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Abstract

Given a graph H and an integer k ≥ 1, the Gallai-Ramsey number
GRk(H) is defined to be the minimum integer n such that every k-edge
coloring of the complete graph Kn contains either a rainbow (all differ-
ent colors) triangle or a monochromatic copy of H . In this paper, we
determine the Gallai-Ramsey numbers for all connected graphs with five
vertices and chromatic number 4. With our results, the Gallai-Ramsey
numbers for all isolated-free graphs with five vertices except K5 are de-
termined.

1 Introduction

In this paper, we only deal with finite, simple and undirected graphs. Given a graph
G and the vertex set V (G), let |G| denote the number of vertices of G and G[W ]
denote the subgraph of G induced by a set W ⊆ V (G). Given disjoint vertex sets
X, Y ⊆ V (G), if each vertex in X is adjacent to all vertices in Y and all the edges
between X and Y are colored with the same color, then we say that X is mc-adjacent
to Y , that is, X is blue-adjacent to Y if all the edges between X and Y are colored
with blue. We use Pn and Kn to denote the path and complete graph on n vertices,
respectively. We define [k] = {1, . . . , k} for any integers k ≥ 1.

The complete graphs under edge coloring without a rainbow triangle usually
have pretty interesting and somehow beautiful structures. In 1967, Gallai studied
the structure under the guise of transitive orientations and obtained the following
result [7] which was restated in [10] in the terminology of graphs.
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Theorem 1.1 ([7, 10]). For a complete graph G under any edge coloring without
a rainbow triangle, there exists a partition of V (G) (called a Gallai-partition) with
parts V1, V2, . . . , V�, � ≥ 2, such that there are at most two colors on the edges between
the parts and only one color on the edges between each pair of parts.

In honor of Gallai’s result, the edge coloring of a complete graph without a
rainbow triangle is called Gallai coloring. We use (G, c) to denote a complete graph
G under the Gallai coloring c : E(G) −→ [k]. Given graphs H1, . . . , Hk and an
integer k ≥ 1, the Ramsey number R(H1, . . . , Hk) is defined to be the minimum
integer n such that every k-edge coloring of Kn contains a monochromatic copy
of Hi in color i ∈ [k], and the Gallai-Ramsey number GR(H1, . . . , Hk) is defined
to be the minimum integer n such that every Gallai k-coloring of Kn contains a
monochromatic copy of Hi in color i ∈ [k]. We simply write Rk(H) and GRk(H)
when H = H1 = · · · = Hk, and R((k − r)K, rH) and GRk((k − r)K, rH) when
H = H1 = · · · = Hr and K = Hr+1 = · · · = Hk. Similar to the notation GRk((k −
s − r)F, sK, rH) when F = H1 = · · · = Hk−s−r, K = Hk−s−r+1 = · · · = Hk−r and
H = Hk−r+1 = · · · = Hk. Given a Gallai-partition V1, V2, . . . , V� of a complete graph
G, we define G = G[{v1, . . . , v�}] = K� as a reduced graph of G, where vi ∈ Vi for
all i ∈ [�]. Obviously, there exists a monochromatic copy of H in G if � ≥ R2(H),
which leads to a monochromatic copy of H in G. Clearly, GR2(K,H) = R(K,H)
and GRk(H) ≤ Rk(H) for k ≥ 1. The exact values of R2(Kt) for t ≥ 5 are not
determined so far. Similarly, determining the exact value of GRk(H) for a graph
H is far from trivial sometimes, even for a small graph. The general behavior of
GRk(H) for all graphs H was established in [9].

Theorem 1.2 ([9]). Let H be a fixed graph with no isolated vertices. Then GRk(H)
is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star,
and constant (does not depend on k) when H is a star.

In 2015, Fox, Grinshpun and Pach [4] posed a conjecture for GRk(Kt). It is worth
mentioning that the cases t = 3, 4 were proved in [1],[9] and [13]. Recently, Magnant
and Schiermeyer [14] have made a breakthrough for the case t = 5 while there are
not any results for the cases t ≥ 6. More information on Gallai-Ramsey number can
be found in [6, 21, 22].

Let G denote a class of isolated-free graphs with five vertices (see Figure 1). It
is worth mentioning that the Gallai-Ramsey numbers for all the graphs in G with
chromatic number 2 have been determined for G1–G4 in [3], for G5 in [5, 21], for G6

in [12] and for G7 in [20]. Recently, the Gallai-Ramsey numbers for all the graphs
in G with chromatic number 3 were determined by [15] for G8, [16, 18] for G9, [24]
for G10, [12] for G11–G14, [19] for G15 and G16 and [23] for G11–G19. In this paper,
we obtain the exact values of GRk(H) for H ∈ {G20, G21, G22}, as follows. With our
results, the Gallai-Ramsey numbers for all graphs in G \ {G23} are determined.

Theorem 1.3. Let H ∈ {G20, G21, G22}. For all k ≥ 1, we have

GRk(H) =

{
(R2(H)− 1) · 17(k−2)/2 + 1, if k is even,

4 · 17(k−1)/2 + 1, if k is odd.
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G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12

G13 G14 G15 G16 G17 G18

G19 G20 G21 G22 G23

Figure 1: All isolated-free graphs with five vertices.

In order to prove Theorem 1.3, we give a unified proof for the following two
results.

Theorem 1.4. Let H ∈ {G20, G21}. For all k ≥ 1 and r with 0 ≤ r ≤ k,

GRk((k − r)K3, rH) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
5(k−r)/2 · 17r/2 + 1, if (k − r) and r are both even, (a1)

2 · 5(k−r−1)/2 · 17r/2 + 1, if (k − r) is odd and r is even, (a2)

8 · 5(k−r−1)/2 · 17(r−1)/2 + 1, if (k − r) and r are both odd, (a3)

4 · 5(k−r)/2 · 17(r−1)/2 + 1, if (k − r) is even and r is odd. (a4)

Theorem 1.5. For all k ≥ 1, s and r with 0 ≤ s ≤ k and 0 ≤ r ≤ k,

GRk((k − s− r)P3, sK3, rG22) =
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5s/2 · �21 · 17(r−2)/2	 + 1, if s, r are both even and s+ r = k, (b1)

2 · 5s/2 · 17r/2 + 1, if s, r are both even and s+ r < k, (b2)

5(s−1)/2 · �42 · 17(r−2)/2	 + 1, if s is odd, r is even and s+ r = k, (b3)

4 · 5(s−1)/2 · 17r/2 + 1, if s is odd, r is even and s+ r < k, (b4)

10 · 5(s−1)/2 · 17(r−1)/2 + 1, if s, r are both odd and s + r = k, (b5)

16 · 5(s−1)/2 · 17(r−1)/2 + 1, if s, r are both odd and s + r < k, (b6)

4 · 5s/2 · 17(r−1)/2 + 1, if s is even, r is odd and s+ r = k, (b7)

�32 · 5(s−2)/2	 · 17(r−1)/2 + 1, if s is even, r is odd and s+ r < k. (b8)

2 Preliminaries

For ease of notation, let GRk((k− r)K3, rH) = w(k, r)+ 1 with H ∈ {G20, G21} and
GRk((k−s−r)P3, sK3, rG22) = f(k, s, r)+1. We start this section by using w(k, r),
f(k, s, r) and the functions listed in the Appendix to derive the following two tables
based on the cases a1–a4 and b1–b8.

By applying the functions listed in the Appendix and Tables 1 and 2, we can get
the following inequalities that will be used in Section 3. One can check the inequalities
(a)–(e), (h)–(n) and (q) by easy computations. In order to be convenient to check
the rest of the inequalities, we refer the readers to Table 3 for more details.

Case a1 a2 a3 a4
w(k−1,r)
w(k,r)

2
5

1
2

1
2

2
5

w(k−2,r)
w(k,r)

1
5

1
5

1
5

1
5

w(k,r−1)
w(k,r)

8
17

10
17

5
8

1
2

w(k−1,r−1)
w(k,r)

4
17

4
17

1
4

1
4

w(k−2,r−1)
w(k,r)

8
85

2
17

1
8

1
10

w(k,r−2)
w(k,r)

5
17

5
17

5
17

5
17

w(k−1,r−2)
w(k,r)

2
17

5
34

5
34

2
17

w(k−2,r−2)
w(k,r)

1
17

1
17

1
17

1
17

Table 1: The ratios of corresponding functions to w(k, r).
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Case b1 b2 b3 b4 b5 b6 b7 b8

f(k−1,s−1,r)
f(k,s,r)

2
5

2
5

1
2

1
2

2
5

s = 1 : 3
8

s ≥ 3 : 2
5

1
2

1
2

f(k−2,s−2,r)
f(k,s,r)

1
5

1
5

1
5

1
5

1
5

1
5

1
5

s = 2 : 3
16

s ≥ 4 : 1
5

f(k,s+1,r−1)
f(k,s,r)

10
21

8
17

10
21

8
17

r = 1 : 1
2

r ≥ 3 : 21
34

5
8

r = 1 : 1
2

r ≥ 3 : 21
34

s = 0 : 2
3

s ≥ 2 : 5
8

f(k−1,s,r−1)
f(k,s,r)

4
21

s = 0 : 3
17

s ≥ 2 : 16
85

5
21

4
17

r = 1 : 1
5

r ≥ 3 : 21
85

1
4

r = 1 : 1
4

r ≥ 3 : 21
68

s = 0 : 1
3

s ≥ 2 : 5
16

f(k,s,r−1)
f(k,s,r)

s = 0 : 2
7

s ≥ 2 : 32
105

s = 0 : 3
17

s ≥ 2 : 16
85

8
21

4
17

2
5

1
4

1
2

s = 0 : 1
3

s ≥ 2 : 5
16

f(k−1,s−1,r−1)
f(k,s,r)

16
105

8
85

s = 1 : 1
7

s ≥ 3 : 16
105

s = 1 : 3
34

s ≥ 3 : 8
85

1
5

1
8

1
5

1
8

f(k−2,s−1,r−1)
f(k,s,r)

2
21

8
85

2
21

s = 1 : 3
34

s ≥ 3 : 8
85

r = 1 : 1
10

r ≥ 3 : 21
170

1
8

r = 1 : 1
10

r ≥ 3 : 21
170

1
8

f(k,s+2,r−2)
f(k,s,r)

r = 2 : 5
21

r ≥ 4 : 5
17

5
17

r = 2 : 5
21

r ≥ 4 : 5
17

5
17

5
17

5
17

5
17

s = 0 : 16
51

s ≥ 2 : 5
17

f(k,s+1,r−2)
f(k,s,r)

4
21

2
17

5
21

5
34

16
85

2
17

4
17

s = 0 : 8
51

s ≥ 2 : 5
34

f(k−1,s+1,r−2)
f(k,s,r)

r = 2 : 2
21

r ≥ 4 : 2
17

2
17

r = 2 : 5
42

r ≥ 4 : 5
34

5
34

2
17

2
17

5
34

s = 0 : 8
51

s ≥ 2 : 5
34

f(k−2,s,r−2)
f(k,s,r)

r = 2 : 1
21

r ≥ 4 : 1
17

1
17

r = 2 : 1
21

r ≥ 4 : 1
17

1
17

1
17

1
17

1
17

1
17

f(k−1,s,r−2)
f(k,s,r)

= f(k,s,r−2)
f(k,s,r)

2
21

1
17

2
21

1
17

8
85

1
17

s = 0 : 3
34

s ≥ 2 : 8
85

1
17

Table 2: The ratios of corresponding functions to f(k, s, r).

For all k ≥ 3 and r ≥ 1, we have w(k, r) + 1 >⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4w(k − 1, r − 1) ≥ w(k − 1, r − 1) + k + 1, where w(k − 1, r − 1) ≥ k + 1, (a)

5w(k − 2, r) ≥ 2w(k − 1, r) ≥ w(k − 1, r) + k, where w(k − 1, r) ≥ k, (b)

w(k, r− 1) + w(k − 1, r − 1) ≥ w(k, r − 1) + r + 4,

where w(k − 1, r − 1) ≥ r + 4, (c)

8w(k − 2, r − 1) ≥ 5w(k − 2, r − 1) + r ≥ r + 6, where w(k − 2, r − 1) ≥ r, (d)

17w(k − 2, r − 2) ≥ 12w(k − 2, r − 2) + r, where w(k − 2, r − 2) ≥ r, (e)

w(k − 1, r) + 2w(k − 1, r − 1), (f)

2w(k − 1, r − 2) + w(k, r − 1) + w(k − 2, r − 2). (g)
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For all k ≥ 3 and s+ r ≥ 1, we have f(k, s, r) + 1 >⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2f(k, s, r − 1) ≥ f(k, s, r − 1) + s+ r + 1, where f(k, s, r − 1) ≥ s+ r + 1, (h)

2f(k − 1, s− 1, r) ≥ f(k − 1, s− 1, r) + s+ r,

where f(k − 1, s− 1, r) ≥ s+ r, (i)

3f(k − 1, s, r − 1) ≥ 2f(k − 1, s, r − 1) + r, where f(k − 1, s, r − 1) ≥ r, (j)

8f(k − 2, s− 1, r − 1) ≥ 5f(k − 2, s− 1, r − 1) + r,

where f(k − 2, s− 1, r − 1) ≥ r, (k)

f(k − 1, s, r − 1) + f(k, s+ 1, r − 1), (l)

5f(k − 2, s− 2, r), (m)

5f(k − 1, s− 1, r − 1), (n)

2f(k − 1, s, r − 1) + 3f(k − 2, s− 1, r − 1), (o)

f(k − 1, s, r − 1) + 2f(k − 1, s− 1, r − 1) + 2f(k − 2, s− 1, r − 1). (p)

For abbreviation, we use {α; β} + {γ; θ} and α + β + {γ; θ;ϕ} to denote
{α + γ, α + θ, β + γ, β + θ} and {α + β + γ, α + β + θ, α + β + ϕ} in the following
inequalities, respectively. For all k ≥ 3 and r ≥ 2, we have f(k, s, r) + 1 >⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

17f(k − 2, s, r − 2) ≥ 14f(k − 2, s, r − 2) + r, where f(k − 2, s, r − 2) ≥ r, (q)

f(k, s+ 2, r − 2) + 2f(k − 1, s, r − 1), (r)

4f(k − 1, s, r − 2) + f(k, s+ 1, r − 1), (s)

{f(k, s+ 1, r − 2) + f(k, s, r − 1); f(k − 1, s+ 1, r − 2) + f(k, s+ 1, r − 1)}
+ {3f(k − 2, s, r − 2); 2f(k − 1, s, r − 2)}, (t)

3f(k, s+ 1, r − 2) + f(k − 2, s, r − 2) + 2f(k − 1, s, r − 2), (u)

6f(k − 1, s+ 1, r − 2) + f(k − 2, s, r − 2), (v)

3f(k − 1, s+ 1, r − 2) + f(k, s+ 1, r − 2) + {4f(k − 2, s, r − 2);

f(k − 1, s+ 1, r − 2) + 2f(k − 2, s, r − 2);

2f(k − 1, s, r − 2) + f(k − 2, s, r − 2)}. (w)

We next list many known results that shall be applied in the proofs of Theo-
rems 1.4 and 1.5.

Theorem 2.1 ([1, 9]). For all k ≥ 1,

GRk(K3) =

{
5k/2 + 1, if k is even,

2 · 5(k−1)/2 + 1, if k is odd.

Theorem 2.2 ([2]). R(K3, G20) = R(K3, G21) = 9 and R(K3, G22) = 11.

Theorem 2.3 ([3]). For all k ≥ 1, GRk(P3) = 3.

Theorem 2.4 ([8]). R2(K3) = 6, R(K3, K4) = 9 and R2(K4) = 18.

Theorem 2.5 ([11]). R2(G20) = R2(G21) = 18 and R2(G22) = 22.

Theorem 2.6 ([17]). R(P3, K3) = 5 and R(P3, G22) = 7.
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3 Proofs of Theorems 1.4 and 1.5

We first show that GRk((k − r)K3, rH) ≥ w(k, r) + 1 with H ∈ {G20, G21} and
GRk((k − s − r)P3, sK3, rG22) ≥ f(k, s, r) + 1 for k ≥ 1 and s, r with 0 ≤ s ≤ k
and 0 ≤ r ≤ k by construction. We iteratively construct a k-edge colored complete
graph Ik for all k ≥ 1 which contains neither a rainbow triangle nor an appropriately
colored monochromatic copy of H ∈ {G20, G21, G22} or K3 or P3 by the following
iterative procedures. In other words, we first distribute the first r colors to H ∈
{G20, G21, G22} for Theorems 1.4 and 1.5, then we distribute the last k − r colors to
K3 for Theorem 1.4; the middle s colors to K3 and the last k− s− r colors to P3 for
Theorem 1.5.

Let i ≥ 0 be an even number in each of the following iterative procedures. By
Theorems 2.2–2.4, let G1 be a 2-edge colored K17 with colors i+ 1 and i+ 2 which
contains no a monochromatic copy of K4, G

2 be a 2-edge colored K10 with colors
r and r + 1 which contains neither a monochromatic copy of G22 in color r nor a
monochromatic copy of K3 in color r + 1, G3 be a 2-edge colored K8 with colors
r and r + 1 which contains neither a monochromatic copy of K4 in color r nor a
monochromatic copy of K3 in color r + 1, G4 be a 2-edge colored K8 with colors r
and r + 1 which contains neither a monochromatic copy of H ∈ {G20, G21} in color
r nor a monochromatic copy of K3 in color r + 1, G5 be a 2-edge colored K5 with
colors i and i + 1 which contains no a monochromatic copy of K3, G

6 be a 2-edge
colored K5 with colors i + 1 and i + 2 which contains no a monochromatic copy of
K3 and G7 be a 1-edge colored K2 with colors in [k] \ [s + r] which contains no a
monochromatic copy of P3. Let I0 be a single vertex. Suppose we have constructed
Ii−1 or Ii for some i < k whenever running an iterative procedure. We distinguish
two cases.

(I) s+ r = k. (respectively, k − r + r = k for the constructions of Theorem 1.4)

1. If i ≤ r− 2, then we construct Ii+2 by replacing each vertex of G1 with a copy
of Ii which begins with I2 for all even r ≥ 4 and I0 for all odd r ≥ 3, where I2
is a 2-edge colored K21 with colors 1 and 2 which contains no a monochromatic
copy of G22. (respectively, we construct Ii+2 by replacing each vertex of G1

with a copy of Ii which begins with I0.)

2. If i = r−1, then we construct Ii+2 by replacing each vertex of Ii with a copy of
G2 (respectively, G4) when s (respectively, k − r) is odd and construct Ii+1 by
replacing each vertex of Ii with a monochromatic copy of K4 in color r when s
(respectively, k − r) is even.

3. If r ≤ i ≤ s + r − 2 (respectively, r ≤ i ≤ k − 2), then we construct Ii+1 by
replacing each vertex of G5 with a copy of Ii−1 when s (respectively, k − r) is
even and r is odd, otherwise we construct Ii+2 by replacing each vertex of G6

with a copy of Ii.

4. If r ≤ i and i = s+ r− 1 (respectively, r ≤ i and i = k− 1), then we construct
Ii+1 by replacing each vertex of Ii−1 with a copy of G5 when s (respectively,
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k − r) is even and r is odd, and construct Ii+1 by connecting two copies of Ii
with all new edges in color k when s (respectively, k − r) is odd and r is even.

One can obtain the desired construction Ik for cases a1 and b1 from procedures 1
and 3, cases a2 and b3 from procedures 1, 3 and 4, cases a3 and b5 from procedures
1–3 and cases a4 and b7 from procedures 1–4.

(II) s+ r < k.

5. If i ≤ r− 2, then we construct Ii+2 by replacing each vertex of G1 with a copy
of Ii.

6. If i = r − 1, then we construct Ii+1 by replacing each vertex of Ii with a copy
of K3 in color r when s = 0 and construct Ii+2 by replacing each vertex of Ii
with a copy of G3 when s ≥ 1.

7. If r ≤ i ≤ s+ r−2, then we construct Ii+2 by replacing each vertex of G6 with
a copy of Ii.

8. If r ≤ i and i = s + r − 1, then we construct Ii+1 by connecting two copies of
Ii with all new edges in color s+ r.

9. If s + r ≤ i < k, then we construct Ik by replacing each vertex of Is+r with a
copy of G7.

One can obtain the desired construction Ik for case b2 from procedures 5,7 and
9, case b4 from procedures 5 and 7–9, case b6 from procedures 5–7 and 9, and case
b8 from procedures 5–9.

Now, it suffices to show that GRk((k − r)K3, rH) ≤ w(k, r) + 1 with H ∈
{G20, G21} and GRk((k − s − r)P3, sK3, rG22) ≤ f(k, s, r) + 1 for all k ≥ 1 and
s, r with 0 ≤ s ≤ k and 0 ≤ r ≤ k. For the simplicity of the notations, we use
C1.4 and C1.5 to represent the cases GRk((k − r)K3, rH) with H ∈ {G20, G21} and
GRk((k − s− r)P3, sK3, rG22), respectively. We proceed the proofs by induction on
k + r for C1.4 and k + s + 2r for C1.5. The case for k = 1 is trivial. By Theorems
2.2–2.6, GR2(H) = R2(H) = w(2, 2)+1, GR2(K3, H) = R(K3, H) = w(2, 1)+1 and
GR2(K3) = R2(K3) = w(2, 0) + 1 for C1.4; GR2(G22) = R2(G22) = f(2, 0, 2) + 1,
GR2(K3) = R2(K3) = f(2, 2, 0) + 1, GR2(K3, G22) = R(K3, G22) = f(2, 1, 1) +
1, GR2(P3, G22) = R(P3, G22) = f(2, 0, 1) + 1 and GR2(P3, K3) = R(P3, K3) =
f(2, 1, 0) + 1 for C1.5. The case r = 0 for C1.4 is Theorem 2.1, and the cases s = k
and s + r = 0 for C1.5 are Theorems 2.1 and 2.3, respectively. Therefore, we may
assume that k ≥ 3 and 1 ≤ r ≤ k for C1.4; k ≥ 3, 1 ≤ s + r ≤ k and 0 ≤ s < k
for C1.5. Suppose that Theorem 1.4 holds for all k

′
+ r

′
< k + r and Theorem 1.5

holds for all k
′
+ s

′
+ 2r

′
< k + s + 2r, where k

′
is the total number of colors, s

′

is the number of colors assigned to K3 and r
′
is the number of colors assigned to

H ∈ {G20, G21, G22}. Now we consider a complete graph G with w(k, r) + 1 and
f(k, s, r) + 1 vertices for C1.4 and C1.5, respectively. Let c : E(G) −→ [k] be any
Gallai k-coloring of G. Suppose that (G, c) contains neither a monochromatic copy
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of H ∈ {G20, G21} in any of the first r colors nor a monochromatic copy of K3 in any
of the last k− r colors for C1.4 and (G, c) contains no a monochromatic copy of G22

in any of the first r colors, K3 in any of the middle s colors and P3 in any of the last
k − s− r colors for C1.5. Choose (G, c) with k minimum.

Let X1 and X2 be disjoint sets of V (G) such that X1 is color i-adjacent to
X2, i ∈ [k]. It is easily seen that G[X1 ∪ X2] contains a monochromatic copy of
H ∈ {G20, G21} in color i if condition 1 holds or H ∈ {G20, G21, G22} in color i if any
one of conditions 2–4 holds.

1. Both G[X1] and G[X2] have an edge in color i and |X1 ∪X2| ≥ 5.

2. |X1| ≥ 2 and G[X2] contains a K3 in color i.

3. |X1| ≥ 1 and G[X2] contains a K4 − e in color i.

4. G[X1] has an edge in color i and G[X2] has a P3 in color i.

Let t1, t2, . . . , tm ∈ V (G) be a maximum sequence of vertices chosen as follows:
for each j ∈ [m], all edges between tj and V (G) \ {t1, t2, . . . , tj} are colored the same
color under c. Let T = {t1, t2, . . . , tm}. Notice that T is possibly empty. For each
tj ∈ T , let c(tj) be the unique color on the edges between tj and V (G)\{t1, t2, . . . , tj}.
Claim 1. c(ti) �= c(tj) for all i, j ∈ [m] with i �= j. Thus all colors in {c(t1), . . . ,
c(tm)} are assigned to H ∈ {G20, G21, G22}.
Proof. Suppose that c(ti) = c(tj) for some i, j ∈ [m] with i �= j. We may assume
that tj is the first vertex in the sequence t1, . . . , tm such that c(ti) = c(tj) for some
i ∈ [m] with i < j. We may further assume that the color c(ti) is red. Thus
the edge titj is colored with red under c. Let A = V (G) \ {t1, t2, . . . , tj}. Then
all the edges between {ti, tj} and A are colored with red under c. For C1.4, as
tj is the first vertex in the sequence t1, . . . , tm such that c(ti) = c(tj) for some
i ∈ [m] with i < j, by the pigeonhole principle, we see that j ≤ k + 1. Since
A = V (G) \ {t1, t2, . . . , tj}, we have |A| ≥ |G| − (k + 1) > k + 1 ≥ 4 by (a).
Therefore, red cannot be assigned to K3 as titj is a red edge. Furthermore, to avoid
condition 1, there are no red edges in (G[A], c). By induction, |A| ≤ w(k− 1, r− 1).
By (a), we have |G| ≤ w(k − 1, r − 1) + k + 1 < w(k, r) + 1, contrary to the fact
that |G| = w(k, r) + 1. For C1.5, by (h) and (i), |G| − (s + r) ≥ 3 as s + r ≥ 1
and f(k − 1, s − 1, r) ≥ 2. So no color in {c(t1), . . . , c(tj)} can be assigned to P3.
By the pigeonhole principle again, we see that j ≤ s + r + 1 as tj is the first vertex
in the sequence t1, . . . , tm such that c(ti) = c(tj) for some i ∈ [m] with i < j. Since
A = V (G) \ {t1, t2, . . . , tj} and |G|− (s+ r) ≥ 3, we have |A| ≥ |G|− (s+ r+1) ≥ 2.
Therefore, red cannot be assigned to K3 as titj is a red edge. To avoid condition 4,
there does not exist a red P3 in (G[A], c). By induction, |A| ≤ f(k, s, r− 1). By (h),
we have |G| ≤ f(k, s, r − 1) + s + r + 1 < f(k, s, r) + 1, which is a contradiction.
Thus c(ti) �= c(tj) for all i, j ∈ [m] with i �= j.

Since |G| − (s + r) ≥ 3, all colors in {c(t1), . . . , c(tm)} will be assigned to K3

or H ∈ {G20, G21, G22}. This implies that |T | ≤ k for C1.4 and |T | ≤ s + r for
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C1.5. If there exists a color in {c(t1), . . . , c(tm)} which is assigned to K3, say green,
then (G \ T, c) contains no green edges. By induction, |G \ T | ≤ w(k − 1, r) and
|G\T | ≤ f(k−1, s−1, r). By (b) and (i), we have |G| ≤ w(k−1, r)+k < w(k, r)+1
and |G| ≤ f(k − 1, s− 1, r) + s + r < f(k, s, r) + 1, which are impossible and thus
the statement follows. �

By Claim 1, we see that |T | ≤ r. Consider a Gallai-partition of G \ T with parts
V1, V2, . . . , V� such that � ≥ 2 is as small as possible. Assume that |V1| ≥ |V2| ≥ . . . ≥
|V�|. Let G be the reduced graph of G \ T with vertices v1, . . . , v�. By Theorem 1.1,
we may further assume that the edges of G are colored with red or blue. Clearly,
any monochromatic copy of H ∈ {G20, G21, G22} or K3 or P3 in G would yield a
monochromatic copy of H ∈ {G20, G21, G22} or K3 or P3 in G \ T . Let

Vr = {Vi | Vi is red-adjacent to V1 under c, i ∈ {2, . . . , �}} and
Vb = {Vi | Vi is blue-adjacent to V1 under c, i ∈ {2, . . . , �}}.

Let R =
⋃

Vi∈Vr
Vi and B =

⋃
Vi∈Vb

Vi. Then we see that |G| = |V1 ∪ R ∪ B ∪ T | =
|V1| + |R| + |B| + |T |. Without loss of generality, we may assume that |B| ≤ |R|.
Obviously, |R| ≥ 2, otherwise the vertex in R or B can be added to T , contrary to
the maximality of m in T . Therefore, red cannot be assigned to P3 for C1.5.

Claim 2. |V1| ≥ 2.

Proof. For C1.4, by Theorem 2.5, � ≤ R2(H) − 1 = 17 with H ∈ {G20, G21}. As
|G\T | ≥ w(3, 1) = 20 for all k ≥ 3 and 1 ≤ r ≤ k, it follows that |V1| ≥ 2. For C1.5,
if |V1| = 1, then (G \ T, c) is only colored with red and blue. By Claim 1, r ≥ 1 as
k ≥ 3. Moreover, since red cannot be assigned to P3, |G \ T | ≥ f(3, 1, 1) = 16. If
there is at most one of red and blue which is assigned to G22, then by Theorems 2.2,
2.4 and 2.6, |G\T | = � ≤ R(K3, G22)−1 = 10, a contradiction. If both red and blue
are assigned to G22, then by Theorem 2.5, � ≤ R2(G22)− 1 = 21. Thus by Claim 1,
r ≥ 3, and hence |G \ T | ≥ f(3, 0, 3)− 2 > 21, which is a contradiction. �

Claim 3. No vertex in T is red-adjacent to V (G) \ T under c.

Proof. Suppose not. Then red must be assigned to H ∈ {G20, G21, G22} by Claim
1. As |R| ≥ 2 and |V1| ≥ 2, to avoid condition 3, there are no red edges in either
(G[V1], c) or (G[R], c). For C1.4, by induction, |V1| ≤ w(k−1, r−1) and |B| ≤ |R| ≤
w(k − 1, r − 1). Then by (a), we have |G| ≤ 3w(k − 1, r − 1) + r < w(k, r) + 1, a
contradiction. For C1.5, by induction, |B| ≤ |R| ≤ f(k − 1, s, r − 1). If |B| ≤ 1,
then (G[V1 ∪ B], c) contains no red edges and thus |V1 ∪ B| ≤ f(k − 1, s, r − 1). By
(j), we have |G| ≤ 2f(k − 1, s, r − 1) + r < f(k, s, r) + 1, a contradiction again.
Therefore, |B| ≥ 2 and hence blue cannot be assigned to P3. If blue is assigned to
H ∈ {G20, G21, G22}, then, to avoid condition 2, there is not a blue K3 in (G[V1], c).
By induction, |V1| ≤ f(k−1, s+1, r−2) ≤ 3f(k−2, s, r−2). Note that r ≥ 2 as both
red and blue are assigned to H ∈ {G20, G21, G22}. Then |B| ≤ |R| ≤ f(k − 1, s, r −
1) ≤ 6f(k−2, s, r−2). By (q), we have |G| ≤ 15f(k−2, s, r−2)+ r < f(k, s, r)+1,
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which is impossible. So blue must be assigned to K3 and there are no blue edges
in (G[V1], c). Now (G[V1], c) contains neither a red nor a blue edge. By induction,
|V1| ≤ f(k− 2, s− 1, r− 1). As (G[R], c) contains no a red edge, to avoid a blue K3,
R has at most two parts of {V2, . . . , V�}. It follows that |B| ≤ |R| ≤ 2|V1|. By (k),
we have |G| ≤ 5f(k−2, s−1, r−1)+ r < f(k, s, r)+1, yielding a contradiction. �

Claim 4. |B| ≥ 2.

Proof. Suppose not. Assume that red is assigned to K3. Then by Claims 1–3, there
are no red edges in either (G[V1 ∪ B ∪ T ], c) or (G[R], c). By induction, |V1 ∪ B ∪
T | ≤ w(k − 1, r) and |R| ≤ w(k − 1, r); |V1 ∪ B ∪ T | ≤ f(k − 1, s − 1, r) and
|R| ≤ f(k − 1, s − 1, r). By (b) and (i), we have |G| ≤ 2w(k − 1, r) < w(k, r) + 1
and |G| ≤ 2f(k − 1, s − 1, r) < f(k, s, r) + 1, which are impossible. Therefore, red
must be assigned to H ∈ {G20, G21, G22}. If (G[V1], c) does not contain red edge, and
neither does (G[V1 ∪B ∪ T ], c) by Claim 3. Moreover, to avoid condition 2, there is
not a red K3 in (G[R], c) as |V1| ≥ 2. By induction, |V1 ∪ B ∪ T | ≤ w(k − 1, r − 1)
and |R| ≤ w(k, r − 1); |V1 ∪ B ∪ T | ≤ f(k − 1, s, r − 1) and |R| ≤ f(k, s+ 1, r − 1).
By (c) and (l), we have |G| ≤ w(k − 1, r − 1) + w(k, r − 1) < w(k, r) + 1 and
|G| ≤ f(k−1, s, r−1)+f(k, s+1, r−1) < f(k, s, r)+1, which are impossible. Thus
there are red edges in (G[V1], c). For C 1.4, we see that |V1 ∪ R| ≥ 5 as |G| > r + 5
by (d). To avoid conditions 1 and 2, there does not exist a red edge in (G[R], c)
and a red K3 in (G[V1], c). Similar to the above arguments, |G| < w(k, r) + 1.
For C1.5, to avoid condition 4, there is not a red P3 in (G[R], c). By the above
arguments, we only need to consider the case that (G[R], c) contains red edges.
Clearly, (G[V1], c) does not contain a red P3, and neither does (G[V1 ∪B ∪T ], c). By
induction, |V1 ∪ B ∪ T | ≤ f(k, s, r − 1) and |R| ≤ f(k, s, r − 1). By (h), we have
|G| ≤ 2f(k, s, r− 1) < f(k, s, r) + 1, this yields a contradiction. �

By Claims 2 and 4, blue is assigned to K3 or H ∈ {G20, G21, G22}. Define
Y1 = {Vi : |Vi| = 1, i ∈ {2, . . . , �}} and Y2 = {Vi : |Vi| ≥ 2, i ∈ {2, . . . , �}}. Then
|Y1 ∪ Y2| = |R ∪ B|. Let |R ∩ Yt| and |B ∩ Yt| be the number of the common parts
in {V2, . . . , V�}, where t = 1, 2.

Claim 5. Suppose that blue is assigned to H ∈ {G20, G21, G22} and (G[B], c) contains
no blue edges (respectively, blue P3). Then |B ∩ Y2| ≤ 3. In particular,

(1) if |B ∩ Y2| = 3, then |B ∩ Y1| = 0;

(2) if |B ∩ Y2| = 2, then |B ∩ Y1| ≤ 1 (respectively, |B ∩ Y1| ≤ 2);

(3) if |B ∩ Y2| = 1, then |B ∩ Y1| ≤ 2 (respectively, |B ∩ Y1| ≤ 4);

(4) if |B ∩ Y2| = 0, then |B ∩ Y1| ≤ 4 (respectively, |B ∩ Y1| ≤ 6);

(5) |B| ≤ 3|V1|.

Moreover, if red is assigned to H ∈ {G20, G21, G22} and (G[R], c) contains no red
edges (respectively, a red P3), then similar properties hold for R.
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Proof. We only give the proof for B. The proof for R is similar. It is easily seen
that |B ∩ Y2| ≤ 3. If (G[B], c) contains no blue edges, then the edges between
any two parts of {V2, . . . , V�} in B are colored with red. In order to avoid a red
H ∈ {G20, G21, G22}, B has at most three parts unless |B ∩ Y2| = 0. However, if
|B ∩ Y2| = 0, then |B ∩ Y1| ≤ 4, otherwise we can get a red K5 that contains all
red H ∈ {G20, G21, G22}. If (G[B], c) contains no a blue P3, then Y1 is red-adjacent
to Y2 in (G[B], c). Also, all the parts of Y2 in B are red-adjacent to each other.
For (1), there exists a red K4 − e in (G[B ∩ Y2], c). Thus, to avoid condition 3, we
have |B ∩ Y1| = 0. Suppose that |B ∩ Y1| ≥ 3 for (2). Let Vi, Vj, Vk ∈ Y1. Since
(G[B ∩ Y2], c) contains red edges, to avoid condition 4, there exists a blue P3 in
(G[Vi ∪ Vj ∪ Vk], c), which is a contradiction. Suppose that |B ∩ Y1| ≥ 5 for (3).
Then there will be a red K3 in (G[B ∩ Y1], c) as R(P3, K3) = 5. To avoid condition
2, we have |B ∩ Y2| = 0, which is also a contradiction. For (4), to avoid a red G22,
(G[B], c) must have at most R(P3, G22)− 1 = 6 parts. Since |B ∩ Y2| = 0, it follows
that |B ∩ Y1| ≤ 6. Recall that |V1| ≥ 2. So (5) holds based on (1)–(4). �

Claim 6. No vertex in T is blue-adjacent to V (G) \ T under c.

Proof. Suppose not. Then blue will be assigned to H ∈ {G20, G21, G22} by Claim
1. As |B| ≥ 2 and |V1| ≥ 2, to avoid condition 3, there does not exist blue edges
in either (G[V1], c) or (G[B], c). If red is assigned to K3, then there are no red
edges in either (G[V1], c) or (G[R], c). Now (G[V1], c) contains neither a red nor a
blue edge. By induction, |V1| ≤ w(k − 2, r − 1) and |V1| ≤ f(k − 2, s − 1, r − 1).
Since (G[R], c) contains no a red edge, the edges between any two parts in R are
colored with blue. Thus, to avoid a blue H ∈ {G20, G21, G22}, R contains at most
four parts of {V2, . . . , V�}. In particular, if R has four parts, then |R| = 4. Hence
|B| ≤ |R| ≤ 3|V1|. By (d) and (k), we have |G| ≤ 7w(k−2, r−1)+r < w(k, r)+1 and
|G| ≤ 7f(k−2, s−1, r−1)+ r < f(k, s, r)+1, which are impossible. Recall that red
cannot be assigned to P3. Therefore, red must be assigned to H ∈ {G20, G21, G22}
and thus r ≥ 2.

Assume that (G[V1], c) contains red edges. For C1.4, we see that |V1 ∪ R| ≥ 5
as |G| > r + 6 by (d). To avoid condition 1, there are no red edges in (G[R], c).
By induction, |V1| ≤ w(k − 1, r − 1) and |B| ≤ |R| ≤ w(k − 1, r − 1). By (a),
we have |G| ≤ 3w(k − 1, r − 1) + r < w(k, r) + 1, a contradiction. For C1.5, if
(G[R], c) contains no a red edge, then by the similar arguments as in the proof of
Claim 3, we can show that |G| ≤ 16f(k− 2, s, r− 2) < f(k, s, r) + 1. Thus (G[R], c)
contains red edges. To avoid condition 4, there is not a red P3 in either (G[V1], c) or
(G[R], c). So by induction and (5), |V1| ≤ f(k− 1, s, r− 2) ≤ 2f(k − 2, s, r− 2) and
|B| ≤ |R| ≤ 3|V1|. By (q), we have |G| ≤ 14f(k − 2, s, r − 2) + r < f(k, s, r) + 1,
a contradiction. Therefore, we conclude that (G[V1], c) contains no red edges. Now
there is neither a red nor a blue edge in (G[V1], c). By induction, |V1| ≤ w(k−2, r−2)
and |V1| ≤ f(k− 2, s, r− 2). To avoid condition 2, there is not a red K3 in (G[R], c).
Thus R has at most R(K3, H) − 1 = 8 parts with H ∈ {G20, G21} for C1.4 and
R(K3, G22)− 1 = 10 parts for C1.5. Recall that (G[B], c) contains no blue edges. So
|B| ≤ 3|V1| by (5). By (e) and (q), we have |G| ≤ 12w(k− 2, r− 2)+ r < w(k, r)+ 1
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and |G| ≤ 14f(k − 2, s, r − 2) + r < f(k, s, r) + 1, which are impossible. �

Obviously, if (G[V1], c) contains red or blue edges, then so does (G[V1 ∪ T ], c).
By Claims 3 and 6, if (G[V1], c) does not contain any red or blue edges, then neither
does (G[V1 ∪ T ], c). We next consider the following three cases.

Case 1. Blue and red are the colors assigned to K3.

Recall that |R| ≥ |B| ≥ 2. So (G[V1 ∪ T ], c) contains neither red nor blue
edges. By induction, |V1 ∪ T | ≤ w(k − 2, r) and |V1 ∪ T | ≤ f(k − 2, s − 2, r).
Furthermore, by Theorem 2.4, we see that � ≤ R2(K3) − 1 = 5. By (b) and (m),
|G| ≤ 5w(k− 2, r) < w(k, s) + 1 and |G| ≤ 5f(k − 2, s− 2, r) < f(k, s, r) + 1, which
are impossible. Thus this completes the proof of Case 1.

Case 2. Blue (respectively, red) is assigned to K3 and red (respectively, blue) is
assigned to H ∈ {G20, G21, G22}.

Clearly, r ≥ 1 and s ≥ 1 in this case. As |R| ≥ |B| ≥ 2, (G[V1 ∪ T ], c)
contains no blue (respectively, red) edges. For C1.4, if (G[V1], c) does not con-
tain red (respectively, blue) edge, then neither does (G[V1 ∪ T ], c). By induction,
|V1 ∪ T | ≤ w(k− 2, r− 1). Since � ≤ R(K3, H)− 1 = 8 with H ∈ {G20, G21}, by (d),
we have |G| ≤ 8w(k−2, r−1) < w(k, r)+1, contrary to the fact that |G| = w(k, r)+1,
and hence (G[V1], c) contains red (respectively, blue) edges. For the former case, as
|G| > r + 6 and |T | ≤ r, we see that |V1 ∪ R| ≥ 5. To avoid conditions 1 and
2, there does not exist red edges in (G[R], c) and a red K3 in (G[V1 ∪ T ], c). By
induction, |B| ≤ |R| ≤ w(k−1, r−1) and |V1∪T | ≤ w(k−1, r−1). By (a), we have
|G| ≤ 3w(k − 1, r − 1) < w(k, r) + 1, yielding a contradiction. For the latter case,
obviously, (G[R], c) has no red edges. To avoid conditions 1 and 2, there does not
exist blue edges in (G[B], c) unless |V1 ∪B| ≤ 4, and a blue K3 in (G[V1 ∪ T ], c). By
induction, |V1∪T | ≤ w(k− 1, r− 1), |R| ≤ w(k− 1, r) and |B| ≤ w(k− 1, r− 1). By
(f), we have |G| ≤ w(k − 1, r) + 2w(k− 1, r− 1) < w(k, r) + 1, which is impossible.

For C1.5, we may first assume that (G[V1], c) contains no red (respectively, blue)
edges. By induction, |V1∪T | ≤ f(k−2, s−1, r−1). Obviously, � ≤ R(K3, G22)−1 =
10. In particular, if 9 ≤ � ≤ 10, then there exists a red K4 in the reduced graph G as
R(K3, K4) = 9. Note that a monochromatic copy of K4 in G only has four vertices
in G\T , otherwise we can get a monochromatic copy of G22. This means that |G| ≤
6|V1∪T |+4 ≤ 8|V1∪T |. By (k), we have |G| ≤ 8f(k−2, s−1, r−1) < f(k, s, r)+1, a
contradiction. Therefore, there exist red (respectively, blue) edges in (G[V1], c). For
the former case, if (G[R], c) contains no red edges, then, to avoid condition 2, there
is not a red K3 in (G[V1∪T ], c). By induction, |V1∪T | ≤ f(k−1, s, r−1) and |B| ≤
|R| ≤ f(k−1, s, r−1). By (j), we have |G| ≤ 3f(k−1, s, r−1) < f(k, s, r)+1, which
is a contradiction. So (G[R], c) contains red edges. To avoid condition 4, there is not a
red P3 in either (G[R], c) or (G[V1∪T ], c). By induction, |V1∪T | ≤ f(k−1, s−1, r−1).
Moreover, by Theorem 2.6, R has at most R(P3, K3) − 1 = 4 parts of {V2, . . . , V�}
and thus there are at most two independent red edges between the parts in R. It is
easy to check that |R| ≤ 4 when R has two such edges, |R| ≤ |V1| + 2 when R has
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only one such edge and |R| ≤ 2|V1| when R does not contain such an edge. It follows
that |B| ≤ |R| ≤ 2|V1|. By (n), we have |G| ≤ 5f(k− 1, s− 1, r− 1) < f(k, s, r)+ 1,
this yields a contradiction.

For the latter case, it is obvious that (G[R], c) contains no a red edge. To avoid
a blue G22, R has at most four parts of {V2, . . . , V�} and the edges between any
two parts are colored with blue. Assume that (G[B], c) contains blue edges. Then
there is not a blue P3 in (G[V1 ∪ T ], c). By induction, |V1 ∪ T | ≤ f(k − 1, s −
1, r − 1) ≤ 2f(k − 2, s − 1, r − 1). If R has four parts, then |R| ≤ 4, and if R has
three parts, then, to avoid a blue G22, none of these parts contain blue edges unless
|R ∩ Y2| ≤ 1. By induction, |B| ≤ |R| ≤ 3f(k − 2, s − 1, r − 1). By (k), we have
|G| ≤ 8f(k − 2, s − 1, r − 1) < f(k, s, r) + 1, which is a contradiction. Finally, if
|R ∩ Y2| ≤ 1 or R has at most two pars, then |B| ≤ |R| ≤ 2|V1| and thus, by (n),
we have |G| ≤ 5f(k − 1, s − 1, r − 1) < f(k, s, r) + 1, a contradiction again. So
(G[B], c) has no a blue edge and thus there is not a blue K3 in (G[V1 ∪ T ], c). By
induction, |V1 ∪ T | ≤ f(k − 1, s, r − 1) ≤ 3f(k − 2, s − 1, r − 1). Note that � ≥ 3
as |B| ≥ 2. This implies that each part of {V1, . . . , V�} cannot be only red or blue-
adjacent to the rest of parts, otherwise we can get a Gallai-partition of G \ T with
only two parts. Hence there are no red edges in each part. To avoid red K3, B has
at most two parts. So by induction, |B| ≤ 2f(k − 2, s− 1, r − 1). Similar to above
arguments, if R has at least three parts, then |R| ≤ 3f(k − 2, s− 1, r − 1) and thus
|G| < f(k, s, r) + 1. Now we consider the case that R has two parts. According to
above calculations, at least one part in R contains blue edges. If R only has one part
with blue edges, then, by induction, |R| ≤ |V1| + f(k − 2, s− 1, r − 1). By (o), we
have |G| ≤ 2f(k−1, s, r−1)+3f(k−2, s−1, r−1) < f(k, s, r)+1, a contradiction.
If both parts contain blue edges, then, to avoid condition 4, there does not exist a
blue P3 in both parts. By induction, |R| ≤ 2f(k − 1, s− 1, r − 1). By (p), we have
|G| ≤ f(k−1, s, r−1)+2f(k−1, s−1, r−1)+2f(k−2, s−1, r−1) < f(k, s, r)+1,
a contradiction again. Finally, if R only has one part, then |R| ≤ |V1|. Similar to the
above calculations, there is a contradiction. Thus this completes the proof of Case 2.

Case 3. Blue and red are assigned to H ∈ {G20, G21, G22}.

In this case, we see that r ≥ 2. Suppose that (G[V1∪T ], c) contains no blue edges.
If (G[V1 ∪ T ], c) contains no red edges, then by induction, |V1 ∪ T | ≤ w(k − 2, r− 2)
and |V1 ∪ T | ≤ f(k − 2, s, r − 2). For C1.4, we see that � ≤ R2(H) − 1 = 17 with
H ∈ {G20, G21}. For C1.5, to avoid condition 2, there is not a red K3 in (G[R], c).
So R has at most R(K3, G22)− 1 = 10 parts of {V2, . . . , v�}. Since a monochromatic
copy of K4 in the reduced graph G only contains four vertices in G \ T , |B| ≤ |R| ≤
6|V1|+4 ≤ 8|V1| as R(K3, K4) = 9. By (e) and (q), we have |G| ≤ 17w(k−2, r−2) <
w(k, r)+1 and |G| ≤ 17f(k−2, s, r−2) < f(k, s, r)+1, which are impossible. Hence
(G[V1∪T ], c) contains red edges. Note that |V1∪R| ≥ 5 for C1.4 as |G| > r+6 by (d).
To avoid conditions 1 and 4, there are no red edges for C1.4 and a red P3 for C1.5 in
(G[R], c). If (G[R], c) contains no red edges for both C1.4 and C1.5, then there does
not exist a redK3 in (G[V1∪T ], c). By induction, |V1∪T | ≤ w(k−1, r−2) ≤ w(k−1, r)
and |B| ≤ |R| ≤ w(k− 1, r− 1); |V1 ∪ T | ≤ f(k− 1, s+1, r− 2) ≤ 3f(k− 2, s, r− 2)
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and |B| ≤ |R| ≤ f(k − 1, s, r − 1) ≤ 6f(k − 2, s, r − 2). By (f) and (q), we have
|G| ≤ w(k − 1, r) + 2w(k − 1, r − 1) < w(k, r) + 1 and |G| ≤ 15f(k − 2, s, r − 2) <
f(k, s, r) + 1, which are also impossible. Thus (G[R], c) contains red edges but does
not contain red P3 for C1.5, and hence there is not a red P3 in (G[V1 ∪ T ], c). By
induction, |V1 ∪ T | ≤ f(k − 1, s, r − 2) ≤ 2f(k − 2, s, r − 2). Furthermore, by (5),
|B| ≤ |R| ≤ 3|V1|. By (q), we have |G| ≤ 14f(k−2, s, r−2) < f(k, s, r)+1, yielding
a contradiction. Therefore, there exist blue edges in (G[V1 ∪ T ], c).

Claim 7. Suppose that (G[B], c) contains no blue edges.

(6) If |B∩Y2| = 3, then |B| ≤ 3w(k−2, r−2) for C1.4 and |B| ≤ 3f(k−2, s, r−2)
for C1.5;

(7) if |B ∩ Y2| ≤ 2, then |B| ≤ |V1| + w(k − 2, r − 2) for C1.4 and |B| ≤ 2f(k −
1, s, r − 2) or |B| ≤ |V1|+ f(k − 2, s, r − 2) for C1.5.

Proof. Let |B ∩ Y2| = 3. To avoid condition 3, there are no red edges in each part
of B ∩ Y2. By induction and (1), (6) holds. Let |B ∩ Y2| ≤ 1. By (3) and (4), we
see that |B| ≤ |V1| + 2. Let |B ∩ Y2| = 2. By (2), |B ∩ Y1| ≤ 1. So we first assume
that |B ∩ Y1| = 1. By the same reason as above, |B| ≤ 2w(k − 2, r − 2) + 1 and
|B| ≤ 2f(k − 2, s, r − 2) + 1. We next assume that |B ∩ Y1| = 0. Now B only has
two parts. To avoid condition 1, there is at least one part without a red edge for
C1.4 unless |B| = 4. By induction, |B| ≤ |V1| + w(k − 2, r − 2). For C1.5, if both
two parts have red edges, then, to avoid condition 4, there is not a red P3 in either
of them. By induction, |B| ≤ 2f(k− 1, s, r− 2). If there is at least one part without
a red edge, then by induction, |B| ≤ |V1|+ f(k − 2, s, r − 2). �

For C1.4, if there exist red edges in (G[V1 ∪ T ], c), then (G[V1 ∪ T ], c) contains
red and blue edges and so does (G[V1], c) by Claim 6, and hence |V1| ≥ 3. Recall
that |R| ≥ 2 and |B| ≥ 2. To avoid conditions 1 and 2, (G[R], c) contains no
red edges and (G[V1 ∪ T ], c) contains neither a red nor a blue K3. By induction,
|V1 ∪ T | ≤ w(k, r − 2) ≤ w(k − 1, r) and |B| ≤ |R| ≤ w(k − 1, r − 1). By (f), we
have |G| ≤ w(k − 1, r) + 2w(k − 1, r − 1) < w(k, r) + 1, yielding a contradiction.
Thus (G[V1 ∪ T ], c) contains no a red edge. Similar to above arguments, there does
not exist a blue K3 in (G[V1 ∪ T ], c) and a red K3 in (G[R], c). By induction,
|V1 ∪ T | ≤ w(k − 1, r − 2) and |R| ≤ w(k, r − 1). Note that |V1 ∪ B| ≥ 5 as
|G| > w(k, r − 1) + r + 4 by (c). Since (G[V1], c) contains blue edges, there are no
blue edges in (G[B], c). By Claim 5, we see that |B ∩ Y2| ≤ 3. Furthermore, by
Claim 7, |B| ≤ 3w(k− 2, r− 2) ≤ w(k− 1, r− 2) +w(k− 2, r− 2). Then by (g), we
have |G| ≤ 2w(k − 1, r − 2) + w(k, r − 1) + w(k − 2, r − 2) < w(k, r) + 1, contrary
to the fact that |G| = w(k, r) + 1. Thus this completes the proof of C1.4.

For C1.5, as (G[V1∪T ], c) contains blue edges, there is not a blue P3 in (G[B], c).
Assume that (G[B], c) contains blue edges. Then there is not a blue P3 in (G[V1 ∪
T ], c). We may further assume that (G[V1 ∪ T ], c) contains red edges. If (G[R], c)
also has red edges, then there is not a red P3 in either (G[V1 ∪ T ], c) or (G[R], c).
By induction, |V1 ∪ T | ≤ f(k, s, r − 2) ≤ 2f(k − 2, s, r − 2). Moreover, by (5),
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|B| ≤ |R| ≤ 3|V1|. Then by (q), we have |G| ≤ 14f(k − 2, s, r − 2) < f(k, s, r) + 1,
a contradiction. So (G[R], c) contains no red edges. Thus there is not a red K3 in
(G[V1∪T ], c). By induction, |V1∪T | ≤ f(k, s+1, r−2) ≤ f(k, s+2, r−2) and |B| ≤
|R| ≤ f(k−1, s, r−1). By (r), we have |G| ≤ f(k, s+2, r−2)+2f(k−1, s, r−1) <
f(k, s, r) + 1, a contradiction again. So (G[V1 ∪ T ], c) contains no a red edge. Hence
there does not exist a red K3 in (G[R], c). So by induction, |V1∪T | ≤ f(k−1, s, r−2)
and |R| ≤ f(k, s+ 1, r − 1). As (G[B], c) contains no a blue P3, by (5), |B| ≤ 3|V1|.
Then by (s), we have |G| ≤ 4f(k − 1, s, r − 2) + f(k, s + 1, r − 1) < f(k, s, r) + 1,
which is impossible. Therefore, there are no blue edges in (G[B], c).

Clearly, (G[V1∪T ], c) contains no a blue K3. Assume that (G[V1∪T ], c) contains
red edges. If (G[R], c) has no red edges, then there does not exist a red K3 in (G[V1∪
T ], c). By induction, |V1 ∪ T | ≤ f(k, s+ 2, r − 2) and |B| ≤ |R| ≤ f(k − 1, s, r − 1).
By (r), we have |G| ≤ f(k, s + 2, r − 2) + 2f(k − 1, s, r − 1) < f(k, s, r) + 1, a
contradiction. Thus there exist red edges in (G[R], c), and hence there is not a red
P3 in either G[V1 ∪ T ], c) or (G[R], c). By induction, |V1 ∪ T | ≤ f(k, s+1, r− 2) and
|R| ≤ f(k, s, r−1). Since (G[B], c) contains no blue edges, by Claim 5, |B ∩Y2| ≤ 3.
By (t), (6) and (7), we have |G| ≤ f(k, s + 1, r − 2) + f(k, s, r − 1) + {3f(k −
2, s, r − 2); 2f(k − 1, s, r − 2)} < f(k, s, r) + 1, which is a contradiction. By (7)
again, what is left is to consider the case that |V1 ∪ T | ≤ f(k, s + 1, r − 2) and
|B| ≤ |V1| + f(k − 2, s, r − 2). As (G[R], c) contains no a red P3, we have the
following claim.

Claim 8. |R| ≤ f(k, s+ 1, r − 2) + 2f(k − 1, s, r − 2).

Proof. By Claim 5, |R ∩ Y2| ≤ 3. Similar to the proofs of (6) and (7), we see that
|R| ≤ 3f(k − 1, s, r − 2) when |R ∩ Y2| = 3, |R| ≤ |V1| + 4 when |R ∩ Y2| ≤ 1 and
|R| ≤ 2f(k − 1, s, r − 2) + 2 when |R ∩ Y2| = 2 and |R ∩ Y1| ≥ 1. Furthermore, if
|R∩Y2| = 2 and |R∩Y1| = 0, then we have |R| ≤ 2f(k, s, r− 2) = 2f(k− 1, s, r− 2)
or |R| ≤ |V1| + f(k − 1, s, r − 2) ≤ |V1|+ 2f(k − 1, s, r − 2). Recall that |V1 ∪ T | ≤
f(k, s+1, r−2). Also, by Table 2, 2 ≤ f(k−1, s, r−2) ≤ f(k, s+1, r−2). Therefore,
|R| ≤ 3f(k − 1, s, r − 2) ≤ f(k, s+ 1, r − 2) + 2f(k − 1, s, r − 2). �

By Claim 8 and (u), we have |G| ≤ 3f(k, s+1, r−2)+f(k−2, s, r−2)+2f(k−1, s, r−
2) < f(k, s, r) + 1, contrary to the fact that |G| = f(k, s, r) + 1. So (G[V1 ∪ T ], c)
contains no red edges.

Obviously, there does not exist a redK3 in (G[R], c). As (G[V1∪T ], c) contains no
a blueK3, by induction, |V1∪T | ≤ f(k−1, s+1, r−2) and |R| ≤ f(k, s+1, r−1). Then
by (t), (6) and (7), we have |G| ≤ f(k−1, s+1, r−2)+f(k, s+1, r−1)+{3f(k−2, s, r−
2); 2f(k−1, s, r−2)} < f(k, s, r)+1, yielding a contradiction. Therefore, by (7) again,
it remains to consider the case that |V1∪T | ≤ f(k−1, s+1, r−2) ≤ 3f(k−2, s, r−2)
and |B| ≤ |V1| + f(k − 2, s, r − 2) ≤ 4f(k − 2, s, r − 2). As (G[R], c) contains no a
red K3, we have the following claim.
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Claim 9. |R| ≤ 10f(k − 2, s, r − 2).

Proof. Suppose thatR contains a part of {V2, . . . , V�} with red edges, say V r. In order
to avoid the red K3, V

r must be blue-adjacent to the rest of parts in R. Furthermore,
there is neither a red nor a blue K3 in (G[R\V r], c). So R contains at most R2(K3) =
6 parts of {V2, . . . , V�}. Note that R has at least 5 parts of {V2, . . . , V�}, otherwise we
have |R| ≤ 4|V1| and then, by (v), |G| ≤ 6f(k− 1, s+ 1, r− 2) + f(k − 2, s, r− 2) <
f(k, s, r) + 1, a contradiction. Moreover, each part of R \ V r cannot be only red or
blue-adjacent to the rest of parts in R \ V r, otherwise we can obtain a blue or a red
K3 as R(K2, K3) = 3. This means that all parts of R \ V r contain neither red nor
blue edges. By induction, |R| ≤ |V1|+ 5f(k− 2, s, r− 2) ≤ 8f(k− 2, s, r− 2). Then
by (q), we have |G| ≤ 15f(k − 2, s, r − 2) < f(k, s, r) + 1, which is a contradiction.

Suppose that R has a part of {V2, . . . , V�} with blue edges, say V b. Let Nb(V
b) and

Nr(V
b) be the vertex sets of R such that R = V b∪Nr(V

b)∪Nb(V
b) and all the vertices

of Nb(V
b) and Nr(V

b) are blue and red-adjacent to V b, respectively. Then there does
not exist a red K3 and a blue P3 in (G[Nb(V

b)], c). By induction, |Nb(V
b)| ≤ f(k, s+

1, r−2). Moreover, there are no red edges in (G[Nr(V
b)], c) and thus |Nr(V

b)∩Y2| ≤
3. Similar to the proofs of (6) and (7), we have |Nr(V

b)| ≤ 3f(k − 2, s, r − 2) when
|Nr(V

b)∩Y2| = 3 and |Nr(V
b)| ≤ |V1|+f(k−2, s, r−2) or |Nr(V

b)| ≤ 2f(k−1, s, r−2)
when |Nr(V

b)∩Y2| ≤ 2. It follows that |R| ≤ |V1|+3f(k−2, s, r−2)+f(k, s+1, r−2)
when |Nr(V

b) ∩ Y2| = 3 and |R| ≤ 2|V1| + f(k − 2, s, r − 2) + f(k, s + 1, r − 2) or
|R| ≤ |V1|+2f(k−1, s, r−2)+f(k, s+1, r−2) when |Nr(V

b)∩Y2| ≤ 2. By (w), we
have |G| ≤ 3f(k−1, s+1, r−2)+ f(k, s+1, r−2)+ {4f(k−2, s, r−2); f(k−1, s+
1, r− 2) + 2f(k − 2, s, r− 2); 2f(k − 1, s, r− 2) + f(k − 2, s, r− 2)} < f(k, s, r) + 1,
which are impossible.

By the above discussions, we can see that all the parts of {V2, . . . , V�} in R contain
neither red nor blue edges. Since R contains at most R(K3, G22) − 1 = 10 parts of
{V2, . . . , V�}, by induction, |R| ≤ 10f(k − 2, s, r − 2). �

By Claim 9 and (q), we have |G| ≤ 17f(k − 2, s, r − 2) < f(k, s, r) + 1, yielding
a contradiction. Thus this completes the proof of C1.5 and the proof of Case 3.

This completes the proofs of Theorems 1.4 and 1.5.
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Appendix

Using the expressions of w(k, r) and f(k, s, r), we obtain the following functions.
Note that the sequence for all cases in each of the following functions is consistent
with w(k, r) or f(k, s, r).
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w(k − 1, r) = w(k − 2, r) = w(k, r − 1) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
5
· 5(k−r)/2 · 17r/2,

5(k−r−1)/2 · 17r/2,
4 · 5(k−r−1)/2 · 17(r−1)/2,
8
5
· 5(k−r)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
5
· 5(k−r)/2 · 17r/2,

2
5
· 5(k−r−1)/2 · 17r/2,

8
5
· 5(k−r−1)/2 · 17(r−1)/2,

4
5
· 5(k−r)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8
17

· 5(k−r)/2 · 17r/2,
20
17

· 5(k−r−1)/2 · 17r/2,
5 · 5(k−r−1)/2 · 17(r−1)/2,

2 · 5(k−r)/2 · 17(r−1)/2,

w(k − 1, r − 1) = w(k − 2, r − 1) = w(k, r − 2) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
17

· 5(k−r)/2 · 17r/2,
8
17

· 5(k−r−1)/2 · 17r/2,
2 · 5(k−r−1)/2 · 17(r−1)/2,

5(k−r)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8
85

· 5(k−r)/2 · 17r/2,
4
17

· 5(k−r−1)/2 · 17r/2,
5(k−r−1)/2 · 17(r−1)/2,
2
5
· 5(k−r)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5
17

· 5(k−r)/2 · 17r/2,
10
17

· 5(k−r−1)/2 · 17r/2,
40
17

· 5(k−r−1)/2 · 17(r−1)/2,
20
17

· 5(k−r)/2 · 17(r−1)/2,

w(k − 1, r − 2) = w(k − 2, r − 2) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
17

· 5(k−r)/2 · 17r/2,
5
17

· 5(k−r−1)/2 · 17r/2,
20
17

· 5(k−r−1)/2 · 17(r−1)/2,
8
17

· 5(k−r)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
17

· 5(k−r)/2 · 17r/2,
2
17

· 5(k−r−1)/2 · 17r/2,
8
17

· 5(k−r−1)/2 · 17(r−1)/2,
4
17

· 5(k−r)/2 · 17(r−1)/2,

f(k − 1, s, r − 1) = f(k, s, r − 1) = f(k − 1, s− 1, r − 1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 · 5s/2 · 17(r−2)/2,
1
17

· �32
5
· 5s/2	 · 17r/2,

10 · 5(s−1)/2 · 17(r−2)/2,
16
17

· 5(s−1)/2 · 17r/2,
5(s−1)/2 · �42

17
· 17(r−1)/2	,

4 · 5(s−1)/2 · 17(r−1)/2,

5s/2 · �21
17

· 17(r−1)/2	,
10 · 5(s−2)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�32
5
· 5s/2	 · 17(r−2)/2,

1
17

· �32
5
· 5s/2	 · 17r/2,

16 · 5(s−1)/2 · 17(r−2)/2,
16
17

· 5(s−1)/2 · 17r/2,
4 · 5(s−1)/2 · 17(r−1)/2,

4 · 5(s−1)/2 · 17(r−1)/2,

2 · 5s/2 · 17(r−1)/2,

10 · 5(s−2)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16
5
· 5s/2 · 17(r−2)/2,

16
85

· 5s/2 · 17r/2,
�32

5
· 5(s−1)/2	 · 17(r−2)/2,

1
17

· �32
5
· 5(s−1)/2	 · 17r/2,

2 · 5(s−1)/2 · 17(r−1)/2,

2 · 5(s−1)/2 · 17(r−1)/2,
4
5
· 5s/2 · 17(r−1)/2,

4 · 5(s−2)/2 · 17(r−1)/2,

f(k−2, s−1, r−1) = f(k, s+2, r−2) = f(k, s+1, r−2) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 · 5s/2 · 17(r−2)/2,
16
85

· 5s/2 · 17r/2,
4 · 5(s−1)/2 · 17(r−2)/2,
1
17

· �32
5
· 5(s−1)/2	 · 17r/2,

5(s−1)/2 · �21
17

· 17(r−1)/2	,
2 · 5(s−1)/2 · 17(r−1)/2,
1
5
· 5s/2 · �42

17
· 17(r−1)/2	,

4 · 5(s−2)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5·5s/2·�21
17
·17(r−2)/2	,

10
17
·5s/2 ·17r/2,

5·5(s−1)/2 ·�42
17
·17(r−2)/2	,

20
17

· 5(s−1)/2 · 17r/2,
50
17

· 5(s−1)/2 · 17(r−1)/2,
80
17

· 5(s−1)/2 · 17(r−1)/2,
20
17

· 5s/2 · 17(r−1)/2,
160
17

· 5(s−2)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4·5s/2·17(r−2)/2,
4
17
·5s/2 ·17r/2,

10·5(s−1)/2 ·17(r−2)/2,
10
17
·5(s−1)/2 ·17r/2,

32
17
·5(s−1)/2 ·17(r−1)/2,

32
17
·5(s−1)/2 ·17(r−1)/2,

16
17
·5s/2 ·17(r−1)/2,

80
17
·5(s−2)/2 ·17(r−1)/2,
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f(k − 1, s− 1, r) = f(k − 2, s− 2, r) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
5
· 5s/2 · �21 · 17(r−2)/2	,

4
5
· 5s/2 · 17r/2,

5(s−1)/2 · �21 · 17(r−2)/2	,
2 · 5(s−1)/2 · 17r/2,
4 · 5(s−1)/2 · 17(r−1)/2,

�32
5
· 5(s−1)/2	 · 17(r−1)/2,

2 · 5s/2 · 17(r−1)/2,

16 · 5(s−2)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5
· 5s/2 · �21 · 17(r−2)/2	,

2
5
· 5s/2 · 17r/2,

1
5
· 5(s−1)/2 · �42 · 17(r−2)/2	,

4
5
· 5(s−1)/2 · 17r/2,

2 · 5(s−1)/2 · 17(r−1)/2,
16
5
· 5(s−1)/2 · 17(r−1)/2,

4
5
· 5s/2 · 17(r−1)/2,

�32
5
· 5(s−2)/2	 · 17(r−1)/2,

f(k − 1, s+ 1, r − 2) = f(k − 2, s, r − 2) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5s/2 · �42
17

· 17(r−2)/2	,
4
17

· 5s/2 · 17r/2,
5 · 5(s−1)/2 · �21

17
· 17(r−2)/2	,

10
17

· 5(s−1)/2 · 17r/2,
20
17

· 5(s−1)/2 · 17(r−1)/2,
32
17

· 5(s−1)/2 · 17(r−1)/2,
10
17

· 5s/2 · 17(r−1)/2,
80
17

· 5(s−2)/2 · 17(r−1)/2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5s/2 · �21
17

· 17(r−2)/2	,
2
17

· 5s/2 · 17r/2,
5(s−1)/2 · �42

17
· 17(r−2)/2	,

4
17

· 5(s−1)/2 · 17r/2,
10
17

· 5(s−1)/2 · 17(r−1)/2,
16
17

· 5(s−1)/2 · 17(r−1)/2,
4
17

· 5s/2 · 17(r−1)/2,
1
17

· �32 · 5(s−2)/2	 · 17(r−1)/2,

f(k, s, r − 2) = f(k − 1, s, r − 2) = f(k, s+ 1, r − 1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 · 5s/2 · 17(r−2)/2,
2
17

· 5s/2 · 17r/2,
4 · 5(s−1)/2 · 17(r−2)/2,
4
17

· 5(s−1)/2 · 17r/2,
16
17

· 5(s−1)/2 · 17(r−1)/2,
16
17

· 5(s−1)/2 · 17(r−1)/2,
1
17

· �32
5
· 5s/2	 · 17(r−1)/2,

1
17

· �32 · 5(s−2)/2	 · 17(r−1)/2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10 · 5s/2 · 17(r−2)/2,
16
17

· 5s/2 · 17r/2,
20 · 5(s−1)/2 · 17(r−2)/2,
32
17

· 5(s−1)/2 · 17r/2,
5 · 5(s−1)/2 · �21

17
· 17(r−1)/2	,

10 · 5(s−1)/2 · 17(r−1)/2,

5s/2 · �42
17

· 17(r−1)/2	,
20 · 5(s−2)/2 · 17(r−1)/2.
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We create the following Table 3 by taking the maximum values from each of cases
a1–a4 and b1–b8 in Tables 1 and 2.

Case a1 a2 a3 a4
(f) : w(k−1,r)+2w(k−1,r−1)

w(k,r)
74
85

33
34

1 9
10

(g) : 2w(k−1,r−2)+w(k,r−1)+w(k−2,r−2)
w(k,r)

13
17

16
17

133
136

27
34

Case b1 b2 b3 b4 b5 b6 b7 b8
(o) : 2f(k−1,s,r−1)+3f(k−2,s−1,r−1)

f(k,s,r)
2
3

56
85

16
21

64
85

147
170

7
8

84
85

1

(p) : f(k−1,s,r−1)+2f(k−1,s−1,r−1)+2f(k−2,s−1,r−1)
f(k,s,r)

24
35

48
85

77
105

52
85

76
85

3
4

65
68

13
16

(r) : f(k,s+2,r−2)+2f(k−1,s,r−1)
f(k,s,r)

241
357

57
85

275
357

13
17

67
85

27
34

31
34

50
51

(s) : 4f(k−1,s,r−2)+f(k,s+1,r−1)
f(k,s,r)

6
7

12
17

6
7

12
17

169
170

117
136

169
170

46
51

(t) : f(k,s+1,r−2)+f(k,s,r−1)+3f(k−2,s,r−2)
f(k,s,r)

1199
1785

41
85

284
357

19
34

13
17

37
68

31
34

2
3

(t) : f(k,s+1,r−2)+f(k,s,r−1)+2f(k−1,s,r−2)
f(k,s,r)

24
35

36
85

17
21

1
2

66
85

33
68

157
170

31
51

(t) : f(k−1,s+1,r−2)+f(k,s+1,r−1)+3f(k−2,s,r−2)
f(k,s,r)

275
357

13
17

571
714

27
34

31
34

125
136

16
17

1

(t) : f(k−1,s+1,r−2)+f(k,s+1,r−1)+2f(k−1,s,r−2)
f(k,s,r)

40
51

12
17

83
102

25
34

157
170

117
136

81
85

16
17

(u) : 3f(k,s+1,r−2)+f(k−2,s,r−2)+2f(k−1,s,r−2)
f(k,s,r)

293
357

9
17

344
357

21
34

69
85

9
17

81
85

11
17

(v) : 6f(k−1,s+1,r−2)+f(k−2,s,r−2)
f(k,s,r)

13
17

13
17

16
17

16
17

13
17

13
17

16
17

1

(w) : 3f(k−1,s+1,r−2)+f(k,s+1,r−2)+4f(k−2,s,r−2)
f(k,s,r)

278
357

12
17

653
714

14
17

66
85

12
17

31
34

44
51

(w) : 4f(k−1,s+1,r−2)+f(k,s+1,r−2)+2f(k−2,s,r−2)
f(k,s,r)

278
357

12
17

337
357

29
34

66
85

12
17

16
17

46
51

(w) : 3f(k−1,s+1,r−2)+f(k,s+1,r−2)+2f(k−1,s,r−2)+f(k−2,s,r−2)
f(k,s,r)

283
357

11
17

13
14

13
17

67
85

11
17

157
170

41
51

Table 3: The ratios of the sum of functions to w(k, r) and f(k, s, r).
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[9] A. Gyárfás, G. Sárközy, A. Sebő and S. Selkow, Ramsey-type results for Gallai
colorings, J. Graph Theory 64 (2010), 233–243.
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