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Abstract

In this paper, we find an explicit formula for the generating function
that counts the circular permutations of length n avoiding the pattern
2341, whose enumeration was raised as an open problem by Rupert Li.
This then completes in all cases the enumeration of circular permutations
that avoid a single vincular pattern of length four containing one vincu-
lum. To establish our results, we introduce three auxiliary arrays which
when taken together refine the cardinality of the class of permutations in
question. Rewriting the recurrences of these arrays in terms of generating
functions leads to functional equations which are solved by various means
including the kernel method and iteration.

1 Introduction

The problem of pattern avoidance has been an ongoing object of research in combi-
natorics over the past few decades. We refer the reader to the text [11] and references
contained therein. Considered originally on permutations [12, 16], the problem has
been studied on several other finite discrete structures including compositions, set
partitions and words (see, e.g., the texts [8, 14]). Further, various extensions of the
basic avoidance problem have been obtained by stipulating that an occurrence of a
pattern must meet certain requirements. In this paper, we consider the avoidance

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



T. MANSOUR AND M. SHATTUCK/AUSTRALAS. J. COMBIN. 83 (1) (2022), 176–195 177

of a particular pattern of length four by circular permutations wherein the first two
entries in an occurrence of the pattern satisfy an adjacency condition.

A linear permutation of [n] = {1, . . . , n} is any sequential arrangement of the
elements of [n] written in a row. In contrast, in a circular permutation, the elements
of [n] are written in some order about the circumference of a circle instead of along
a line. Thus, one may regard the position of 1 as being fixed and hence there
are (n − 1)! circular permutations of [n]. Circular permutations are encountered
frequently outside of the realm of pattern avoidance; for an example of a recent
application, see [10] where they are used in the study of the inhomogeneous totally
asymmetric simple exclusion process on a ring.

Given linear permutations π = π1 · · ·πn and τ = τ1 · · · τm where 1 ≤ m ≤ n, then
π is said to contain the pattern τ if there exist 1 ≤ i1 < · · · < im ≤ n such that
πik < πij if and only if τk < τj for all k, j ∈ [m] (i.e., the subsequence πi1 · · ·πim is
order isomorphic to τ). Otherwise, π is said to avoid τ . This definition is extended
to circular permutations by allowing for subsequences starting near the end of π to
wrap back around to the beginning. More precisely, given π = π1π2 · · ·πn, let

S = {π1π2 · · ·πn, πnπ1 · · ·πn−1, πn−1πnπ1 · · ·πn−2, . . . , π2π3 · · ·πnπ1}
consist of the permutations obtained from π by applying repeatedly the cyclic shift
operation where the last letter is moved to the front. Then the circular permutation
π contains the pattern τ if and only if some member of S contains π per the definition
given above in the linear case. If this fails to occur, then π avoids τ in the circular
sense. Geometrically, an occurrence of τ in a circular permutation π happens when
one starts at any fixed position x along the circle and, proceeding clockwise from x,
encounters a subsequence of π that is order isomorphic to τ prior to returning to x.
Note that all patterns that can be obtained from τ by cyclic rotation are considered
the same as τ in circular pattern avoidance.

Given a permutation π = π1 · · ·πn, recall that the reversal and complement of
π are defined as πn · · ·π1 and (n + 1 − π1) · · · (n + 1 − πn), respectively. A Wilf
equivalence class is a (maximal) set of patterns for which the sequence enumerating
the permutations of length n for n ≥ 1 that avoid a given pattern is the same for each
member of the set. As in the linear case, two circular patterns that can be obtained
from one another by reversal or complementation are Wilf equivalent. A trivial Wilf
equivalence class is one in which all the members of the class are obtained from one
another via a combination of reversal, complementation or inversion.

The study of pattern avoidance in circular permutations was initiated by Callan
[2] who considered the case of a single classical pattern of length four for which there
are three distinct Wilf equivalence classes (with representative members 1234, 1324
and 1342). Simple explicit formulas were found in [2] for the number of circular
permutations of [n] avoiding each of the three patterns. These enumerative results
were later extended to all sets of patterns of length four by Domagalski et al. [4]
and to pairs of patterns of length four and k, where k is arbitrary, by Menon and
Singh [15]. See also the related paper by Vella [18]. Gray et al. extended Callan’s
work by considering cyclic packing of patterns [6] and patterns in colored circular
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permutations [7]. Further related generating function formulas which count circular
permutations according to the number of occurrences of a subword pattern starting
with 1 have been found by Elizalde and Sagan [5] in terms of the corresponding
formulas from the linear case.

Babson and Steingr̀ımsson [1] introduced the notion of vincular pattern avoidance
where certain adjacent elements of the pattern τ are required to be adjacent in an
occurrence of τ within π. The elements that must be adjacent are overlined in τ
and each such pair of elements is referred to as a vinculum. For example, π = 41523
contains two subsequences that are isomorphic to τ = 231, namely 452 and 453, but
only 452 is an occurrence of 231 as the 5 and 2 are adjacent. Vincular patterns in
which every possible pair of adjacent elements is overlined are known as subwords,
whereas those in which no pair is overlined correspond to the classical patterns. The
notion of vincular pattern avoidance in circular permutations is defined in analogy
to the classical case described above.

Note that there are 4! = 24 vincular patterns of length four containing one
vinculum in the circular case, as it may be assumed that the first two letters in a
pattern are those that are overlined. It is seen that these 24 patterns give rise to
eight distinct sets of patterns based on the reversal and complementation operations.
The permutations avoiding a pattern from six of these sets are enumerated by Li [13],
and an additional case was found by Domagalski et al. in [4]. In three cases, it is
shown that there are Cn−1 = 1

n

(
2n−2
n−1

)
circular permutations of length n that avoid

the underlying pattern, while in two others, the permutations in question were shown
to have cardinality given by 1 +

∑n−2
i=0 i(i + 1)n−i−2 for n ≥ 2. The enumeration of

permutations in the remaining uncounted class corresponding to 2341 (≡ 3214 by
reversal) was left as an open problem in [13], which we address here. Note that 2341
indeed corresponds to a trivial Wilf equivalence class and its enumerating sequence
fails to occur in the OEIS [17].

In this paper, we find an explicit formula for the generating function (gf) that
enumerates the circular permutations of length n ≥ 1 avoiding the vincular pattern
2341 (see Theorem 3.6 below). In the next section, we find recurrences for three
auxiliary arrays which when taken together refine the sequence of cardinalities that
are sought. In the third section, we rewrite these recurrences in terms of gf’s which
lead to functional equations satisfied by the gf’s that can be solved explicitly to
yield the desired formula. We note that a more general gf result can be obtained
wherein the class of permutations in question is enumerated according to the joint
distribution of two parameters defined on the class.

2 Recurrence formulas of arrays

Let An denote the set of circular permutations of [n] that avoid the vincular pattern
2341. Deleting the element 1 from a circular permutation λ leaves a well-defined
linear permutation which we denote by λ′. Then we have that λ avoids 2341 if and
only if λ′ avoids both 123 and 4123. To realize this, first let xyzw denote a potential
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occurrence of 2341 within λ. Then consider whether or not z occurs prior to the
actual letter 1 when starting from y and proceeding clockwise. If it does, then xyz
is an occurrence of 123 in λ′. If it does not, then zwxy must correspond to an
occurrence of 4123 in λ′. Conversely, if λ′ contains 123 or 4123, then it is seen that
λ must contain 2341.

Let Ln denote the set of linear permutations of [n] that avoid {123, 4123} and
we seek to enumerate the members of Ln. It will be convenient to hold out from
consideration the permutation (n−1)(n−2) · · · 1n. Denote by L∗

n the set Ln−{(n−
1)(n − 2) · · ·1n} and we refine L∗

n as follows. Let Bn for n ≥ 2 be the subset of L∗
n

consisting of those members in which 1 occurs somewhere to the right of n and let
Cn for n ≥ 3 be the subset of L∗

n in whose members 1 occurs to the left of n while 2
occurs somewhere to its right (with C2 taken to be empty, for convenience).

Note that within a member of Ln, all letters to the left of n must occur in
decreasing order so as to avoid 123. Suppose n ≥ 4 and let ρ ∈ L∗

n− (Bn∪Cn). Then
both 1 and 2 must occur to the left of n, implying ρ can be decomposed as ρ = αβnγ,
where α is decreasing and possibly empty, β consists of the elements of [d] for some
d ≥ 2 in decreasing order with d taken to be maximal and γ is non-empty. Note that
ρ ∈ L∗

n implies d ≤ n − 2 and thus d + 1 ∈ γ. Observe further that β − 1 can be
removed from ρ without affecting the avoidance of 123 and 4123, as it is decreasing
and consists of an interval. Indeed, in any potential occurrence of 4123 within ρ in
which a letter from β plays the role of the 1, one can always take that letter to be
the 1 from ρ. Further, it is seen that no letter in β can play the role of the 4, 2 or 3
within an occurrence of the pattern 4123.

Thus, one may delete all elements of [2, d] from ρ (and subsequently subtract d−1
from each letter in [d+ 1, n]) to obtain a member of Cn−d+1 for some 2 ≤ d ≤ n− 2.
Allowing d to range over all possible values implies

|L∗
n| = |Bn|+

n∑
j=3

|Cj|, n ≥ 2. (1)

In order to determine the cardinalities of Bn and Cn, we refine these sets as follows.
Given n ≥ 2 and 1 ≤ i, j ≤ n with i �= j, let Bn,i,j and Cn,i,j denote the subsets
of Bn and Cn consisting of those members that end in i, j. For example, we have
B5,3,2 = {45132, 51432, 54132} and C5,2,4 = {15324, 31524}. Let b(n, i, j) = |Bn,i,j|
and c(n, i, j) = |Cn,i,j|. The initial values for b(n, i, j) and c(n, i, j) are as follows:

b(2, 2, 1) = 1, b(2, 1, 2) = c(2, 1, 2) = c(2, 2, 1) = 0 for n = 2

and

b(3, 1, 3) = b(3, 2, 3) = b(3, 3, 2) = 0, b(3, 1, 2) = b(3, 2, 1) = b(3, 3, 1) = c(3, 3, 2) = 1,

with c(3, i, j) = 0 if (i, j) �= (3, 2) for n = 3.

Given n ≥ 2 and 1 ≤ j ≤ n, let Bn,j =
⋃n

i=1,i �=j Bn,i,j and Cn,j =
⋃n

i=1,i �=j Cn,i,j,
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with b(n, j) = |Bn,j| and c(n, j) = |Cn,j|. By the definitions, we have

b(n, j) =

n∑
i=1,i �=j

b(n, i, j)

and

c(n, j) =
n∑

i=1,i �=j

c(n, i, j).

The initial values for b(n, j) and c(n, j) are given by

b(2, 1) = 1 and b(2, 2) = c(2, 1) = c(2, 2) = 0 for n = 2,

with

b(3, 1) = 2, b(3, 2) = c(3, 2) = 1 and b(3, 3) = c(3, 1) = c(3, 3) = 0 for n = 3.

Note that b(n, n) = c(n, n) = 0 for all n ≥ 2 as the pertinent subsets of Bn and Cn
are empty in both cases.

Let an = |Ln| for n ≥ 1. By (1) and taking into account the permutation
(n− 1)(n− 2) · · ·1n which was excluded from L∗

n, we have

an = 1 +
n∑

j=1

b(n, j) +
n−2∑
d=0

n−d∑
i=1

c(n− d, i), n ≥ 2, (2)

with a1 = 1. Note that |An| = an−1 for n ≥ 2, with |A1| = 1, and hence we seek the
generating function

A(x) = x+
∑
n≥2

an−1x
n,

which counts all circular permutations of length n that avoid 2341.

The arrays b(n, i, j) and c(n, i, j) may assume non-zero values only for n ≥ 2
and 1 ≤ i, j ≤ n with i �= j and are determined by the recurrences in the following
lemmas.

Lemma 2.1. If n ≥ 3, then

b(n, i, 1) = b(n− 1, i− 1) +
i−1∑
d=2

c(n− i+ d, d), 2 ≤ i ≤ n− 1, (3)

b(n, i, j) = b(n− 1, i− 1), 2 ≤ j < i ≤ n− 1, (4)

and

b(n, 1, j)

= 2j−2+

n−1∑
k=j+1

j∑
d=2

(
j−2

d−2

)
b(n−d, k−d) +

n−1∑
k=j+1

j∑
d=2

k−2∑
�=d

(
j−2

d−2

)
c(n−	, k−	) (5)

for 2 ≤ j ≤ n − 1, with b(n, i, j) = 0 for 2 ≤ i < j ≤ n − 1 and b(n, i, n) = 0,
b(n, n, j) = δj,1 if n ≥ 2 and i, j ∈ [n− 1].
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Proof. Note first that a member of Bn cannot end in i, j such that 2 ≤ i < j ≤ n− 1
for otherwise 4123 would be present with n1ij, whence b(n, i, j) = 0 for such i
and j. Note that Bn,n,j is empty if j ≥ 2 and consists of the single permutation
(n−1)(n−2) · · · 2n1 if j = 1, whence b(n, n, j) = δj,1. Further, Bn,i,n is empty for all
i since 1 must occur to the right of n. For (4), note that the letter j within members
of Bn,i,j where i, j ∈ [2, n− 1] with i > j is extraneous concerning the avoidance of
both 123 and 4123. Thus, the j may be deleted resulting in a member of Bn−1,i−1,
which implies (4).

To show (3), suppose λ ∈ Bn,i,1 where i ∈ [2, n − 1]. Then 1 may be deleted
from λ resulting in a member of Bn−1,i−1 if 2 also occurs to the right of n within
λ. Otherwise, 2 occurs to the left of n and thus directly precedes n. Consider the
smallest d ≥ 2 such that d + 1 occurs somewhere to the right of n within λ, noting
d ≤ i − 1 since i must occur to the right of n. It is seen that each of the letters in
[3, d], along with 1, may be deleted from λ, resulting in a member of Cn−d+1,i−d+1.
Summing over all d then gives

∑i−1
d=2 c(n − d + 1, i − d + 1) =

∑i−1
d=2 c(n − i + d, d)

possibilities for the case when 2 occurs to the left of n in λ, which implies (3).

Finally, to show (5), let ρ ∈ Bn,1,j where j ∈ [2, n − 1] and suppose k is the
rightmost letter within ρ belonging to [j+1, n]. Then ρmay be written as ρ = αβγ1j,
where α is decreasing and β is non-empty and starts with n and ends in k (with k = n
possible), whence γ decreases as it has all of its letters in [2, j−1]. We consider cases
based on k. If k = n, then there are 2j−2 possibilities for the letters in γ, which
determines ρ completely in this case as all other letters in [2, n− 1] must then occur
to the left of n in decreasing order. So assume k < n and note k > j implies that
the section γ1j may be deleted from ρ. Suppose |γ| = d− 2 where 2 ≤ d ≤ j and let
ρ′ denote the member of Ln−d that results from the deletion of γ1j from ρ (followed
by standardization). If the element 1 within ρ′ occurs to the right of n − d, then
allowing k and d to vary gives

∑n−1
k=j+1

∑j
d=2

(
j−2
d−2

)
b(n− d, k− d) possibilities for ρ in

this case.

Otherwise, 1 occurs (directly) to the left of n− d and let 	 ≥ 1 be maximal such
that all members of [	] occur to the left of n− d within ρ′. Note that k lying to the
right of n in ρ implies 	 ≤ k−d−1. Further, it is seen that all elements of [2, 	] may
be deleted from ρ′ resulting in a member of Cn−d−�+1,k−d−�+1. Thus, considering all

k, d and 	 yields
∑n−1

k=j+1

∑j
d=2

∑k−d−1
�=1

(
j−2
d−2

)
c(n− 	−d+1, k− 	−d+1) possibilities

for ρ in this case. This accounts for the second summation on the right side of (5),
where 	 has been replaced by 	− d+ 1. Combining with the prior cases implies (5)
and completes the proof.

To give the recurrence for c(n, i, j), we will need to consider the array v(n, j)
for n ≥ 1 and 1 ≤ j ≤ n which enumerates the set of {123, 123}-avoiding linear
permutations of [n] ending in j.

Lemma 2.2. If n ≥ 4, then

c(n, i, 2) =
i−1∑
d=2

c(n− i+ d, d), 3 ≤ i ≤ n− 1, (6)
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c(n, i, j) = c(n− 1, i− 1), 3 ≤ j < i ≤ n− 1, (7)

and

c(n, 2, j) =

n−1∑
k=j+1

j∑
d=3

j−d∑
e=0

(
j−3

d−3

)(
j−d

e

)
v(n−d−e−1, k−d−e), 3 ≤ j ≤ n− 2, (8)

with c(n, 2, n− 1) = 2n−4 and c(n, i, j) = 0 if 3 ≤ i < j ≤ n− 1. Further, for n ≥ 2,
we have c(n, i, n) = c(n, i, 1) = c(n, 1, j) = 0 for all i and j, with c(n, n, j) = δj,2 for
1 ≤ j ≤ n− 1.

Proof. Concerning the boundary values, note that c(n, i, n) = c(n, i, 1) = c(n, 1, j) =
0 follows from the definitions and c(n, n, j) = δj,2 since Cn,n,j is empty if j �= 2, with
Cn,n,2 consisting of the single permutation (n−1)(n−2) · · · 1n2. Further, c(n, i, j) = 0
for 3 ≤ i < j ≤ n− 1 since a member of Cn cannot end in an ascent i, j where i ≥ 3,
for otherwise there would be an occurrence of 4123 witnessed by n2ij as 2 occurs to
the right of n by assumption. Also, the final letter j within a member of Cn,i,j where
3 ≤ j < i ≤ n − 1 may be deleted resulting in a member of Cn−1,i−1, which implies
(7). To show (6), suppose λ ∈ Cn,i,2 where 3 ≤ i ≤ n − 1 and consider the largest
d ≥ 2 such that all elements of [3, d] occur to the left of n. Then all elements of
[2, d] may be deleted from λ resulting in a member of Cn−d+1,i−d+1. Summing over
all d then yields

∑i−1
d=2 c(n− d+ 1, i− d+ 1) possibilities for λ and replacing d with

i+ 1− d in the sum implies (6).

To show (8), let ρ ∈ Cn,2,j where 3 ≤ j ≤ n−1. If j = n−1, then ρ is expressible
as ρ = α1nβ2(n − 1), where α and β are both decreasing (in order to avoid 123).
Further, any ρ of this form is seen to also avoid 4123. As α may comprise any subset
of [3, n−2], the formula for c(n, 2, n−1) follows. So assume n ≥ 5 and 3 ≤ j ≤ n−2.
As in the proof of (5) above, we let k denote the rightmost letter within ρ belonging
to [j + 1, n]. Note that k = n is not possible for j ≤ n− 2 would imply n− 1 must
occur to the left of n and thus be the first letter of ρ. But then (n − 1)12j is an
occurrence 4123, so we must have j +1 ≤ k ≤ n− 1. Thus, ρ can be decomposed as

ρ = α1nβγ2j,

where α and γ are possibly empty and β is non-empty with last letter k (and hence
γ contains only letters in [3, j − 1]).

Then the following conditions on α, β and γ are necessary for ρ to avoid
{123, 4123}: (i) α and γ are decreasing, (ii) α contains only letters in [3, j − 1]
and (iii) β avoids the patterns 123 and 123. The sections α and γ must clearly both
decrease so as to avoid 123. Concerning (ii), note that if x ≥ j + 1 occurred in
α, then x12j would correspond to a 4123 in ρ. For (iii), the section β must avoid
123, for otherwise there would be a 4123 in ρ where the role of 4 is played by n.
We claim that conditions (i)–(iii) are also sufficient for ρ to avoid {123, 4123}. Note
that ρ clearly avoids 123 if (i)–(iii) are satisfied. On the other hand, suppose to the
contrary that ρ contains an occurrence of 4123. The only way in which this would
be possible, given that ρ satisfies (i)–(iii), is for there to exist a > c > b with a lying
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in α and b, c in β such that b directly precedes c. But then c < a ≤ j − 1 implies c
is not the last letter of β and thus bck would be an occurrence of 123 in β, contrary
to (iii), which establishes the claim.

To enumerate ρ of the stated form satisfying (i)–(iii), let |α| = d− 3 and |γ| = e,
where 3 ≤ d ≤ j and 0 ≤ e ≤ j − d. Then there are

(
j−3
d−3

)(
j−d
e

)
ways in which to

select the elements of α and γ, which must occur in decreasing order within their
respective sections. Upon standardizing, it is seen that β is a permutation having
last letter k − (d − 3) − e − 3 = k − d − e and length n − d − e − 1, and hence is
enumerated by v(n − d − e − 1, k − d − e). Considering all possible values of k, d
and e then yields the summation formula on the right side of (8) and completes the
proof.

The array value v(n, i) used above is itself defined recursively as follows.

Lemma 2.3. We have

v(n, 1) =

n−1∑
i=1

v(n− 1, i), n ≥ 2, (9)

and

v(n, j) =

n−1∑
i=j

v(n− 1, i) +

n∑
i=j+1

j∑
d=2

(
j − 2

d− 2

)
v(n− d, i− d), 2 ≤ j ≤ n− 1, (10)

with v(n, n) = 1 for all n ≥ 1.

Proof. Let Vn,i denote the set of permutations enumerated by v(n, i) and Vn =⋃n
i=1 Vn,i. Note first that v(n, n) = 1 since Vn,n consists of the single permutation

(n − 1)(n − 2) · · ·1n. Formula (9) follows from removal of 1 from members of Vn,1,
which is seen to yield all members of Vn−1. To show (10), let λ ∈ Vn,j where
2 ≤ j ≤ n−1. If the penultimate letter of λ is greater than j, then j may be deleted
yielding

∑n−1
i=j v(n − 1, i) possibilities. Otherwise, the penultimate letter of λ must

be 1 in order to avoid 123. In this case, we may write λ = αiβ1j, where i ∈ [j+1, n]
and β consists of letters in [2, j − 1] and is decreasing, with α or β possibly empty.
Note that i > j implies λ avoids {123, 123} if and only if the initial section αi does.
Let |β| = d−2 for some 2 ≤ d ≤ j. Then there are

(
j−2
d−2

)
ways in which to choose the

letters in β and hence
(
j−2
d−2

)
v(n− d, i− d) possibilities for λ. Considering all values

of i and d then accounts for the second sum on the right side of (10) and completes
the proof.

3 Computation of generating function formula

In this section, we calculate an explicit formula for A(x) by first determining the gf’s
of the arrays v(n, i), c(n, i, j) and b(n, i, j).
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3.1 The generating function for v(n, i)

Define Vn(p) =
∑n

j=1 v(n, j)p
j−1 and V (x, p) =

∑
n≥1 Vn(p)x

n. Note that V (x, p) is

the gf that enumerates the set of linear {123, 123}-avoiding permutations of [n] for
n ≥ 1 according to the last letter statistic (marked by p). We seek to derive an
explicit formula for V (x, p).

In order to do so, first note that from (10), one gets

∑
n≥3

n−1∑
j=2

v(n, j)pj−1xn =
∑
n≥3

n−1∑
j=2

n−1∑
i=j

v(n− 1, i)pj−1xn

+
∑
n≥3

n−1∑
j=2

n∑
i=j+1

j∑
d=2

(
j − 2

d− 2

)
v(n− d, i− d)pj−1xn,

which implies by (9),

V (x, p)− xV (x, 1)− x

1− px
− px

1− p
(V (x, 1)− V (x, p))

=
∑
n≥3

n∑
i=3

i−1∑
d=2

i−1∑
j=d

(
j − 2

d− 2

)
v(n− d, i− d)pj−1xn

=
∑
n≥3

n−3∑
d=0

n−d−3∑
j=0

n∑
i=j+d+3

(
j + d

d

)
v(n− d− 2, i− d− 2)pj+d+1xn

=
∑
n≥0

∑
d≥0

∑
j≥0

n+j+d+3∑
i=j+d+3

(
j + d

d

)
v(n+ j + 1, i− d− 2)pj+d+1xn+j+d+3

=
∑
n≥0

∑
d≥0

∑
j≥0

n∑
i=0

(
j + d

d

)
v(n+ j + 1, i+ j + 1)pj+d+1xn+j+d+3

=
∑
j≥0

∑
n≥j

n∑
i=j

v(n+ 1, i+ 1)
pj+1xn+3

(1− px)j+1
=

px2

1− px

∑
n≥1

n∑
i=1

i−1∑
j=0

v(n, i)
pjxn

(1− px)j

=
px2

1− p− px

∑
n≥1

n∑
i=1

v(n, i)xn

(
1− pi

(1− px)i

)

=
px2

1− p− px

(
V (x, 1)− p

1− px
V

(
x,

p

1− px

))
.

Hence, the gf V (x, p) satisfies the functional equation

V (x, p) =
(1− p)x

(1− p + px)(1− px)
+

(1− p− p2x)x

(1− p+ px)(1 − p− px)
V (x, 1)

− (1− p)p2x2

(1− px)(1− p+ px)(1− p− px)
V

(
x,

p

1− px

)
. (11)
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Note that V (x, 0) = x + xV (x, 1), upon taking p = 0 in (11), which may also be
realized combinatorially from the definition of V (x, p). Thus,

V (x, p) =
(−1 + p+ px− p2x2)px

(1− px)(1− p+ px)(1− p− px)
+

1− p− p2x

(1− p+ px)(1− p− px)
V (x, 0)

− (1− p)p2x2

(1− px)(1− p+ px)(1− p− px)
V

(
x,

p

1− px

)
. (12)

Let

a(p) =
(−1 + p+ px− p2x2)px

(1− px)(1 − p+ px)(1 − p− px)
+

1− p− p2x

(1− p+ px)(1− p− px)
V (x, 0)

and b(p) = (1−p)p2x2

(1−px)(1−p+px)(1−p−px)
. By iterating (12) an infinite number of times

(assuming |x| < 1 is sufficiently small in absolute in value), we obtain

V (x, p) =
∑
j≥0

(−1)ja

(
p

1− jpx

) j−1∏
i=0

b

(
p

1− ipx

)

=
∑
j≥0

(−1)j
(−1 + p− jp2x+ (2j + 1)px− (j2 + j + 1)p2x2)p2j+1x2j+1

(1− p+ px)
∏j+1

i=1 (1− ipx)
∏j+1

i=1 (1− p− ipx)

+ V (x, 0)
∑
j≥0

(−1)j
((1− jpx)2 − p+ (j − 1)p2x)p2jx2j

(1− p+ px)
∏j

i=1(1− ipx)
∏j+1

i=1 (1− p− ipx)
.

Thus,

V (x, 1) = −
∑
j≥0

(j+1−(j2+j+1)x)xj

(j+1)!
∏j+1

i=1 (1−ix)
−V (x, 0)

∑
j≥0

((1−jx)2−1+(j−1)x)xj−2

(j+1)!
∏j

i=1(1−ix)
,

which, by V (x, 0) = x+ xV (x, 1), implies

V (x, 0) =
x−∑j≥0

(j+1−(j2+j+1)x)xj+1

(j+1)!
∏j+1

i=1 (1−ix)

1 +
∑

j≥0
((1−jx)2−1+(j−1)x)xj−1

(j+1)!
∏j

i=1(1−ix)

.

Hence, we can state the following result.

Lemma 3.1. The generating function V (x, p) is given by

V (x, p) =
∑
j≥0

(−1)j
(−1 + p− jp2x+ (2j + 1)px− (j2 + j + 1)p2x2)p2j+1x2j+1

(1− p+ px)
∏j+1

i=1 (1− ipx)
∏j+1

i=1 (1− p− ipx)

+ V (x, 0)
∑
j≥0

(−1)j
((1− jpx)2 − p+ (j − 1)p2x)p2jx2j

(1− p+ px)
∏j

i=1(1− ipx)
∏j+1

i=1 (1− p− ipx)
, (13)

where

V (x, 0) =

∑
j≥1

(j+1−(j2+j+1)x)xj+1

(j+1)!
∏j+1

i=1 (1−ix)∑
j≥1

(j+1−j2x)xj

(j+1)!
∏j

i=1(1−ix)

. (14)
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Remark: It was shown in [3, Props. 5 and 6] that the {123, 123}-avoiding permu-
tations of [n] are equinumerous with the nonoverlapping partitions of [n]. Hence
1
x
V (x, 0) is the gf that enumerates the nonoverlapping partitions of [n] for n ≥ 0.

See entry A006789 in [17] for additional formulas for V (x, 0) in terms of continued
fractions.

3.2 The generating function for c(n, i, j)

Define Cn(v, u) =
∑n

i=1

∑n
j=1 c(n, i, j)v

i−2uj−2 and C(x, v, u) =
∑

n≥2Cn(v, u)x
n.

Then the gf C(x, v, u) enumerates the set of linear {123, 4123}-avoiding permutations
of [n] for n ≥ 3 such that 1 occurs to the left of n and 2 to the right according to the
penultimate and final letter statistics (marked by v and u, respectively). A similar
interpretation may be given for B(x, v, u) defined below. In this subsection, we seek
to determine a formula for C(x, v, u).

In order to do so, first note that from the definitions and the basic properties of
c(n, i, j), we have

C(x, v, u) =
∑
n≥4

n−1∑
j=3

c(n, 2, j)uj−2xn +
∑
n≥3

n∑
i=3

n−1∑
j=2

c(n, i, j)vi−2uj−2xn. (15)

Note that by (8), we have

∑
n≥4

n−1∑
j=3

c(n, 2, j)uj−2xn −
∑
n≥4

2n−4un−3xn

=
∑
n≥5

n−2∑
j=3

c(n, 2, j)uj−2xn

=
∑
n≥5

n−2∑
j=3

n−1∑
k=j+1

j∑
d=3

j−d∑
e=0

(
j − 3

d− 3

)(
j − d

e

)
v(n− d− e− 1, k − d− e)uj−2xn

=
∑
j≥3

j∑
d=3

j−d∑
e=0

∑
k≥j+1

∑
n≥k+1

(
j − 3

d− 3

)(
j − d

e

)
v(n− d− e− 1, k − d− e)uj−2xn

=
∑
j≥3

j∑
d=3

j∑
e=d

∑
k≥j+1

∑
n≥k+1

(
j − 3

d− 3

)(
j − d

e− d

)
v(n− e− 1, k − e)uj−2xn

=
∑
j≥3

j∑
d=3

j∑
e=d

∑
k≥j−e+1

∑
n≥k

(
j − 3

d− 3

)(
j − d

e− d

)
v(n, k)uj−2xn+e+1

=
∑
d≥3

∑
e≥d

∑
j≥e

∑
k≥j−e+1

∑
n≥k

(
j − 3

d− 3

)(
j − d

e− d

)
v(n, k)uj−2xn+e+1

=
∑
d≥3

∑
e≥0

∑
j≥0

∑
k≥j+1

∑
n≥k

(
j + e + d− 3

d− 3

)(
j + e

e

)
v(n, k)uj+e+d−2xn+e+d+1
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=
∑
j≥0

∑
n≥j+1

n∑
k=j+1

v(n, k)uxn−j+4
∑
e≥0

(
j + e

e

)∑
d≥3

(
j + e+ d− 3

d− 3

)
(ux)j+e+d−3

=
∑
j≥0

∑
n≥j+1

n∑
k=j+1

v(n, k)
uj+1xn+4

(1− 2ux)j+1
=
∑
n≥1

n∑
k=1

k−1∑
j=0

v(n, k)
uj+1xn+4

(1− 2ux)j+1

=
ux4

1− u− 2ux

∑
n≥1

n∑
k=1

v(n, k)xn

(
1− uk

(1− 2ux)k

)

=
ux4

1− u− 2ux

(
V (x, 1)− u

1− 2ux
V

(
x,

u

1− 2ux

))
.

Hence, by (15), we get

C(x, v, u) =
ux4

1− u− 2ux

(
V (x, 1)− u

1− 2ux
V

(
x,

u

1− 2ux

))
+

ux4

1− 2ux

+
∑
n≥3

n∑
i=3

n−1∑
j=2

c(n, i, j)vi−2uj−2xn. (16)

By (6) and (7), we have

∑
n≥3

n∑
i=3

n−1∑
j=2

c(n, i, j)vi−2uj−2xn

=
∑
n≥5

n−2∑
i=3

n−1∑
j=i+1

c(n, i, j)vi−2uj−2xn +
∑
n≥3

n∑
i=3

i−1∑
j=2

c(n, i, j)vi−2uj−2xn

=
∑
n≥5

n−1∑
i=4

i−1∑
j=3

c(n, i, j)vi−2uj−2xn +
∑
n≥3

n∑
i=3

c(n, i, 2)vi−2xn

= u
∑
n≥5

n−1∑
i=4

n−1∑
�=1

c(n− 1, 	, i− 1)
vi−2(1− ui−3)xn

1− u
+
∑
n≥3

n∑
i=3

c(n, i, 2)vi−2xn

=
uvx

1− u
(C(x, 1, v)− C(x, 1, uv)) +

∑
n≥4

n−1∑
i=3

c(n, i, 2)vi−2xn +
∑
n≥3

c(n, n, 2)vn−2xn

=
uvx

1− u
(C(x, 1, v)− C(x, 1, uv)) +

∑
n≥4

n−1∑
i=3

i−1∑
d=2

c(n− i+ d, d)vi−2xn +
vx3

1− vx

=
uvx

1− u
(C(x, 1, v)− C(x, 1, uv)) +

vx

1− vx

∑
n≥3

n−1∑
d=2

c(n, d)vd−2xn +
vx3

1− vx

=
uvx

1− u
(C(x, 1, v)− C(x, 1, uv)) +

vx

1− vx
C(x, 1, v) +

vx3

1− vx
.

By (16), it follows that C(x, v, u) satisfies

C(x, v, u) =
ux4

1− u− 2ux

(
V (x, 1)− u

1− 2ux
V

(
x,

u

1− 2ux

))
+

ux4

1− 2ux
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+
uvx

1− u
(C(x, 1, v)− C(x, 1, uv)) +

vx

1− vx
C(x, 1, v) +

vx3

1− vx
. (17)

To solve (17), we apply the kernel method [9] and take u = 1/(1 − x) and v = 1 to
obtain

C(x, 1, 1) =
((1− x)V

(
x, 1

1−3x

)− (1− 4x+ 3x2)V (x, 1) + 3(1− 2x− x2))x3

3(1− 2x)(1− 3x)
. (18)

By (17) with v = 1, we have

C(x, 1, u) =
(1− ux)x

(1− x)(1− u+ ux)
C(x, 1, 1) +

(1− u)ux4

(1− u+ ux)(1− u− 2ux)
V (x, 1)

− (1− u)u2x4

(1− u+ ux)(1− u− 2ux)(1− 2ux)
V

(
x,

u

1− 2ux

)

+
(1− u)(1− ux− ux2)x3

(1− x)(1− u+ ux)(1− 2ux)
. (19)

Hence, we can state the following result.

Lemma 3.2. The generating function C(x, v, u) is given by

C(x, v, u) =
ux4

1− u− 2ux

(
V (x, 1)− u

1− 2ux
V

(
x,

u

1− 2ux

))
+

ux4

1− 2ux

+
uvx

1− u
(C(x, 1, v)− C(x, 1, uv)) +

vx

1− vx
C(x, 1, v) +

vx3

1− vx
,

where V (x, p) is given in Lemma 3.1 and C(x, 1, u) by (19).

There are the following additional connections between C(x, v, u) and V (x, p) in
the case u = v = 1.

Lemma 3.3. We have

x

1− x
+

x

1− x
C(x, 1, 1) = x+ xV (x, 0). (20)

Furthermore, C(x, 1, 1) is the coefficient of p2 in the generating function V (x, p).

Proof. By (18) and the fact V (x, 0) = x+ xV (x, 1), in order to prove (20), we must
show(

xV
(
x, 1

1−3x

)− (1− 3x)(V (x, 0)− x) + 3x(1−2x−x2)
1−x

)
x3

3(1− 2x)(1− 3x)
= xV (x, 0)− x2

1− x
. (21)

By (13), we have

V

(
x,

1

1−3x

)
=
∑
j≥0

3((j+4)(1−(j+3)x)−x)xj

(j+4)!
∏j+1

i=1 (1−(i+3)x)
+V (x, 0)

∑
j≥0

3((j+3)2x−j−4)xj−1

(j+4)!
∏j

i=1(1−(i+3)x)
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=
∑
j≥3

3(j + 1− (j2 + j + 1)x)xj−3

(j + 1)!
∏j+1

i=4 (1− ix)
+ V (x, 0)

∑
j≥3

3(j2x− j − 1)xj−4

(j + 1)!
∏j

i=4(1− ix)
,

and hence (21) holds if and only if

∑
j≥3

(j + 1− (j2 + j + 1)x)xj+1

(j + 1)!
∏j+1

i=2 (1− ix)
+ V (x, 0)

∑
j≥3

(j2x− j − 1)xj

(j + 1)!
∏j

i=2(1− ix)

− x3

3(1− 2x)
(V (x, 0)− x) +

x4(1− 2x− x2)

(1− x)(1− 2x)(1− 3x)
= xV (x, 0)− x2

1− x
.

Upon solving for V (x, 0), the last equation is seen to hold by virtue of (14), which
completes the proof of (20). For the second statement, in light of (20), we must show

∂2V (x, p)

∂p2
|p=0= 2(1− x)V (x, 0)− 2x.

The last equality may be readily established using (13), noting that only the j = 0
and j = 1 terms within the two sums in the formula for V (x, p) are relevant when
one differentiates twice with respect to p and sets p = 0.

3.3 The generating function for b(n, i, j)

Define Bn(v, u) =
∑n

i=1

∑n
j=1 b(n, i, j)v

i−1uj−1 and B(x, v, u) =
∑

n≥2Bn(v, u)x
n.

From the definitions and basic conditions on b(n, i, j), we have

B(x, v, u) =
∑
n≥4

n−2∑
i=2

n−1∑
j=i+1

b(n, i, j)vi−1uj−1xn +
∑
n≥3

n−1∑
j=2

b(n, 1, j)uj−1xn

+
∑
n≥2

n∑
i=2

i−1∑
j=1

b(n, i, j)vi−1uj−1xn

=
∑
n≥3

n−1∑
j=2

b(n, 1, j)uj−1xn +
∑
n≥4

n−1∑
i=3

i−1∑
j=2

b(n, i, j)vi−1uj−1xn

+
∑
n≥2

n∑
i=2

b(n, i, 1)vi−1xn. (22)

By (4) and the definition of b(n, i), we get

∑
n≥4

n−1∑
i=3

i−1∑
j=2

b(n, i, j)vi−1uj−1xn

=
∑
n≥4

n−1∑
i=3

i−1∑
j=2

b(n− 1, i− 1)vi−1uj−1xn =
uvx

1− u
(B(x, 1, v)− B(x, 1, uv)).
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Hence, by (22), we have

B(x, v, u) =
∑
n≥3

n−1∑
j=2

b(n, 1, j)uj−1xn +
uvx

1− u
(B(x, 1, v)− B(x, 1, uv))

+
∑
n≥2

n∑
i=2

b(n, i, 1)vi−1xn. (23)

Applying (3) yields

∑
n≥2

n∑
i=2

b(n, i, 1)vi−1xn

=
∑
n≥3

n−1∑
i=2

(
b(n− 1, i− 1) +

i−1∑
d=2

c(n− i+ d, d)

)
vi−1xn +

vx2

1− vx

= x
∑
n≥2

n−1∑
i=1

b(n, i)vixn +
∑
n≥4

n−1∑
i=3

i−1∑
d=2

c(n− i+ d, d)vi−1xn +
vx2

1− vx

= vxB(x, 1, v) +
∑
d≥2

∑
i≥1

∑
n≥d+1

c(n, d)vi+d−1xn+i +
vx2

1− vx

= vxB(x, 1, v) +
v2x

1− vx
C(x, 1, v) +

vx2

1− vx
.

Hence, by (23), we get

B(x, v, u) =
∑
n≥3

n−1∑
j=2

b(n, 1, j)uj−1xn +
vx

1− u
(B(x, 1, v)− uB(x, 1, uv))

+
v2x

1− vx
C(x, 1, v) +

vx2

1− vx
. (24)

By (5), we obtain

∑
n≥3

n−1∑
j=2

b(n, 1, j)uj−1xn

=
∑
n≥3

n−1∑
j=2

2j−2uj−1xn +
∑
n≥4

n−2∑
j=2

n−1∑
k=j+1

j∑
d=2

(
j − 2

d− 2

)
b(n− d, k − d)uj−1xn

+
∑
n≥4

n−2∑
j=2

n−1∑
k=j+1

j∑
d=2

k−2∑
�=d

(
j − 2

d− 2

)
c(n− 	, k − 	)uj−1xn

=
ux3

(1− x)(1− 2ux)
+
∑
d≥2

∑
j≥d

∑
n≥j+2

n−1∑
k=j+1

(
j − 2

d− 2

)
b(n− d, k − d)uj−1xn
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+
∑
d≥2

∑
j≥d

∑
k≥j+1

∑
n≥k+1

k−2∑
�=d

(
j − 2

d− 2

)
c(n− 	, k − 	)uj−1xn. (25)

We simplify the two multi-sum expressions appearing in (25) as follows. Replacing
j, n and k with j + d, n+ d and k + d, respectively, in the first yields

∑
d≥2

∑
j≥d

∑
n≥j+2

n−1∑
k=j+1

(
j − 2

d− 2

)
b(n− d, k − d)uj−1xn

=
∑
d≥2

∑
j≥0

∑
n≥j+2

n−1∑
k=j+1

(
j + d− 2

d− 2

)
b(n, k)uj+d−1xn+d

=
∑
j≥0

∑
n≥j+2

n−1∑
k=j+1

b(n, k)
uj+1xn+2

(1−ux)j+1
=

ux2

1−u−ux

∑
n≥2

n−1∑
k=1

b(n, k)xn

(
1−
(

u

1−ux

)k
)

=
ux2

1− u− ux

(
B(x, 1, 1)− u

1− ux
B

(
x, 1,

u

1− ux

))
.

For the second multi-sum expression in (25), first note that we may define c(n, k)
to be zero for all n and k where it is not the case that n > k ≥ 2. Then the innermost
sum where d ≤ 	 ≤ k − 2 may be replaced with 	 ≥ d, which allows for this sum to
be readily interchanged with the others. This yields

∑
d≥2

∑
j≥d

∑
k≥j+1

∑
n≥k+1

k−2∑
�=d

(
j − 2

d− 2

)
c(n− 	, k − 	)uj−1xn

=
∑
d≥2

∑
�≥d

∑
j≥d

∑
k≥j+1

∑
n≥k+1

(
j − 2

d− 2

)
c(n− 	, k − 	)uj−1xn

=
∑
d≥2

∑
�≥0

∑
j≥0

∑
k≥j+1

∑
n≥k+1

(
j + d− 2

d− 2

)
c(n− 	, k − 	)uj+d−1xn+d

=
∑
d≥2

∑
�≥0

∑
k≥�+2

k−1∑
j=0

∑
n≥k+1

(
j + d− 2

d− 2

)
c(n− 	, k − 	)uj+d−1xn+d,

where we have interchanged the third and fourth sums and replaced k ≥ 1 with
k ≥ 	+ 2 since c(n− 	, k − 	) may assume non-zero values only when k ≥ 	+ 2.

Replacing k and n with k + 	 and n + 	 in the last expression then gives

∑
d≥2

∑
�≥0

∑
k≥2

k+�−1∑
j=0

∑
n≥k+1

(
j + d− 2

d− 2

)
c(n, k)uj+d−1xn+d+�

=
∑
�≥0

∑
k≥2

k+�−1∑
j=0

∑
n≥k+1

c(n, k)
uj+1xn+�+2

(1− ux)j+1

=
ux2

1− u− ux

∑
�≥0

∑
k≥2

∑
n≥k+1

c(n, k)xn+�

(
1−

(
u

1− ux

)k+�
)
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=
ux2

1− u− ux

∑
n≥3

n−1∑
k=2

c(n, k)

(
xn

1− x
−
(

u

1− ux

)k

· xn

1− ux
1−ux

)

=
ux2

1− u− ux

(
1

1− x
C(x, 1, 1)− u2

(1− ux)(1− 2ux)
C

(
x, 1,

u

1− ux

))
.

Combining the prior results, we have by (25),

∑
n≥3

n−1∑
j=2

b(n, 1, j)uj−1xn

=
ux3

(1− x)(1− 2ux)
+

ux2

1− u− ux

(
B(x, 1, 1)− u

1− ux
B

(
x, 1,

u

1− ux

))

+
ux2

1− u− ux

(
1

1− x
C(x, 1, 1)− u2

(1− ux)(1− 2ux)
C

(
x, 1,

u

1− ux

))
.

Hence, by (24), we have that B(x, v, u) satisfies

B(x, v, u) =
ux3

(1−x)(1−2ux)
+

ux2

1−u−ux

(
B(x, 1, 1)− u

1−ux
B

(
x, 1,

u

1−ux

))

+
ux2

1− u− ux

(
1

1− x
C(x, 1, 1)− u2

(1− ux)(1− 2ux)
C

(
x, 1,

u

1− ux

))

+
vx

1− u
(B(x, 1, v)− uB(x, 1, uv)) +

v2x

1− vx
C(x, 1, v) +

vx2

1− vx
. (26)

By substituting v = 1 into (26), we obtain

B(x, 1, u) =
(u2x+ u− 1)x

(ux−u+1)(ux+u−1)
B(x, 1, 1) − (1− u)2x

(ux−u+1)(ux+u−1)(1−x)
C(x, 1, 1)

+
(1− u)u3x2

(ux− u+ 1)(ux + u− 1)(ux− 1)(2ux − 1)
C

(
x, 1,

u

1− ux

)

+
(1− u)(1− ux)x2

(ux− u+ 1)(1 − x)(1− 2ux)

− (1− u)u2x2

(ux− u+ 1)(ux + u− 1)(ux− 1)
B

(
x, 1,

u

1− ux

)
.

Note that it is not possible to find B(x, 1, 1) directly from the prior equation by
taking u = 1. However, we may iterate the preceding equation to first obtain the
following explicit formula for B(x, 1, u).

Lemma 3.4. The generating function B(x, 1, u) is given by

B(x, 1, u) = B(x, 1, 1)
∑
j≥0

(−1)j((1− jux)2 + (j − 1)u2x− u)u2jx2j+1

(1− u+ ux)
∏j

i=1(1− iux)
∏j+1

i=1 (1− u− iux)

+ C(x, 1, 1)
∑
j≥0

(−1)j(1− u− jux)2u2jx2j+1

(1− x)(1− u+ ux)
∏j

i=1(1− iux)
∏j+1

i=1 (1− u− iux)
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−
∑
j≥0

(−1)j(1− u− jux)u2j+3x2j+2

(1−u+ux)
∏j+2

i=1 (1−iux)
∏j+1

i=1 (1−u−iux)
C

(
x, 1,

u

1−(j+1)ux

)

+
∑
j≥0

(−1)j(1− (j + 1)ux)2(1− u− jux)u2jx2j+2

(1− x)(1− u+ ux)
∏j+2

i=1 (1− iux)
∏j

i=1(1− u− iux)
.

Now one may take u = 1 in Lemma 3.4, and solve, to obtain B(x, 1, 1) explicitly.

Lemma 3.5. The generating function B(x, 1, 1) is given by

−

C(x,1,1)
1−x

∑
j≥1

j2xj+1

(j+1)!
∏j

i=1
(1−ix)

+
∑

j≥1
jxj+1

(j+1)!
∏j+2

i=1
(1−ix)

C
(
x, 1, 1

1−(j+1)x

)
+ 1

1−x

∑
j≥1

(1−(j+1)x)2xj+2

(j−1)!
∏j+2

i=1
(1−ix)

∑
j≥1

(j2x−j−1)xj

(j+1)!
∏j

i=1
(1−ix)

.

Note that the C(x,1,1)
1−x

factor multiplying the first sum in the preceding formula
can be replaced more simply by V (x, 0)− x

1−x
.

3.4 Explicit formula for A(x)

By (2), the gf A(x) = x+
∑

n≥2 an−1x
n is given by

A(x) =
x

1− x
+ xB(x, 1, 1) +

x

1− x
C(x, 1, 1).

Thus, by Lemma 3.3, we obtain the following formula for A(x).

Theorem 3.6. The generating function for the number of circular permutations of
length n for n ≥ 1 that avoid the vincular pattern 2341 is given by

A(x) = x+ xV (x, 0) + xB(x, 1, 1),

where B(x, 1, 1) is as in Lemma 3.5 and V (x, 0) is given by (14).

For instance, from the formula for A(x), we have that an = |An+1| for 1 ≤ n ≤ 30
is given by

n an n an n an

1 1 2 2 3 5
4 15 5 50 6 180
7 690 8 2792 9 11857
10 52633 11 243455 12 1170525
13 5837934 14 30151474 15 161021581
16 888001485 17 5051014786 18 29600662480
19 178541105770 20 1107321666920 21 7055339825171
22 46142654894331 23 309513540865544 24 2127744119042216
25 14979904453920111 26 107932371558460341 27 795363217306369817
28 5990768203554158167 29 46094392105916344968 30 362092868720288824992.

Note that the running time for the program that produced the first 33 values of an
from the generating function was slightly under 19 minutes, requiring only 92.6 MB
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of memory, and it was run on a computer with Intel(R) Core(TM) i7-8650U CPU @
1.90GHz 2.11 GHz1. It is seen that the first 11 values in the table agree with those
found earlier by Li [13]. Based on the terms of the sequence an for 1 ≤ n ≤ 130, we
conjecture that there exists no constant c such that an < cn for all n ≥ 1. Further,
we conjecture that the inequality an+1

n < ann+1 holds for all n ≥ 1.

We conclude by noting that a more general gf result in terms of two parameters
defined on An can be obtained from the preceding as follows. First note that the
penultimate and final letter statistics on Ln−1 correspond to (one less than) the
values of the two letters directly prior to 1 (when proceeding clockwise) within a
member of An and are thus tracked by v and u. Let i+2 and j+2 for some i, j ≥ 0
denote the two letters directly preceding 1 within a member of An. Let A(x, v, u)
be the gf enumerating the members of An according to the values of i and j (i.e., a
member of An in which i+ 2, j + 2 directly precedes 1 contributes xnviuj). Then it
is seen that A(x, v, u) is given by

A(x, v, u) =
x+ (1− u)x2

1− ux
+ xB(x, v, u) +

uvx

1− uvx
C(x, v, u), (27)

where C(x, v, u) is as in Lemma 3.2 and B(x, v, u) is given by (26), together with
Lemmas 3.2–3.5.
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