. Let G and H be connected graphs with order at least 2. If d(G) ≥ 2
and G(2) ∈ C0 (respectively, C1), then (G×H)(2) ∈ C0 (respectively, C0 ∪ C1).

Corollary 1.6. Let G and H be connected graphs with order at least 2. If d(G×H) ≥
4, d(G) ≥ 2 and G(2) ∈ C0 (respectively, C1), then (G × H)(s1, s2, . . . , sn) ∈ C0

(respectively, C0 ∪ C1).

In Section 3, we prove that the vertex-multiplications of Cartesian products of
two trees are mostly in C0.

Theorem 1.7. If λ ≥ 2 and μ ≥ 3, then (Tλ × Tμ)(s1, s2, . . . , sn) ∈ C0.

For trees with diameter 2, the same conclusion holds if both trees are paths, i.e.
P3 × P3.

Theorem 1.8.
(a) (P3 × P2)

(2) ∈ C1.
(b)

(Pλ × Pμ)(s1, s2, . . . , sn) ∈
{

C0, if λ ≥ 4, μ = 2, or λ ≥ μ ≥ 3,
C0 ∪ C1, if (λ, μ) = (3, 2).

We also prove an analogue on the hypercube graph Qλ =

λ︷ ︸︸ ︷
K2 ×K2 × · · · ×K2,

λ ∈ Z
+.

Proposition 1.9.
(a) Q

(2)
3 ∈ C0 and Q3(s1, s2, . . . , sn) ∈ C0 ∪ C1.

(b) For λ ≥ 4, Qλ(s1, s2, . . . , sn) ∈ C0.

In Sections 4 and 5, we examine the Cartesian products of a tree and a cycle,
and two cycles respectively.

Theorem 1.10. If λ ≥ 2 and μ ≥ 4 or λ = μ = 3, then (Tλ×Cμ)(s1, s2, . . . , sn) ∈ C0.

Theorem 1.11.
(a) For λ ≥ 4, μ ≥ 3, (Cλ × Cμ)

(2) ∈ C0.
(b)

(Cλ × Cμ)(s1, s2, . . . , sn) ∈
{

C0, if λ ≥ μ ≥ 4,
C0 ∪ C1, if (λ, μ) = (3, 3) or (4, 3).
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2 General results

In defining an orientation, we use the following notation to write succinctly. For any
orientation D, D̃ denotes the orientation satisfying u → v in D̃ if and only if v → u
in D.

Definition 2.1. Suppose uv and wx are edges of a graph G and D is an orientation
of G(2). We denote
(a) u⇒ v if {(1, u), (2, u)} → {(1, v), (2, v)} in D (see Figure 1(a)).
(b) u� v if (1, u) → (1, v) → (2, u) → (2, v) → (1, u) in D (see Figure 1(b)).

(c) u
1� v if (2, v) → {(1, u), (2, u)} → (1, v) and w

2� x if (1, x) → {(1, w), (2, w)} →
(2, x) in D (see Figure 1(c)).

(2, u) (2, v)

(1, v)(1, u)

(a) u⇒ v.

(2, u) (2, v)

(1, v)(1, u)

(b) u� v.

(2, u) (2, v)

(1, u) (1, v)

(2, w) (2, x)

(1, w) (1, x)

(c) u
1� v and w

2� x.

Figure 1: Notation for orientations.

Proof of Theorem 1.5: Since G(2) ∈ C0, there exists an orientation D of G(2) such
that d(D) = d(G). Define an orientation D∗ of (G×H)(2) as follows:
For any u, v ∈ V (G), any x ∈ V (H) and any p, q = 1, 2,

(p, 〈u, x〉) → (q, 〈v, x〉) ⇐⇒ (p, u) → (q, v) in D, (2.1)

i.e. each copy of G(2) is oriented similarly to D.
For any u ∈ V (G) and any x, y ∈ V (H),

〈u, x〉� 〈u, y〉 ⇐⇒ xy ∈ E(H). (2.2)

We remark that the definition in (2.2) is arbitrary since xy ∈ E(H) is equivalent
to yx ∈ E(H). However, this does not affect the following argument. For a well-
defined orientation, one may linearly order the vertices in V (H) before applying (2.2)
with the condition x precedes y.

We claim that dD∗((p, 〈u, x〉), (q, 〈v, y〉))≤ d(G×H) = d(G)+d(H) for p, q = 1, 2.
If x = y, then by (2.1), dD∗((p, 〈u, x〉), (q, 〈v, x〉)) ≤ d(D) = d(G) < d(G) + d(H).

Suppose x �= y. In view of (2.2), there exists a (p, 〈u, x〉) − (r, 〈u, y〉) path of
length dD∗((p, 〈u, x〉), (r, 〈u, y〉))≤ dH(x, y) ≤ d(H) for some r = 1, 2. If (q, 〈v, y〉) =
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(r, 〈u, y〉) (i.e. q = r, u = v), then we are done. If (q, 〈v, y〉) = (3− r, 〈u, y〉), then

dD∗((p, 〈u, x〉), (q, 〈v, y〉)) ≤ dD∗((p, 〈u, x〉), (r, 〈u, y〉)) + 2

≤ d(H) + 2

≤ d(H) + d(G)

by (2.2). Finally, if u �= v, then

dD∗((p, 〈u, x〉), (q, 〈v, y〉)) ≤ dD∗((p, 〈u, x〉), (r, 〈u, y〉)) + dD∗((r, 〈u, y〉), (q, 〈v, y〉))
≤ d(H) + d(D)

= d(H) + d(G).

The proof is similar if G(2) ∈ C1.

Proof of Corollary 1.6: Since every vertex lies in a directed C4 in the orientation D∗

because of (2.2), it follows from Lemma 1.2 that (G ×H)(s1, s2, . . . , sn) ∈ C0. The
proof is similar if G(2) ∈ C1.

Corollary 2.2. For all i ∈ Z
+, let Gi be a connected graph with order at least two.

If (G1 ×G2)
(2) ∈ C0 (respectively, C1), then

(a) for j ≥ 3, (
j∏

i=1

Gi)
(2) ∈ C0 (respectively, C0 ∪ C1), and

(b) for k ≥ 4, (
k∏

i=1

Gi)(s1, s2, . . . , sn) ∈ C0 (respectively, C0 ∪ C1).

Proof : (a) Since d(G1 ×G2) ≥ 2, the result follows from Theorem 1.5.

(b) Since d(
k∏

i=1

Gi) ≥ 4, d(G1 ×G2) ≥ 2, the result follows from Corollary 1.6.

Corollary 2.3. Let G be a connected graph with order at least two.
(a) If 3 ≤ d ≤ 5, then (Td ×G)(s1, s2, . . . , sn) ∈ C0 ∪ C1.
(b) If d ≥ 6, then (Td ×G)(s1, s2, . . . , sn) ∈ C0.

Proof : Since d(Td ×G) ≥ 4 and by Corollary 1.6, (a) and (b) follow from Theorems
1.3 and 1.4 respectively.

3 Cartesian product of trees Tλ × Tμ

In this section, we shall show that Corollary 2.3(a) can be further improved in the case
of Tλ × Tμ. Before that, we introduce a notation for trees Td with d ≤ 5. Whenever
we speak of a tree with even diameter d, we denote by c the unique central vertex
of Td, i.e. eTd

(c) = r(Td), and the neighbours of c by [i], i.e. NTd
(c) = {[i] | i =

1, 2, . . . , degTd
(c)}. For each i = 1, 2, . . . , degTd

(c), we further denote the neighbours
of [i], excluding c, by [α, i], i.e. NTd

([i])−{c} = {[α, i] | α = 1, 2, . . . , degTd
([i])− 1}.
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If d is odd, we let c1 and c2 be the two central vertices of Td, i.e. eTd
(ck) =

r(Td) for k = 1, 2. For k = 1, 2, denote the neighbours of ck, excluding c3−k,
by [i]k. i.e. NTd

(ck) − {c3−k} = {[i]k | i = 1, 2, . . . , degTd
(ck) − 1}. For each

i = 1, 2, . . . , degTd
(ck)− 1, we denote the neighbours of [i]k, excluding ck, by [α, i]k.

i.e. NTd
([i]k) − {ck} = {[α, i]k | α = 1, 2, . . . , degTd

([i]k) − 1}. Figures 2 and 3
illustrate the use of this notation.

c

[1, 1]

[2, 1]

[1, 2]

[1]

[2]

[3]

[4]
[1, 4]

Figure 2: Labelling vertices in a T4

[1, 1]1

[2, 1]1

[1, 2]1

[1]1

[2]1

c1 c2

[1]2

[2]2

[1, 2]2

[2, 2]2

[3, 2]2

Figure 3: Labelling vertices in a T5

With this, we prove Theorem 1.7.

Proof of Theorem 1.7: Let G := Tλ × Tμ. By Corollary 2.3(b), it suffices to consider
λ, μ ≤ 5. Define an orientation D(λ,μ) for G

(2) as follows:

Case 1. λ is even and μ is odd, i.e. λ = 2, 4 and μ = 3, 5.

〈c, c2〉⇒ 〈[y], c2〉⇒ 〈[y], c1〉⇒ 〈c, c1〉⇒ 〈c, c2〉 (3.1)

for all [y] ∈ NTλ
(c). Excluding the edges defined above, for each [i]1 ∈ NTμ(c1) −

{c2}, each α = 1, 2, . . . , degTμ
([i]1) − 1, each [j]2 ∈ NTμ(c2) − {c1}, and each β =

1, 2, . . . , degTμ
([j]2)− 1,

〈x, [α, i]1〉� 〈x, [i]1〉� 〈x, c1〉, 〈x, [β, j]2〉� 〈x, [j]2〉� 〈x, c2〉� 〈x, c1〉, (3.2)

for all x ∈ V (Tλ), and
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〈[γ, k], [α, i]1〉� 〈[k], [α, i]1〉� 〈c, [α, i]1〉,
〈[γ, k], [i]1〉� 〈[k], [i]1〉� 〈c, [i]1〉,
〈[γ, k], [β, j]2〉� 〈[k], [β, j]2〉� 〈c, [β, j]2〉,
〈[γ, k], [j]2〉� 〈[k], [j]2〉� 〈c, [j]2〉,
〈[γ, k], ct〉� 〈[k], ct〉 for t = 1, 2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.3)

for all [k] ∈ NTλ
(c) and γ = 1, 2, . . . , degTλ

([k])−1. (See Figure 4 when G = T4×T5.)

We claim that d(D(λ,μ)) = λ + μ = d(G). Let u, v ∈ V (G) and P := w0w1 . . . wl

be a shortest u − v path in G with u = w0 and v = wl. If dG(u, v) ≤ d(G)− 2 and
P satisfies

wi � wi+1 or wi+1 � wi for all i = 0, 1, . . . , l − 1, (3.4)

then dD(λ,μ)
((p, u), (q, v)) ≤ dG(u, v) + 2 ≤ d(G) for p, q = 1, 2. In particular, this

holds for u = 〈[γ1, k], y1〉, v = 〈[γ2, k], y2〉 with γ1 �= γ2 in T4×Tμ. So, by symmetry of
(3.1)-(3.3), we may assume without loss of generality that c has two eccentric vertices
in Tλ, i.e. Tλ = P3 if λ = 2, and Tλ = P5 if λ = 4. Furthermore, by symmetry of
(3.2), we may assume ci has two eccentric vertices for i = 1, 2, in Tμ.

For the pairs of u, v that do not satisfy (3.4), we claim that there exists a path
P with length at most d(G) that satisfies

wi ⇒ wi+1 for some i = 0, 1, . . . , l − 1 and wj+1 ⇒ wj for none of j = 0, 1, . . . , l − 1.

Then, we can conclude dD(λ,μ)
((p, u), (q, v)) ≤ d(G) for p, q = 1, 2.

First, consider (λ, μ) = (2, 3). We list these paths P while omitting symmetric
scenarios. For i = 1, 2, and j = 1, 2,

P 1 =〈[1], [1]1〉〈[1], c1〉〈c, c1〉〈c, [j]1〉〈[2], [j]1〉.
P 2 =〈[1], [1]1〉〈[1], c1〉〈c, c1〉〈c, c2〉〈[i], c2〉〈[i], [j]2〉.
P 3 =〈[1], [1]1〉〈[1], c1〉〈c, c1〉〈c, c2〉〈c, [j]2〉.
P 4 =〈[1], [1]2〉〈[1], c2〉〈[1], c1〉〈[1], [j]1〉〈c, [j]1〉〈[2], [j]1〉.
P 5 =〈[1], [1]2〉〈c, [1]2〉〈c, c2〉〈[2], c2〉〈[2], c1〉〈c, c1〉.
P 6 =〈[1], [1]2〉〈c, [1]2〉〈c, c2〉〈[2], c2〉〈[2], [j]2〉.
P 7 =〈c, [1]1〉〈c, c1〉〈c, c2〉〈[i], c2〉〈[i], [j]2〉〈c, [j]2〉.
P 8 =〈c, [1]2〉〈c, c2〉〈[i], c2〉〈[i], c1〉〈[i], [j]1〉〈c, [j]1〉.
P 9 =〈c, [1]2〉〈c, c2〉〈[i], c2〉〈[i], c1〉〈c, c1〉.

To prove for (λ, μ) = (2, 5), note that D(2,3) is a subdigraph of D(2,5). Moveover,
for any (p, u) ∈ V (D(2,5))−V (D(2,3)), there exists a vertex (r, x) ∈ V (D(2,3)) such that
u� x or x� u. Hence, if (p, u) ∈ V (D(2,5))− V (D(2,3)) and (q, v) ∈ V (D(2,3)), then
max{dD(2,5)

((p, u), (q, v)), dD(2,5)
((q, v), (p, u))} ≤ 1 + d(D(2,3)) ≤ 7 for p, q = 1, 2.

Similarly, if (p, u), (q, v) ∈ V (D(2,5)) − V (D(2,3)), then dD(2,5)
((p, u), (q, v)) ≤ 2 +

d(D(2,3)) ≤ 7 for p, q = 1, 2.
A similar argument can be made for (λ, μ) = (4, 3) since D(2,3) is a subdigraph

of D(4,3); and thereafter for (λ, μ) = (4, 5) since D(4,3) is a subdigraph of D(4,5).
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[1, 2]2

[2]2

[1, 2]1

[2]1

[1, 1]2

[1]2

c2

c1

[1]1

[1, 1]1

[1, 2]2

[2]2

[1, 2]1
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Figure 4: Orientation D(4,5) of (T4 × T5)
(2), where d(D(4,5)) = 9.

Note: For u = [1, 1], [1], c, [2], [1, 2], the u-copy of T5 is contained in a rectangle and
the vertex 〈u, x〉 is simply labelled as x for clarity. For example, the bottom leftmost
vertex is 〈[1, 1], [1, 1]1〉.

We can use a similar strategy as in Case 1 to prove d(D(λ,μ)) = λ+ μ = d(G) for
Cases 2 and 3. Hence, we state only the orientations and refer the interested reader
to [22].

Case 2. λ and μ are both even, i.e. λ = 2, 4 and μ = 4.

For each [i] ∈ NTλ
(c), and each α = 1, 2, . . . , degTλ

([i])−1 and each [j] ∈ NTμ(c),
and each β = 1, 2, . . . , degTμ

([j])− 1,

〈[i], c〉⇒ 〈c, c〉 and 〈c, [j]〉⇒ 〈[i], [j]〉;

excluding the edges defined above,

〈[α, i], y〉� 〈[i], y〉� 〈c, y〉

for all y ∈ V (Tμ), and

〈x, [β, j]〉� 〈x, [j]〉� 〈x, c〉

for all x ∈ V (Tλ).
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Case 3. λ and μ are both odd, i.e. λ, μ = 3, 5.

For each [i]1 ∈ NTμ(c1) − {c2}, each α = 1, 2, . . . , degTμ
([i]1) − 1, each [j]2 ∈

NTμ(c2)− {c1}, each β = 1, 2, . . . , degTμ
([j]2)− 1,

〈c1, [i]1〉⇒ 〈c1, c1〉⇒ 〈c2, c1〉⇒ 〈c2, [i]1〉⇒ 〈c1, [i]1〉,
〈c1, [j]2〉⇒ 〈c1, c2〉⇒ 〈c2, c2〉⇒ 〈c2, [j]2〉⇒ 〈c1, [j]2〉;

excluding the edges defined above,

〈x, [α, i]1〉� 〈x, [i]1〉� 〈x, c1〉, 〈x, [β, j]2〉� 〈x, [j]2〉� 〈x, c2〉� 〈x, c1〉,

for all x ∈ V (Tλ), and

〈[γ, k]1, y〉� 〈[k]1, y〉� 〈c1, y〉, 〈[θ, l]2, y〉� 〈[l]2, y〉� 〈c2, y〉� 〈c1, y〉,

for each [k]1 ∈ NTλ
(c1)−{c2}, each γ = 1, 2, . . . , degTλ

([k]1)−1, each [l]2 ∈ NTλ
(c2)−

{c1}, each θ = 1, 2, . . . , degTλ
([l]2)− 1 and each y ∈ V (Tμ).

Next, we shall prove two lemmas for the investigation of the rectangular grid
Pλ×Pμ. For Pn (respectively, Cn), we shall use the natural labelling of vertices where
E(Pn) = {(i, i+ 1) | i = 1, 2, . . . , n− 1} (respectively, E(Cn) = E(Pn) ∪ {(n, 1)}).
Lemma 3.1. Let G be a graph and D be an orientation of G(2). If u0u1u2 is a unique
shortest u0 − u2 path in G and dD((p, u0), (q, u2)) = dD((p, u2), (q, u0)) = 2 for all

p, q = 1, 2, then u0

1� u1

2� u2 or u0

2� u1

1� u2.

Proof : Suppose (1, u1) → (1, u2). Now, for p = 1, 2, since dD((1, u2), (p, u0)) = 2, it
follows that (1, u2) → (2, u1) → (p, u0). Since dD((p, u0), (q, u2)) = 2 for p, q = 1, 2,
it follows that (p, u0) → (1, u1) → (q, u2) must hold. It is now necessary from

dD((2, u2), (1, u0)) = 2 that (2, u2) → (2, u1). Thus, u0

1� u1

2� u2. Similarly, an

argument reversing all arcs will give u0

2� u1

1� u2 if (1, u2) → (1, u1).

Lemma 3.2. Let G be a graph and D be an orientation of G(2). Suppose v0v1 . . . vk,
k ≥ 2, is a shortest v0 − vk path of length k in G and D satisfies

(a) vi
1� vi+1

2� vi+2 for some i, 0 ≤ i ≤ k − 2, and

(b) if j �∈ {i, i+ 1}, then either vj � vj+1 or vj+1 � vj.

Then, dD((p, v0), (q, vk)) = dD((p, vk), (q, v0)) = k for p, q = 1, 2.

Proof : Assume vj � vj+1 for all j �∈ {i, i+ 1}; the proof is similar otherwise. Note
that (p, v0) → (p, v1) → · · · → (p, vi), {(1, vi), (2, vi)} → (1, vi+1) → {(1, vi+2),
(2, vi+2)} and (p, vi+2) → (p, vi+3) → · · · → (p, vk) for all p = 1, 2. Thus, for p, q =
1, 2, dD((p, v0), (q, vk)) = dG(v0, vk) = k. By symmetry, we have dD((p, vk), (q, v0)) =
dG(vk, v0) = k for p, q = 1, 2.
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Proof of Theorem 1.8: Let G := Pλ × Pμ and note that d(G) = λ+ μ− 2.

Case 1. λ = 3 and μ = 2.

We first prove d̄(G(2)) = 4. Suppose there exists an orientation D of G(2) such
that d(D) = 3. Since dD((p, 〈1, 2〉), (q, 〈3, 2〉)) = dD((q, 〈3, 2〉), (p, 〈1, 2〉)) = 2 for all

p, q = 1, 2, we may assume from Lemma 3.1 that 〈1, 2〉 1� 〈2, 2〉 2� 〈3, 2〉. Similarly,

we assume 〈1, 1〉 1� 〈2, 1〉 2� 〈3, 1〉 (the case 〈1, 1〉 2� 〈2, 1〉 1� 〈3, 1〉 is similar). Since
dD((1, 〈1, 1〉), (2, 〈2, 2〉)) ≤ 3, it follows that (1, 〈2, 1〉) → (2, 〈2, 2〉). However, we
have dD((1, 〈3, 2〉), (1, 〈2, 1〉)) > 3, which contradicts d(D) = 3. Hence, d̄(G(2)) ≥ 4.

Define an orientation D(3,2) for G
(2) as follows:

〈1, j〉 1� 〈2, j〉 2� 〈3, j〉 for j = 1, 2, and 〈i, 1〉� 〈i, 2〉 for i = 1, 2, 3.

It is easy to verify d(D(3,2)) = 4. Hence, G(2) ∈ C1 and we are done for (a).

Case 2. λ ≥ 4 and μ = 2.

Define an orientation D(λ,2) for G
(2) as follows: (See Figure 5 when λ = 4.)

〈1, 2〉 1� 〈2, 2〉 2� 〈3, 2〉, 〈λ− 2, 1〉 1� 〈λ− 1, 1〉 2� 〈λ, 1〉,
〈i, 1〉� 〈i, 2〉 for i = 1, 2, . . . , λ,

〈j, 1〉� 〈j + 1, 1〉 for j = 1, 2, 3, . . . , λ− 3, and

〈k, 2〉� 〈k + 1, 2〉 for k = 3, 4, . . . , λ− 1.

〈1, 1〉 〈2, 1〉 〈3, 1〉
〈4, 1〉

〈1, 2〉 〈2, 2〉 〈3, 2〉 〈4, 2〉

Figure 5: Orientation D(4,2) of (P4 × P2)
(2), where d(D(4,2)) = 4.

Note: The vertices (p, 〈u, x〉), for p = 1, 2, are represented by • and ˛ respectively.
The vertex (1, 〈u, x〉) is simply labelled as 〈u, x〉 for clarity. For example, the bottom
leftmost • and ˛ are (1, 〈1, 1〉) and (2, 〈1, 1〉) respectively. The same simplification is
used for Figures 6 and 7.

We claim that d(D(λ,2)) = d(G). Let u, v ∈ V (G), where dG(u, v) ≤ d(G)−2. By
the definition of D(λ,2), we have dD(λ,2)

((p, u), (q, v)) ≤ dG(u, v) + 2 ≤ d(G) for p, q =
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1, 2. Hence, it suffices to consider vertices u, v ∈ V (G), where dG(u, v) = d(G)−1 or
dG(u, v) = d(G). We illustrate this for u being the ‘top left’ and v being the ‘bottom
right’ vertices in Figure 5 and the other cases can be proved similarly. That is,
for (u, v) = (〈1, 2〉, 〈λ − 1, 1〉), (〈1, 2〉, 〈λ, 2〉), (〈1, 2〉, 〈λ, 1〉), (〈2, 2〉, 〈λ, 1〉), the claim
follows by invoking Lemma 3.2 on their respective shortest paths:

P 1 = 〈1, 2〉〈2, 2〉〈3, 2〉 . . . 〈λ− 1, 2〉〈λ− 1, 1〉.
P 2 = 〈1, 2〉〈2, 2〉〈3, 2〉 . . . 〈λ− 1, 2〉〈λ, 2〉.
P 3 = P 2 with 〈λ, 1〉.
P 4 = 〈2, 2〉〈2, 1〉〈3, 1〉 . . . 〈λ− 2, 1〉〈λ− 1, 1〉〈λ, 1〉.

Case 3. λ ≥ μ ≥ 3.

Define an orientation D(λ,μ) for G
(2) as follows:

〈⌈λ
2

⌉
− 1,

⌈μ
2

⌉〉
1�
〈⌈λ

2

⌉
,
⌈μ
2

⌉〉
2�
〈⌈λ

2

⌉
+ 1,

⌈μ
2

⌉〉
and〈⌈λ

2

⌉
,
⌈μ
2

⌉
− 1

〉
1�
〈⌈λ

2

⌉
,
⌈μ
2

⌉〉
2�
〈⌈λ

2

⌉
,
⌈μ
2

⌉
+ 1

〉
.

Except for the edges defined above,

〈i, j〉� 〈i+ 1, j〉, and 〈i, j〉� 〈i, j + 1〉 for all 1 ≤ i ≤ λ− 1 and 1 ≤ j ≤ μ− 1.

Similar to Case 2, it can be proved that d(D(λ,μ)) = d(G). Hence, G(2) ∈ C0 for
Cases 2 and 3. To complete (b), observe that every vertex lies in a directed C4 in
each orientation D(λ,μ) of all three cases and invoke Lemma 1.2.

We end the section with a result on the hypercube graph.

Proof of Proposition 1.9: We shall prove d̄(Q
(2)
3 ) = 3 = d(Q3). Denote the vertices

of the two disjoint copies of C4 in Q3 by 1, 2, 3, 4, and 5, 6, 7, 8. Define an orientation
D of Q

(2)
3 as follows:

i� i+ 1� i+ 2� i+ 3 and i� i+ 3 for i = 1, 5,

4⇒ 8, 2⇒ 6, 5⇒ 1, and 7⇒ 3.

It is easy to verify that d(D) = 3. Hence, Q
(2)
3 ∈ C0. Now, by Theorem 1.5,

Q
(2)
λ ∈ C0 for λ ≥ 3. Since every vertex lies in a directed C4, it follows from

Lemma 1.2 that Q3(s1, s2, . . . , sn) ∈ C0∪C1 and Qλ(s1, s2, . . . , sn) ∈ C0 for λ ≥ 4.

4 Cartesian product of trees with cycles Tλ × Cμ

In this section, we consider the Cartesian product of trees with cycles.
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Proof of Theorem 1.10:

Case 1. λ ≥ 2 and μ ≥ 4.

Let (V1, V2) be a bipartition of V (Tλ), i.e. V1 and V2 are independent sets. Let F
be a strong orientation of Cμ, say 1 → 2 → · · · → μ → 1, and define an orientation
D for (Tλ × Cμ)

(2) as follows:

〈u, x〉⇒ 〈u, y〉 ⇐⇒ x → y in F

for any u ∈ V1 and any x, y ∈ V (Cμ), i.e. the copy C
(2)
μ is oriented similarly to F .

〈u, x〉⇒ 〈u, y〉 ⇐⇒ y → x in F

for any u ∈ V2 and any x, y ∈ V (Cμ), i.e. the copy C
(2)
μ is oriented similarly to F̃ .

〈u, x〉� 〈v, x〉

for any u, v ∈ V (Tλ) with uv ∈ E(Tλ) and any x ∈ V (Cμ).

We claim that dD((p, 〈u, x〉), (q, 〈v, y〉)) ≤ λ + �μ
2
� = d(Tλ × Cμ) for any 〈u, x〉,

〈v, y〉 ∈ V (Tλ × Cμ), and p, q = 1, 2. Suppose u = v ∈ V1. Note that either
dF (x, y) ≤ �μ

2
� or dF̃ (x, y) ≤ �μ

2
�. So, there exist paths P and P ′ in D, each

of length at most �μ
2
�, from {(1, 〈u, x〉), (2, 〈u, x〉)} to {(1, 〈u, y〉), (2, 〈u, y〉)} and

from {(1, 〈w, x〉), (2, 〈w, x〉)} to {(1, 〈w, y〉), (2, 〈w, y〉)}, where w ∈ V2 is some ver-
tex adjacent to u in Tλ respectively. In the former case where dF (x, y) ≤ �μ

2
�, P

suffices and we are done. In the latter case where dF̃ (x, y) ≤ �μ
2
�, we shall fur-

ther assume 〈u, x〉 � 〈w, x〉 for simplicity; the proof is similar otherwise. Then,
(p, 〈u, x〉)(p, 〈w, x〉), P ′ and (3 − q, 〈w, y〉)(q, 〈u, y〉) form a (p, 〈u, x〉) − (q, 〈v, y〉)
path of length at most 2 + �μ

2
� ≤ λ+ �μ

2
�. A similar proof follows if u = v ∈ V2.

Suppose u �= v. Let uw1w2 . . . wlv be the unique shortest u − v path in Tλ.
For simplicity, we shall assume 〈u, x〉� 〈w1, x〉 � · · ·� 〈v, x〉; the proof is similar
otherwise. If x = y, then (p, 〈u, x〉)(p, 〈w1, x〉) . . . (p, 〈v, x〉)(3−p, 〈wl, x〉)(3−p, 〈v, x〉)
guarantees a (p, 〈u, x〉)− (q, 〈v, y〉) path of length at most λ+ 2 ≤ λ+ �μ

2
�.

Next, suppose x �= y. Futhermore, we shall assume v ∈ V1 (and hence wl ∈
V2); the proof is similar if v ∈ V2. Again, consider the cases dF (x, y) ≤ �μ

2
� or

dF̃ (x, y) ≤ �μ
2
�. So, there exist paths Q and Q′ in D, each of length at most �μ

2
�, from

{(1, 〈v, x〉), (2, 〈v, x〉)} to {(1, 〈v, y〉), (2, 〈v, y〉)} and from {(1, 〈wl, x〉), (2, 〈wl, x〉)}
to {(1, 〈wl, y〉), (2, 〈wl, y〉)} respectively. In the former case where dF (x, y) ≤ �μ

2
�,

(p, 〈u, x〉)(p, 〈w1, x〉) . . . (p, 〈v, x〉) and Q form a (p, 〈u, x〉)− (q, 〈v, y〉) path of length
at most λ + �μ

2
�. In the latter case where dF̃ (x, y) ≤ �μ

2
�, (p, 〈u, x〉)(p, 〈w1, x〉) . . .

(p, 〈wl, x〉) with Q′ and (q, 〈wl, y〉)(q, 〈v, y〉) form a (p, 〈u, x〉)− (q, 〈v, y〉) of length at
most λ+ �μ

2
�. Hence, (Tλ × Cμ)

(2) ∈ C0.

Case 2. λ = μ = 3.

Define an orientation D for (T3 × C3)
(2) as follows: (See Figure 6.) For all
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[i]1 ∈ NT (c1)− {c2} and all [j]2 ∈ NT (c2)− {c1},

〈c1, 1〉⇒ 〈c1, 2〉⇒ 〈c1, 3〉⇒ 〈c1, 1〉, 〈c2, 3〉⇒ 〈c2, 2〉⇒ 〈c2, 1〉⇒ 〈c2, 3〉,
〈[i]1, y〉

1� 〈c1, y〉
2� 〈c2, y〉, and 〈c2, y〉� 〈[j]2, y〉 for all y = 1, 2, 3,

〈[i]1, 1〉�〈[i]1, 2〉�〈[i]1, 3〉�〈[i]1, 1〉, and 〈[j]2, 1〉�〈[j]2, 2〉�〈[j]2, 3〉�〈[j]2, 1〉.

It is straightforward to verify that d(D) = 4. In view of the symmetry of D, it
suffices to check D for (T3 × C3)

(2) where ci has two end-vertex neighbours [1]i, [2]i
for i = 1, 2 in T3. We remark that the checking includes the distance from any
vertex in the [1]1-copy (respectively, [1]2-copy) of C

(2)
3 to any vertex in the [2]1-copy

(respectively, [2]2-copy) of C
(2)
3 , although only one [i]1-copy (respectively, [j]2-copy)

is shown in Figure 6 for brevity. Hence, (T3 × C3)
(2) ∈ C0.

Since every vertex lies in a directed C4 in D of both cases, it follows from Lemma
1.2 that (Tλ × Cμ)(s1, s2, . . . , sn) ∈ C0.

〈[i]1, 2〉 〈c1, 2〉 〈c2, 2〉 〈[j]2, 2〉

〈[i]1, 3〉 〈c1, 3〉 〈c2, 3〉 〈[j]2, 3〉

〈[i]1, 1〉 〈c1, 1〉 〈c2, 1〉
〈[j]2, 1〉

Figure 6: Partial orientation D of (T3 × C3)
(2),

where [i]1 ∈ NT (c1)− {c2} and [j]2 ∈ NT (c2)− {c1} and d(D) = 4.

Next, we want to consider T2 × C3 and P2 × C3. Instead, we shall prove more
general results involving Kμ, μ ≥ 3, in place of C3. For T2 ×Kμ, we split into cases
of degT2

(c) = 2 (i.e. T2 = P3) and degT2
(c) > 2.

Proposition 4.1. For μ ≥ 3,

(a) if degT2
(c) = 2, then (T2 ×Kμ)(s1, s2, . . . , sn) ∈ C0.

(b) if degT2
(c) > 2, then (T2 ×Kμ)

(2) ∈ C1 and (T2 ×Kμ)(s1, s2, . . . , sn) ∈ C0 ∪ C1.

Proof : Note that d(T2×Kμ) = 3. Define an orientation D for (T2×Kμ)
(2) as follows:

〈[1], j〉 1� 〈c, j〉 2� 〈[i], j〉 (4.1)
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for all [i] ∈ NT2(c)− {[1]} and j = 1, 2, . . . , μ.

〈v, j1〉� 〈v, j2〉 whenever 2 ≤ j1 < j2 ≤ μ, and
〈v, j〉� 〈v, 1〉� 〈v, 2〉 for j = 3, 4, . . . , μ,

}
(4.2)

for all v ∈ V (T2).

(a) Suppose degT2
(c) = 2. It is easy to check that the subdigraph of D induced

by the set of vertices {(p, 〈v, j〉) | p = 1, 2; v ∈ V (T2); j = 1, 2, 3} has diameter 3.
Next, note for all v ∈ T2, and all j = 4, 5, . . . , μ, that 〈v, j〉 really plays the same
role as 〈v, 3〉 in view of (4.2). Hence, it remains to check that the distance of any

two vertices in each copy of K
(2)
μ is at most 3. This follows since u � v or v � u

for all u, v in each copy of Kμ. Hence, (T2 ×Kμ)
(2) ∈ C0. Since every vertex lies in

a directed C3, it follows from Lemma 1.2 that (T2 ×Kμ)(s1, s2, . . . , sn) ∈ C0.

(b) Now, consider the case degT2
(c) > 2. Suppose there exists an orientation

F of (T2 × Kμ)
(2) with d(F ) = 3. By Lemma 3.1, 〈[1], 1〉 1� 〈c, 1〉 2� 〈[2], 1〉 and

〈[1], 1〉 1� 〈c, 1〉 2� 〈[3], 1〉. However, this contradicts 〈[3], 1〉 1� 〈c, 1〉 2� 〈[2], 1〉.
Thus, (T2 ×Kμ)

(2) ∈ C1.

To show (T2 × Kμ)(s1, s2, . . . , sn) ∈ C0 ∪ C1, we need to verify d(D) = 4. In
view of (a) and its symmetry among the vertices 〈[i], j〉 for [i] ∈ NT2(c) − {[1]}
by (4.1), it suffices to check dD((p, 〈[2], j〉), (q, 〈[3], j〉)) ≤ 4 for j = 1, 2, . . . , μ, and
p, q = 1, 2. That is, the partial orientation in Figure 7 has diameter 4, which is easy
to check. Since every vertex lies in a directed C3, it follows from Lemma 1.2 that
(T2 ×Kμ)(s1, s2, . . . , sn) ∈ C0 ∪ C1.

〈[2], 2〉 〈c, 2〉 〈[3], 2〉

〈[2], 3〉 〈c, 3〉 〈[3], 3〉

〈[2], 1〉 〈c, 1〉
〈[3], 1〉

Figure 7: Partial orientation D of (T2 ×K3)
(2) when degT2

(c) > 2, where d(D) = 4.

In Proposition 4.3, we generalise the sufficient condition in Proposition 4.1(b),
“degT2

(c) > 2”, for the vertex-multiplication of T2 × Kμ to be in C1. To this end,
recall the classical theorem of Sperner.
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Theorem 4.2. (Sperner [18]) Let n ∈ Z
+ and A be an antichain of Nn := {1, 2, . . . ,

n} (i.e. A �⊆ B for all A,B ∈ A ). Then |A | ≤ (
n

�n/2�
)
with equality holding if and

only if all members in A have the same size, �n
2
� or �n

2
�. (The two sizes coincide if

n is even.)

Recall that we loosely use the two notations of a vertex, i.e. if vi = j, then vi = vj
and si = sj . So s〈c,v〉 corresponds to the vertex 〈c, v〉 in the next proposition.

Proposition 4.3. Let μ ≥ 3 and m = min{s〈c,v〉 | v ∈ V (Kμ)}. If degT2
(c) >(

m
�m/2�

)
, then (T2 ×Kμ)(s1, s2, . . . , sn) ∈ C1.

Proof : Suppose D is an orientation of (T2 × Kμ)(s1, s2, . . . , sn) with d(D) = 3 =
d(T2 × Kμ). In view of parity, dD((p, 〈[i], v〉), (q, 〈[j], v〉)) = 2 for any p = 1, 2, . . . ,
s〈[i],v〉, q = 1, 2, . . . , s〈[j],v〉 and all [i], [j] ∈ NT2(c) with [i] �= [j]. For any (p, 〈[i], v〉) ∈
V (D), define O〈c,v〉((p, 〈[i], v〉)) = O((p, 〈[i], v〉)) ∩ {(r, 〈c, v〉) | r = 1, 2, . . . , s〈c,v〉)}.
Since degT2

(c) >
(

m
�m/2�

)
, there exists some v∗ ∈ V (Kμ) such that degT2

(c) >( s〈c,v∗〉
�s〈c,v∗〉/2�

)
. By Sperner’s Theorem, for some p∗ = 1, 2, . . . , s〈[i∗],v∗〉, some q∗ =

1, 2, . . . , s〈[j∗],v∗〉 and some [i∗], [j∗] ∈ NT2(c) with [i∗] �= [j∗], we have

O〈c,v∗〉((p∗, 〈[i∗], v∗〉)) ⊆ O〈c,v∗〉((q∗, 〈[j∗], v∗〉)).
Hence, it follows that dD((p

∗, 〈[i∗], v∗〉), (q∗, 〈[j∗], v∗〉)) > 2, a contradiction. Hence
(T2 × Kμ)(s1, s2, . . . , sn) �∈ C0. By Proposition 4.1 (b), (T2 × Kμ)(s1, s2, . . . ,
sn) ∈ C1.

Remark 4.4. The same proof and notation as Proposition 4.3 shows that if
degT2

(c) >
(

m
�m/2�

)
, then (T2 ×K2)(s1, s2, . . . , sn) �∈ C0.

Proposition 4.5. For μ ≥ 3, (P2 ×Kμ)(s1, s2, . . . , sn) ∈ C1.

Proof : Suppose F is an orientation of (P2 × Kμ)(s1, s2, . . . , sn) with d(F ) = 2 =
d(P2×Kμ). It follows from dF ((p, 〈u, x〉), (q, 〈v, x〉)) ≤ 2 that (p, 〈u, x〉) → (q, 〈v, x〉)
for u, v ∈ V (P2), x ∈ V (Kμ), p = 1, 2, . . . , s〈u,x〉, q = 1, 2, . . . , s〈v,x〉. Then,

dF ((q, 〈v, x〉), (p, 〈u, x〉)) > 2,

a contradiction. Hence, (P2 ×Kμ)(s1, s2, . . . , sn) �∈ C0.

Define an orientation D of (P2 ×Kμ)
(2) as follows:

〈2, 1〉⇒ 〈1, 1〉, 〈1, 2〉⇒ 〈2, 2〉, 〈1, i〉� 〈2, i〉 for i = 3, 4, . . . , μ.

〈k, j1〉� 〈k, j2〉 whenever 2 ≤ j1 < j2 ≤ μ, and

〈k, j〉� 〈k, 1〉� 〈k, 2〉 for j = 3, 4, . . . , μ,

for k = 1, 2.

It can be verified easily that d(D) = 3. Hence, (P2 × Kμ)
(2) ∈ C1. Further-

more, since every vertex lies in a directed C3, it follows from Lemma 1.2 that
(P2 ×Kμ)(s1, s2, . . . , sn) ∈ C1.
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5 Cartesian product of two cycles Cλ × Cμ

In this section, we prove Theorem 1.11.

Proposition 5.1. If λ ≥ μ ≥ 4, then (Cλ × Cμ)(s1, s2, . . . , sn) ∈ C0.

Proof : We shall use a similar strategy as in Theorem 1.10. Partition V (Cλ) into
V1 = {v | v is odd} and V2 = {v | v is even}. Let F be a strong orientation of Cμ,
say 1 → 2 → · · · → μ → 1, and define an orientation D for (Cλ × Cμ)

(2) as follows:

〈u, x〉⇒ 〈u, y〉 ⇐⇒ x → y in F

for any u ∈ V1, and any x, y ∈ V (Cμ), i.e. the copy C
(2)
μ is oriented similarly to F .

〈u, x〉⇒ 〈u, y〉 ⇐⇒ y → x in F

for any u ∈ V2, and any x, y ∈ V (Cμ), i.e. the copy C
(2)
μ is oriented similarly to F̃ .

〈u, x〉� 〈u+ 1, x〉 (addition is taken modulo λ)

for any u ∈ V (Cλ) and any x ∈ V (Cμ).

We claim that dD((p, 〈u, x〉), (q, 〈v, y〉)) ≤ �λ
2
� + �μ

2
� = d(Cλ × Cμ) for any

〈u, x〉, 〈v, y〉 ∈ V (Cλ × Cμ), and p, q = 1, 2. Suppose u = v ∈ V1. Note that ei-
ther dF (x, y) ≤ �μ

2
� or dF̃ (x, y) ≤ �μ

2
�. So, there exist paths P and P ′ in D, each of

length at most �μ
2
�, from {(1, 〈u, x〉), (2, 〈u, x〉)} to {(1, 〈v, y〉), (2, 〈v, y〉)} and from

{(1, 〈w, x〉), (2, 〈w, x〉)} to {(1, 〈w, y〉), (2, 〈w, y〉)} where w ∈ V2 is some vertex ad-
jacent to u in Cλ respectively. In the former case where dF (x, y) ≤ �μ

2
�, P suffices

and we are done. In the latter case where dF̃ (x, y) ≤ �μ
2
�, we shall further assume

w = u+ 1 (mod λ) for simplicity; the proof is similar if u = w + 1 (mod λ). Then,
(p, 〈u, x〉)(p, 〈w, x〉) with P ′ and (3− q, 〈w, y〉)(q, 〈u, y〉) form a (p, 〈u, x〉)− (q, 〈v, y〉)
path of length at most 2 + �μ

2
� ≤ �λ

2
�+ �μ

2
�. A similar proof follows if u = v ∈ V2.

Suppose u �= v. For simplicity, we shall assume u(u+1) . . . (u+l)v to be a shortest
u − v path in Cλ; the proof is similar if the shortest path is u(u − 1) . . . (u − l)v.
If x = y, then (p, 〈u, x〉)(p, 〈u + 1, x〉) . . . (p, 〈v, x〉)(3 − p, 〈u + l, x〉)(3 − p, 〈v, x〉)
guarantees a (p, 〈u, x〉)− (q, 〈v, y〉) path of length at most �λ

2
� + 2 ≤ �λ

2
�+ �μ

2
�.

Next, suppose x �= y. Furthermore, we shall assume v ∈ V1; the proof is sim-
ilar if v ∈ V2. Again, consider the cases dF (x, y) ≤ �μ

2
� or dF̃ (x, y) ≤ �μ

2
�. In

the former case where dF (x, y) ≤ �μ
2
�, there is a path Q of length at most �μ

2
�

from {(1, 〈v, x〉), (2, 〈v, x〉)} to {(1, 〈v, y〉), (2, 〈v, y〉)} in D. So, (p, 〈u, x〉)(p, 〈u +
1, x〉) . . . (p, 〈u + l, x〉)(p, 〈v, x〉) and Q form a (p, 〈u, x〉) − (q, 〈v, y〉) path of length
at most �λ

2
� + �μ

2
�. In the latter case where dF̃ (x, y) ≤ �μ

2
�, unless u = λ is

odd and v = 1, there exists some i ∈ {0, 1} such that u + i ∈ V2. Moreover,
there is a path Q′ of length at most �μ

2
� from {(1, 〈u + i, x〉), (2, 〈u + i, x〉)} to

{(1, 〈u + i, y〉), (2, 〈u + i, y〉)} in D so that (p, 〈u, x〉)(p, 〈u + 1, x〉) . . . (p, 〈u + i, x〉)
with Q′ and (q, 〈u+ i, y〉)(q, 〈u+ i+ 1, y〉) . . . (q, 〈v, y〉) form a (p, 〈u, x〉)− (q, 〈v, y〉)
of length at most �λ

2
� + �μ

2
�.
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Finally, if u = λ is odd, v = 1, and y − x ≤ �μ
2
� + 1 (mod μ), then (p, 〈λ, x〉) →

(p, 〈1, x〉) → {(1, 〈1, x+1〉), (2, 〈1, x+1〉)} → {(1, 〈1, x+2〉), (2, 〈1, x+2〉)} → · · · →
{(1, 〈1, y〉), (2, 〈1, y〉)} ensures a path of length at most 1 + �μ

2
� + 1 ≤ �λ

2
� + �μ

2
�. If

u = λ is odd, v = 1, and y − x > �μ
2
� + 1 (mod μ), then (p, 〈λ, x〉) → (3 − p, 〈λ −

1, x〉) → {(1, 〈λ−1, x−1〉), (2, 〈λ−1, x−1〉)} → · · · → {(1, 〈λ−1, y〉), (2, 〈λ−1, y〉)}
and (q, 〈λ− 1, y〉)(q, 〈λ, y〉)(q, 〈1, y〉) form a (p, 〈λ, x〉)− (q, 〈1, y〉) path of length at
most 3 + �μ

2
� − 2 ≤ �λ

2
�+ �μ

2
�.

Since every vertex lies in a directed C4, it follows from Lemma 1.2 that (Cλ ×
Cμ)(s1, s2, . . . , sn) ∈ C0.

Corollary 5.2. (C3 × C3)(s1, s2, . . . , sn) ∈ C0 ∪ C1.

Proof : We claim that d(D) = 3 = d(C3×C3)+1 where D is as defined in Proposition
5.1. For any 〈u, x〉, 〈v, y〉 ∈ V (Cλ × Cμ), observe that either 〈u, x〉 � 〈v, x〉 or
〈v, x〉� 〈u, x〉 and 〈v, x〉⇒ 〈v, x+1〉⇒ 〈v, x+2〉 or 〈v, x〉⇒ 〈v, x−1〉⇒ 〈v, x−2〉,
where the addition is taken modulo 3, proves the claim. Hence, (C3 × C3)

(2) ∈
C0 ∪ C1. Since every vertex lies in a directed C3, it follows from Lemma 1.2 that
(C3 × C3)(s1, s2, . . . , sn) ∈ C0 ∪ C1.

Proposition 5.3. (C4 × C3)
(2) ∈ C0 and (C4 × C3)(s1, s2, . . . , sn) ∈ C0 ∪ C1.

Proof : Define an orientation D for (C4 × C3)
(2) as follows:

〈2, i〉� 〈1, i〉 and 〈3, i〉� 〈4, i〉 for i = 1, 2, 3.

〈1, 2〉⇒ 〈1, 1〉⇒ 〈4, 1〉⇒ 〈4, 2〉⇒ 〈1, 2〉⇒ 〈1, 3〉⇒ 〈4, 3〉⇒ 〈4, 2〉,
〈3, 2〉⇒ 〈3, 1〉⇒ 〈2, 1〉⇒ 〈2, 2〉⇒ 〈3, 2〉⇒ 〈3, 3〉⇒ 〈2, 3〉⇒ 〈2, 2〉,
〈1, 3〉⇒ 〈1, 1〉, 〈4, 1〉⇒ 〈4, 3〉, 〈3, 3〉⇒ 〈3, 1〉, and 〈2, 1〉⇒ 〈2, 3〉.

It is easy to check d(D) = 3 = d(C4 × C3). Since every vertex lies in a directed C4,
it follows from Lemma 1.2 that (C4 × C3)(s1, s2, . . . , sn) ∈ C0 ∪ C1.

6 Concluding remarks

In this paper, we considered primarily vertex-multiplications of Cartesian products
involving trees, paths and cycles as they are some special families of graphs studied
for orientations (see [7–10]). We refer the interested reader to a good survey on
orientations of graphs [12] by Koh and Tay.

It can be shown that (T2 × T2)(s1, s2, . . . , sn) ∈ C0 ∪ C1. We believe its char-
acterisation likely involves notions and techniques of Extremal Set Theory such as
antichains. This is akin to Proposition 4.3 and vertex-multiplications of trees with
diameter 4 (see [21]). Hence, we conclude by proposing the following problem.

Problem 6.1. Characterise the vertex-multiplications (T2 × T2)(s1, s2, . . . , sn) that
belong to C0.
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