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Abstract

We investigate n× n (0, 1)-matrices A such that no permutation matrix
P ≤ A belongs to a prescribed subset Qn of the set Pn of all n × n
permutation matrices. The subsets Qn considered are those defined by
avoiding a given pattern σk where σk is a permutation of {1, 2, . . . , k}.
This gives rise to consideration of (minimal) blockers which are certain
subsets of the positions of an n × n matrix that intersect every permu-
tation matrix that avoids the pattern σ. The classical case is that where
Qn = Pn and thus our investigations can be viewed as a generalization of
the well-known Frobenius-König theorem. By this theorem the positions
of any r × s submatrix with r + s = n + 1 is a minimal blocker of Pn;
in particular rows and columns are not only minimal blockers but are
minimum cardinality blockers; the maximum size of a minimal blocker
occurs when r and s are (nearly) equal. The case k = 3 is considered in
some detail. In case k ≥ 4, we show that every minimum blocker for any
given pattern σk with cardinality equal to n is a row or column.
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1 Introduction

Let Pn be the set of n × n permutation matrices Pπ corresponding to the set Sn

of permutations π = (i1, i2, . . . , in) of {1, 2, . . . , n}. For instance, when n = 5 and
omitting 0’s,

(3, 5, 2, 1, 4) ↔

⎡
⎢⎢⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎥⎥⎦ .

In general, we do not make any distinction between permutations in Sn and their
corresponding permutation matrices in Pn.

We formulate the following General Problem for a subset Qn of Pn:

(i) Investigate the set of all n × n (0, 1)-matrices A such that A is disjoint from
Qn, that is, every n× n permutation matrix P ≤ A (entrywise order) satisfies
P �∈ Qn; in terms of scalar product, P ◦A < n for every P ∈ Qn. The primary
interest is in those A that are maximal with respect to being disjoint from Qn,
that is, if A′ is an n × n (0, 1)-matrix with A ≤ A′ and A �= A′, then there is
some permutation matrix Q ∈ Qn with Q ≤ A′.

(ii) Our problem has an alternative formulation: Let B be the n× n (0, 1)-matrix
with B = Jn−A (Jn is the n×n all 1’s matrix). Then A is disjoint from Qn if
and only if each permutation matrix Q ∈ Qn intersects B, that is, in terms of
scalar product, Q◦B ≥ 1 for all Q ∈ Qn. The matrix B, or the set of positions
of its 1’s, is a blocker of Qn. The primary interest is in those blockers B that
are minimal with respect to this intersection property, that is, if B is an n× n
(0, 1)-matrix with B′ ≤ B and B′ �= B, then there there is some permutation
matrix Q ∈ Qn with Q ◦B′ = 0.

The classical example of this problem is obtained when Qn equals the entire set
Pn of n× n permutation matrices. The solution is provided by the Frobenius-König
theorem: In terms of (ii), the minimal blockers of Pn are the n× n (0, 1)-matrices B
whose 1’s form an r×s submatrix with r+ s = n+1. Such a B has rs 1’s which has
minimum value n when r = 1, s = n or r = n, s = 1. In terms of (i), the maximal
A’s are those n × n (0, 1)-matrices A such that Jn − A is such a B. For example
with n = 8, displaying only the 1’s in B and A:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Our primary interest in this paper are subsets Qn of Pn, which avoid certain pat-
terns. Let k be an integer with 2 ≤ k ≤ n. Let σk = (t1, t2, . . . , tk) be a permutation
of {1, 2, . . . , k}. A permutation πn = (i1, i2, . . . , in) of {1, 2, . . . , n} contains σk (also
written as contains an t1t2 · · · tk-pattern) provided πn has a subsequence of length k
in the same relative order as σk. The permutation πn avoids σk (also written as σk-
avoiding or t1t2 . . . tk-avoiding) provided it does not contain σk. Thus, for instance,
if k = 3 and σ3 = (3, 1, 2), then πn is 312-avoiding provided that there do not exist
integers 1 ≤ p < q < r ≤ n such that ip > ir and ir > iq, that is, there does not
exist a subsequence of πn in the relative order 3, 1, 2. More discussion on pattern
avoidance in permutations and many references can be found in [2].

A t1t2 · · · tk-avoiding permutation matrix is an n × n permutation matrix corre-
sponding to a t1t2 · · · tk-avoiding permutation of {1, 2, . . . , n}. We carry over the
above terminology to the corresponding permutation matrices. The number of 312-
avoiding permutations in Sn (respectively, n×n 312-avoiding permutation matrices)
is the classical Catalan number (

2n
n

)
n + 1

.

In fact, this is the same number of σ3-avoiding n × n permutation matrices for any
permutation σ3 of {1, 2, 3}. Up to reversal and complementation, there are only two
such σ3, namely (1, 2, 3) and (3, 1, 2). These and other facts can be found in [2].

In general, we denote the set of σk-avoiding permutations of {1, 2, . . . , n} (respec-
tively, the set of σk-avoiding n × n permutation matrices) by Sn(σk) (respectively,
Pn(σk)). Let k and l be integers with 1 ≤ k < l ≤ n, and let σk = (t1, t2, . . . , tk), and
σl = (t1, t2, . . . , tk, tk+1, . . . , tl). Then σl is an extension of σk. More generally, let σk

be in the same relative order as a subsequence of σl, denoted as σk 	∗ σl. Then if
a permutation πn contains the pattern σl, it also contains the pattern σk; thus if a
permutation πn is σk-avoiding, then πn is also σl-avoiding. Thus being σl-avoiding
is less restrictive than being σk-avoiding and hence Sn(σk) ⊆ Sn(σl), equivalently,
Pn(σk) ⊆ Pn(σl). Since this is a crucial observation for our investigations, we for-
mulate it as a lemma.

Lemma 1.1 Let σk 	∗ σl. Then Pn(σk) ⊆ Pn(σl); in words, the permutations that
avoid σk also avoid σl. �

Thus there are more σl-avoiding n × n permutation matrices than σk-avoiding
n×n permutation matrices; informally, it is easier to avoid σl than to avoid σk when
σk 	∗ σl.

Our motivation for this paper stems primarily from the 1971 seminal paper of
Fulkerson [5] which we now describe. Consider an unbounded, n-dimensional, convex
polyhedron A described by an m×n nonnegative matrix A with rows a1, a2, . . . , am:

A := {x ∈ �+
n : Ax ≥ 1}.

This polyhedron is the vector sum of the convex hull of its extreme points and the
nonnegative orthant. Some rows of A may be redundant so that not all rows may
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represent facets of A. By the Farkas lemma, a row ai does not represent a facet of
A if and only if ai is dominated entrywise by a convex combination of other rows of
A. The rows that do represent facets are the essential rows of A; all other rows can
be deleted from A. We therefore assume that A is proper, that is, all rows of A are
essential and thus represent facets. The blocker of A is

B := {x ∈ �+
m : xA ≥ 1}.

Let B be the matrix with rows given by the extreme points b1, b2, . . . , br of B. Then
B is the blocking matrix of A and is proper, and by Theorem 1 of Fulkerson [5],

A = {y ∈ �+
n : By ≥ 1}

is the blocker of B, that is, the blocker of the blocker is the original.

Consider the set Pn of all n×n permutation matrices and its corresponding n!×n2

incidence (0, 1)-matrix A with rows corresponding to the permutation matrices and
columns corresponding to the n2 positions of an n×n matrix. Let I, J ⊆ {1, 2, . . . , n}
with |I|+ |J | ≥ n + 1, and let B(I,J) = [b

(I,J)
kl ] be the n× n matrix with

b
(I,J)
kl =

1

|I|+ |J | − n
, if (k, l) ∈ (I, J), and b

(I,J)
kl = 0, otherwise.

Then the matrices B(I,J), considered as 1 by n2 vectors, are the essential rows of the
blocker of A provided neither I = {1, 2, . . . , n} and |J | > 1 nor J = {1, 2, . . . , n}
and |I| > 1 [5]. An example of such an essential row in terms of the corresponding
matrix is the following 7× 7 matrix

B(I,J) =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where I = {1, 2, 3, 4, 5} and J = {1, 2, 3, 4}, with |I| + |J | − n = 5 + 4 − 7 = 2. In
this case every 7 × 7 permutation matrix will have two 1’s in the region given by
the positions of the displayed 1’s above. For general n× n, the essential rows of the
blocker in this case that correspond to (0, 1)-matrices are thus those n × n (0, 1)-
matrices that have a k × l submatrix of all 1’s with k + l = n+ 1 and 0’s elsewhere.
These are the essential rows that arise from the Frobenius-König theorem and are
a proper subset of the set of essential rows. These essential (0, 1)-rows are minimal
in the sense that replacing any 1 with a 0 no longer blocks all n × n permutation
matrices.

In this paper we consider the more general problem with the full set Pn of n× n
permutation matrices replaced with the subset Pn(σk) of σk-avoiding n × n permu-
tation matrices for some permutation σk of {1, 2, . . . , k}:
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Investigate those n× n (0, 1)-matrices A where A is disjoint from Pn(σk), equiv-
alently, every permutation matrix P ≤ A contains a σk-pattern.

With each set Pn(σk) of σk-avoiding n × n permutation matrices, we associate
the polyhedron

Ω∗
n(σk) = {Ωn(σk) +X : X ≥ O},

where Ωn(σk) is the convex hull1 of Pn(σ). Let Jn be the n×n matrix of all 1’s. For
the matrix A above, we take the m × n2 (0, 1)-matrix whose rows are determined
by the matrices Jn − C (written as vectors of size n2) as C ranges over all those
n × n (0,1)-matrices such that for every permutation π with Pπ ≤ C, σk occurs as
a subpattern of π. The essential rows of this matrix A correspond to n × n (0,1)-
matrices C such that every permutation matrix Pπ ≤ C has σk as a subpattern,
the n × n blockers2 of σk, but changing any 0 of C to a 1 results in a matrix C ′

such that there is a permutation matrix Pπ ≤ C ′ which is σk-avoiding, the n × n
minimal blockers of σk. (Note that if one takes such a maximal C and writes it as a
convex combination of other such essential matrices (which are (0, 1)-matrices), then
all these matrices would have to have 1’s where C has 1’s and nowhere else. That is
why it suffices to take only these maximal matrices C.)

We formulate our problem in a combination of matrix/set-theoretic language that
is easier to understand. Let σk ∈ Pk. Let C(Y ) be an n×n matrix whose n2 positions
are partitioned into two sets Y and the complement Y of Y and are labeled with a
y and a y, respectively. We denote this by leaving those positions labeled y empty.
Then

(*) C(Y ) is a σk-avoiding blocker provided every σk-avoiding n × n permutation
matrix P has a 1 in a position in Y , equivalently, Y does not completely contain
all the positions of the 1’s of any σk-avoiding n× n permutation matrix. Since
every σk-avoiding n× n permutation matrix P contains a 1 in a position of Y ,
we also say that the set of positions of Y is a σk-avoiding blocker. The size of
the σk-avoiding blocker C(Y ) is the cardinality of Y .

Another formulation of our problem is this: Let σk be a permutation of {1, 2, . . . ,
k} and let A be an n × n (0, 1)-matrix. Suppose that every n × n permutation
matrix P ≤ A has a σk-pattern; thus every n × n σk-avoiding permutation matrix
Q has a 1 in at least one of the positions in which A has 0’s. Investigate such
matrices A and determine the maximum number of 1’s (minimum number of 0’s) A
can have. However, some of our arguments are better written and understood using
the matrices C(Y ) as described above.

The next lemma follows from Lemma 1.1.

1Thus Ωn(σk) is the subpolytope of the polytope Ωn of the n × n doubly stochastic matrices
that are convex combinations of σk-avoiding n × n permutation matrices. We plan to discuss this
polytope in a future paper.

2We really should say (0, 1)-blockers but these are essentially the only blockers we consider. It is
an interesting question to to consider, as with Pn, what kind of essential non-(0,1) blockers occur
for a set Pn(σk).
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Lemma 1.2 If k > l and σk 	∗ σl, then any σl-avoiding blocker is also a σk-avoiding
blocker: a set of positions Y that meets every σl-avoiding permutation matrix also
meets every σk-avoiding permutation matrix.

Proof. Let Y be a σl-avoiding blocker set of positions. Thus every σl-avoiding
permutation matrix contains a 1 in a position of Y . By Lemma 1.1, Pn(σk) ⊆ Pn(σl).
Hence every σk-avoiding permutation matrix also contains a 1 in a position in Y . �

For instance, permutations that contain a 1234-pattern also contain a 123-patt-
ern, and thus permutations that avoid a 123-pattern also avoid a 1234-pattern. Hence
if Y meets all 1234-avoiding permutations it must meet all 123-avoiding permuta-
tions.

For every σk, there are σk-avoiding blockers of size n, since the set of positions in
any row or in any column contains a 1 of every n × n permutation matrix whether
or not it is σk-avoiding.

To help clarify these ideas, we now consider some examples.

Example 1.3 Let n = 8 and σ3 = (1, 2, 3). If Y is the set of all the 8 positions in
a row or column, then the corresponding matrix C(Y ) is a σ3-avoiding blocker since
every permutation contains a position in each row and each column. Now consider
the matrix C(Y ) with Y as shown. (As already remarked, we usually only label the
positions of Y with the remaining positions assumed to contain a y.)

C(Y ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y y y y y
y
y
y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

It is easy to verify that any 8× 8 permutation matrix P that does not have a 1 in a
position in Y contains a 123-pattern: such a permutation matrix must have a 1 in
the first three positions of row 1, a 1 in the last four positions in column 8, and at
least one 1 in the 3 × 4 submatrix below and to the left of the y’s. Thus C(Y ) is a
123-avoiding blocker. Removing any y of C(Y ) results in a 123-avoiding permutation
matrix P that is no longer blocked. Thus C(Y ) is a minimal 123-avoiding blocker.
This argument generalizes to show the following: For any n ≥ 3, if a set Y of n
positions forms an upside-down L-shaped region in the upper-right corner, that is,
the set of positions

{(1, k), (1, k + 1), . . . , (1, n), (2, n), (3, n), . . . , (k, n),

Then C(Y ) is a minimal 123-avoiding blocker of size n.
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Now let σ = (3, 1, 2). Then

C(Y ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
y
y
y
y y y y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a 312-avoiding blocker of size 8. The reason is that any 8× 8 permutation P that
does not contain a position in Y must contain one of the four available positions
in row 5 and one of the three available positions in column 5, and therefore one of
the positions in the 4 × 3 submatrix in the upper-right, giving a 312-pattern. This
argument also generalizes to show that for any n ≥ 3, the set of n positions forming
an L-shaped region in the upper-right corner, that is, the set of positions

{(1, k), (2, k), . . . , (k, k), (k, k + 1), (k, k + 2), . . . , (k, n)

form a 312-avoiding blocker of size n. �

Our motivation in this paper can be formulated as a search for analogues of the
Frobenius-König theorem for certain subsets P ′

n of the set Pn of permutation matri-
ces, namely, the set of permutations of {1, 2, . . . , n} avoiding a specified permutation
of {1, 2, . . . , k}:
(a) There exists a permutation matrix P ≤ A with P ∈ P ′

n if and only if there
does not exist a (to be determined for P ′

n) .

(b) There does not exist a permutation matrix P ≤ A with P ∈ P ′
n if and only if

there exists a (to be determined for P ′
n).

In our situation of Pn(σk) of σk-avoiding permutation matrices, we will be pri-
marily concerned with (0, 1)-blockers of σk-avoiding permutation matrices. But as
with Pn, there are other blockers as well.

Define a set Y of entries of an n× n matrix C(Y ) to be a (minimal) σk-avoiding
blocker of strength t provided every n× n σk-avoiding permutation matrix contains
at least t y’s.

Example 1.4 Continuing with Example 1.3 with n = 8,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y y y y y
y y y y y

y y
y y
y y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1

1 1
1 1
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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gives a 123-avoiding blocker of size 16 and strength 2. A blocker for an 8 × 8
(0, 1) matrix such that each 123-avoiding permutation matrix contains at least three
positions occupied by y′s, a 123-avoiding blocker of size 24 and strength 3, is given
by ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y y y y y y
y y y y y y
y y y y y y

y y y
y y y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ 1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1 1 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

�

To conclude this introductory section, we contrast the difference between our
investigations and the celebrated proof by Marcus and Tardos [6] of the Füredi-
Hajnal conjecture; a good exposition of this is in [2].

Theorem 1.5 Let σk be a permutation of {1, 2, . . . , k} with corresponding k × k
permutation matrix Pσk

. Let f(n, Pσk
) be the maximum number of 1’s that an n× n

(0, 1)-matrix A can have if A avoids Pσk
. Then

f(n, Pσk
) ≤ 2k4

(
k2

k

)
n.

Thus Theorem 1.5 is concerned with avoiding the k × k permutation matrix Pσk

in an n × n (0, 1)-matrix A and not, as in our investigations, with avoiding n × n
permutation matrices that contain σk in an n× n (0, 1)-matrix A.

We now briefly summarize the content of this paper. In Section 2 we primarily
consider blockers of n × n permutations σ3 of length 3. In Section 3 we prove that
in the case of k ≥ 4, a σk-avoiding blocker of the minimal size n is actually a row
or column and so blocks all n × n permutation matrices. In the final Section 4 we
discuss some additional properties of blockers and some possible directions for further
research.

2 Blockers

Let n and k be integers with 2 ≤ k ≤ n, and let σk = (t1, t2, . . . , tk) be a permutation
of {1, 2, . . . , k} which we often write as t1t2 · · · tk. We consider the class Pn(σk) =
Pn(t1t2 · · · tk) of t1t2 . . . tk-avoiding n × n permutation matrices. We first consider
k = 2 and k = n. For σ = (1, 2) and (2, 1), we have:

(a) There does not exist a permutation matrix P ≤ A with P ∈ Pn(12) (so
corresponding to the unique permutation of length n with no increase, namely the
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permutation (n, n−2, . . . , 1)) if and only if there does not exist a 1×1 zero submatrix
of the form ai,n+1−i = 0 for some 1 ≤ i ≤ n. Thus the minimal (12)-avoiding blockers
of n× n permutation have size 1 and consist of any position on the Hankel diagonal
(the diagonal running from the upper right corner to the lower left corner).

(b) There does not exist a permutation matrix P ≤ A with P ∈ Pn(21) (so
corresponding to the unique permutation of length n with no decrease, namely the
identity permutation ιn = (1, 2, . . . , n)) if and only if there exists a 1×1 zero subma-
trix of the form aii = 0 for some 1 ≤ i ≤ n. Thus the minimal (21)-avoiding blockers
of n× n permutation have size 1 and consist of any position on the main diagonal.

Now suppose that k = n and so σn is a permutation of {1, 2, . . . , n} with corre-
sponding permutation matrix Pσn . Consider first σn = (1, 2, . . . , n) with Pσn = In.
So we want to avoid In. What are the 12 · · ·n-avoiding blockers in this case? We
seek a set Y of positions labeled with y’s of an n×n matrix such that every 12 · · ·n-
avoiding permutation matrix (so every n× n permutation matrix �= In) contains at
least one of these positions. In addition to the rows and columns, there are two other
obvious such sets Y ; all the positions above the main diagonal and all the positions
below the main diagonal; with n = 6, these are

C(Y ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y y y y y
y y y y

y y y
y y

y

⎤
⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎣

y
y y
y y y
y y y y
y y y y y

⎤
⎥⎥⎥⎥⎥⎥⎦
.

These are clearly 12 · · ·n-avoiding blockers in general, since the only permutation
matrix not having a 1 in a position labeled y is the identity matrix In; they are
minimal 12 · · ·n-avoiding blockers, since removing a y from Y allows a permutation
matrix without a 1 in a position labeled y different from the identity matrix. Thus
these minimal 12 · · ·n-avoiding blockers have cardinality

(
n
2

)
. More generally, if we

take C(Y ) to be any matrix where the y’s form a triangle with row and column sums
1, 2, . . . , n−1 in some order and where the triangle does not contain a y on the main
diagonal (so certain row and column permutations of the above C(Y )), then there is
only one permutation matrix not containing a y which is therefore In. C(Y ) is then
a minimal 12 · · ·n-avoiding blocker of size

(
n
2

)
. We call these blockers n-triangular

blockers. Now there are other 12 · · ·n-avoiding blockers, namely, by the Frobenius-
König theorem, any r× s submatrix Y of positions with r+ s = n+ 1, in particular
the set of n positions of a row or column. These are also minimal 12 · · ·n-avoiding
blockers since removing any position in such a Y will create a permutation matrix
different from In.

Theorem 2.1 Let n ≥ 3. The maximum cardinality of a minimal 12 · · ·n-avoiding
blocker is

(
n
2

)
with equality if and only if the blocker is an n-triangular blocker.

Proof. Consider a minimal 12 · · ·n-avoiding blocker Y . If this blocker contains a
position on the main diagonal, then it blocks the entire set Pn of n× n permutation



R.A. BRUALDI AND L. CAO/AUSTRALAS. J. COMBIN. 83 (2) (2022), 274–303 283

matrices. Then by the Frobenius-Kőnig theorem, it contains an entire r×s submatrix
Y ′ of positions with r, s ≥ 1 and r+ s = n+1. Since Y is a minimal blocker, Y = Y ′

and hence the cardinality of Y satisfies

|Y | = rs ≤
⌊n
2

⌋ ⌈n
2

⌉
<

(
n

2

)
.

We now assume that Y does not contain a position on the main diagonal. Then for
every pair of symmetrically opposite positions (i, j) and (j, i) with 1 ≤ i < j ≤ n, Y
contains at least one of the pair, for otherwise we have a non-identity permutation
matrix avoiding Y . Hence

|Y | ≥
(
n

2

)
.

In order for equality to hold Y must contain exactly one of the positions (i, j) and
(j, i) for each i and j with 1 ≤ i < j ≤ n. Thus Y corresponds to the 1’s of a
so-called n×n tournament matrix. If the tournament matrix is not transitive, there
would be a cycle of length 3 not meeting Y and thus with the (n−3) complementary
positions on the main diagonal, we would get a permutation matrix not meeting Y .
It follows that equality implies that Y is an n-triangular block. �

A similar analysis applies to any permutation σn of {1, 2, . . . , n} and correspond-
ing permutation matrix Pσn .

As is clear from above, there is a substantial difference between a minimal blocker
(in terms of set containment) and a minimum blocker (in terms of size).

We define the Hankel-cyclic decomposition3 of the n× n matrix Jn of all 1’s into
n permutation matrices by starting with row 1 and cyclically permuting it as for
circulant matrices but in a right-to-left fashion, rather than the left-to-right fashion.
The Hankel-cyclic decomposition is illustrated for n = 6 using letters a, b, c, d, e, f
below: ⎡

⎢⎢⎢⎢⎢⎢⎣

a b c d e f
b c d e f a
c d e f a b
d e f a b c
e f a b c d
f a b c d e

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In general, this gives a decomposition of Jn into 123-avoiding permutation matrices,
since each permutation in the decomposition corresponds to a decreasing sequences
followed by another decreasing subsequence (empty in one case). For that reason this
is also a decomposition into 312-avoiding and 231-avoiding permutation matrices. We
call the permutation matrices in the Hankel-cyclic decomposition the Hankel-cyclic
permutation matrices; the diagonal running from the upper right to the lower left

3The term Hankel as used here comes from the fact that the resulting matrix is a Hankel matrix
with the permutations cyclically constructed around the Hankel diagonal from the upper right to
the lower left. These permutation matrices are the only permutation matrices that are Hankel
matrices.
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is the Hankel diagonal. Thus the Hankel-cyclic decomposition is a 123-, 312-, and
231-avoiding decomposition of Jn.

The standard circulant decomposition, illustrated again for n = 6:

⎡
⎢⎢⎢⎢⎢⎢⎣

a b c d e f
f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a

⎤
⎥⎥⎥⎥⎥⎥⎦

is a 132-avoiding, 213-avoiding, and 321-avoiding decomposition.

Lemma 2.2 Let n be a positive integer. There is a unique decomposition Jn =
P1 + P2 + · · · + Pn of the n × n matrix Jn of all 1’s into 123-avoiding permutation
matrices, namely that given by the Hankel-cyclic n × n permutation matrices. The
Hankel-cyclic decomposition of Jn is also the unique decomposition of Jn into 312-
avoiding permutation matrices and into 231-avoiding permutation matrices.

Proof. Consider a decomposition Jn = P1+P2+ · · ·+Pn into n×n 123-avoiding
permutation matrices where Pk is the permutation matrix with a 1 in position (1, k)
for k = 1, 2, . . . , n. Designate by ak the positions of the 1’s of the permutation
matrix Pk. The submatrix of Jn obtained by deleting row and column 1, so equal
to Jn−1, has only one permutation which is 12-avoiding, namely its Hankel diagonal.
Thus these are the positions of P1 and thus P1 is the Hankel-cyclic permutation
matrix with a 1 in position (1, 1). Now let k > 1 and, proceeding by induction,
we suppose that P1, . . . , Pk−1 are the Hankel-cyclic permutation matrices with 1’s
in the first (k − 1) positions of row 1 and making up the decomposition of Jn into
123-avoiding permutation matrices. Consider the permutation matrix Pk in this
decomposition with a 1 in position (1, k). Suppose that Pk had a 1 in one of the
positions (2, k+1), . . . , (2, n−1). Then Pk has a 1 in the as yet unoccupied positions
in column n creating a 123-pattern. Thus since row 2 already contains 1’s from
P1, . . . , Pk−1 in its first (k − 1) positions, Pk contains a 1 in position (2, k − 1). In a
similar way we see that Pk contains 1’s in all the positions (k, 1), (k−1, 2), . . . , (1, k).
Now it follows that Pk must contain 1’s in all the positions of the Hankel diagonal
of the (n − k) × (n − k) submatrix determined by rows and columns k + 1, . . . , n.
Hence Pk is the Hankel-cyclic submatrix with a 1 in position (1, k). The first part
of the theorem now follows by induction. Similar arguments work for 312-avoiding
and 231-avoiding permutations.. �

Remark 2.3 A permutation σ = i1i2 · · · in is 123-avoiding provided it can be par-
titioned into two decreasing subsequences [2]. An algorithm to check this and get
such a partition when it exists is:
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(a) Start with i1 and iteratively choose the next element that is greater than the
previously chosen one. This gives the sequence of left-to-right minima starting
with i1, and thus the longest decreasing subsequence beginning with i1. Remove
the sequence of left-to-right minima leaving a subsequence consisting of the
elements not chosen.

or, alternatively,

(a′) Start with in = n and iteratively choose the previous element that is smaller
than the previously chosen one. Remove the sequence of right-to-left minima
starting with ik = n leaving a subsequence consisting of the elements not
chosen.

In each case, every integer in {1, 2, . . . , n} is in one of the subsequences. Then
σ is 123-avoiding if and only if the second subsequence of non-chosen elements is
decreasing. Note that these two procedures may give different subsequences if i1 �= n;
for example, with n = 9,

543987621 → 54321 and 98762, or 543987621 → 987621 and 543.

That this algorithm decomposes a permutation into two decreasing subsequences
when the permutation is 123-avoiding is easily checked: Starting with i1, suppose
the elements chosen are

a1, . . . , a2, . . . , a3 . . . , a4, . . . , a5, . . .

where a1 > a2 > a3 > a4 > a5 > · · · . Then, by choice, any x between a1 and a2
must satisfy a1 < x, and the subsequence of elements between a1 and a2 must be
decreasing, for otherwise we would get a 123-pattern. Similarly for a2 and a3, and a3
and a4, and so on. The complement of a, b, c, d, . . . must also be decreasing, because
otherwise again we get a 123-pattern.

For example, given the permutation (9, 7, 8, 5, 6, 4, 2, 3, 1) and using (a), we get,
displaying both the permutation and permutation matrix:

978564231 → 975421 and 863 :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1
1

1
1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�

Similar to Lemma 2.2, we have the following lemma.
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Lemma 2.4 Let n be a positive integer. There is a unique decomposition Jn =
P1 + P2 + · · · + Pn of the n × n matrix Jn of all 1’s into 321-avoiding permutation
matrices, namely that given by the standard circulant decomposition. The standard
circulant decomposition of Jn is also the unique decomposition of Jn into 213-avoiding
permutation matrices, and 132-avoiding permutation matrices.

Corollary 2.5 Let σ3 = (t1, t2, t3) be a permutation of {1, 2, 3}. A minimal t1t2t3-
avoiding blocker of n× n permutation matrices has cardinality at least n.

Proof. This follows from the very useful fact that in each case at least one position
from each of the permutation matrices in the Hankel-cyclic or standard circulant
decompositions of Jn given in Lemmas 2.2 and 2.4 must be included in the specified
blockers. �

Example 2.6 By Corollary 2.5 a 123-avoiding blocker of n×n permutation matrices
has cardinality at least n. Besides the rows and columns, there are many such
blockers of size n as the following (easy to verify) examples for n = 6 show:

⎡
⎢⎢⎢⎢⎢⎢⎣

y y y y

y

y

⎤
⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎣

y y y
y

y

y

⎤
⎥⎥⎥⎥⎥⎥⎦
.

�

Let k and l be integers with 2 ≤ k ≤ l < n, and let σk be a permutation
of {1, 2, . . . , k} and σl a permutation of {1, 2, . . . , l}. Recall that σl contains σk,
written σk 	∗ σl, provided σk is in the same relative order as a subsequence of σl.
By Lemma 1.1, Pn(σk) ⊆ Pn(σl).

Let Bn(σl) be the set of n× n σl-avoiding blockers. If σk 	∗ σl, then we have the
following important lemma which asserts that any n × n σl-avoiding blocker is also
a σk-avoiding blocker.

Lemma 2.7 If σk 	∗ σl, then Bn(σl) ⊆ Bn(σk). �

Corollary 2.8 For every permutation σk of {1, 2, . . . , k}, the maximum cardinality
of a minimal σk-avoiding blocker in Bn(σk) is at most

(
n
2

)
.

Proof. This is an immediate consequence of Lemma 2.7 and Theorem 2.1. �
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Example 2.9 Let σn−1 = (1, 2, . . . , n − 1). A σn−1-avoiding permutation of {1, 2,
. . . , n} is one that does not have an increasing subsequence of length n−1; an example
with n = 6 is the permutation (1, 2, 3, 6, 5, 4). Since (1, 2, . . . , (n−1)) 	∗ (1, 2, · · · , n),
by Lemma 2.7 a 12 · · ·n-avoiding blocker is also a 12 · · · (n−1)-avoiding blocker. But
e.g. with n = 5, we have the following 1234-avoiding blocker

⎡
⎢⎢⎢⎢⎣

y y y
y y y

y y
y

⎤
⎥⎥⎥⎥⎦ .

The positions of the y’s form a 1234-avoiding blocker, since within the complementary
positions there are only two permutation matrices and both contain a 1234-pattern.
This is not a 12345-avoiding blocker since it does not block the 12345-avoiding per-
mutation (2, 1, 3, 4, 5). This all generalizes easily for arbitrary n and 12 · · · (n − 1)-
avoiding permutation matrices giving a 12 · · · (n− 1)-avoiding blocker of cardinality

(1 + 2 + · · ·+ (n− 2)) + (n− 2) =
(n− 2)(n+ 1)

2
.

�

The following theorem is important for the main result in the next section.

Theorem 2.10 Let n ≥ 3. If a 123-avoiding blocker of n × n permutation matri-
ces contains the minimum number n of positions, then it must contain one of the
positions (1, n) and (n, 1). If the blocker contains position (1, n) (respectively, posi-
tion (n, 1)), then it also contains either the position (1, n− 1) or the position (2, n)
(respectively, the position (n, 2) or the position (n− 1, 1)).

Proof. Consider a 123-avoiding blocker with n positions and suppose it contains
neither (1, n) nor (n, 1). Since the 123-avoiding blocker has size n, it must contain a
unique position (k, n + 1 − k) on the Hankel diagonal with k �= 1, n. To formulate
our proof, for ease of presentation and understanding, we refer to n = 10 but the
general argument proceeds in the same way.

Label the positions of each Hankel-cyclic permutation matrix with a different
symbol as in (1) for n = 10. A 123-avoiding blocker with n positions must use ex-
actly one position on each Hankel-cyclic permutation matrix. Consider that position
(k, n + 1 − k) on the Hankel diagonal in the blocker and color it red. Then the
123-avoiding blocker must contain (i) one of the two positions (k, n + 2− k) imme-
diately to its right and (k − 1, n + 1 − k) immediately above (positions with labels
i and a and both colored green in (1)), and similarly (ii) one of the two positions
(k + 1, n + 1 − k) immediately below and (k, n − k) immediately to the left (also
labeled i and a and both colored yellow). Otherwise, there are (n− 2) positions on



R.A. BRUALDI AND L. CAO/AUSTRALAS. J. COMBIN. 83 (2) (2022), 274–303 288

the Hankel diagonal that then give a 123-avoiding permutation matrix; in case (ii),
it would be the permutation matrix given by the positions colored yellow in (1).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Since the 123-avoiding blocker contains only n positions, each symbol can occur in
it only once. This implies that the 123-avoiding blocker must have three consecutive
positions centered at the red j; the positions i, j, a either vertically or horizontally.
Without loss of generality, we assume they are the vertical positions, now all colored
red in (2), since the arguments are similar in both instances.

Now consider the 3× 3 submatrix C with the red j in its lower left corner in (2):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

If this submatrix C contained a 3 × 3 123-avoiding permutation matrix then, with
the yellow j’s there would be a 123-avoiding permutation matrix in (2). The only
3×3 123-avoiding permutation matrix in C not already blocked is the one with color
yellow in (3). To block it, we either block one of the two a in yellow or the h in
yellow. Since our blocker already has a position labeled a (colored red in (3)), our
blocker must contain the yellow h in C. We now have four consecutive positions in
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our blocker in column k, those labeled h, i, j, a in (3) below starting with the yellow h.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Repeating the above argument on the 3× 3 matrix with the red j in the upper right
corner, we get that the position labeled b in the column k of the h, i, j, a in (3) and
colored yellow is also in our blocker so that now the five consecutive positions labeled
h, i, j, a, b in column k are known to be in our blocker. Now proceeding recursively,
choosing three consecutive positions in column k of which two are known to be in
the blocker, we conclude that all the positions in column k are in the blocker. Thus
in an n× n matrix, if a minimal 123-avoiding blocker of n× n permutation matrices
contains exactly n positions, then it either blocks all n × n permutation matrices
(that is, a row or a column) or it contains the (1, n) or (n, 1) positions.

Suppose it is the (1, n) position that is in our 123-avoiding blocker. Then the
blocker must contain either the position (1, n − 1) or (2, n). Otherwise with these
two positions and the (n− 2) positions of the Hankel diagonal in their complement,
we have a 123-avoiding n × n permutation matrix not containing any entry of this
blocker. A similar argument holds if the position (n, 1) is in our blocker, �

3 A Universal Theorem for k ≥ 4

In contrast to k = 3 where there are blockers of size n not equal to the set of positions
in a row or in a column, we use Theorem 2.10 to prove that for 4 ≤ k ≤ n and any
permutation σk of {1, 2, . . . , k}, the only σk-avoiding blockers of minimum cardinality
n are those given by rows and columns and, as a result, not only do they block all
σk-avoiding permutations, they actually block all permutations of {1, 2, . . . , n}.

Theorem 3.1 Let σk be a permutation of {1, 2, . . . , k} with 4 ≤ k ≤ n, then any
σk-avoiding blocker of size n is either a row or a column.

The rest of this section is taken up with the proof of this theorem.

By Lemma 2.7, it suffices to prove Theorem 3.1 for k = 4, since any such σk

contains at least one pattern of length 4. There are 24 permutations of {1, 2, 3, 4}
and using row reversal, column reversal, and rotation of a (0, 1)-matrix (which sends
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a blocker into a blocker of its image) we partition them into seven classes that
are equivalent for our arguments. As a result we need to show that Theorem 3.1
holds for just one permutation of each class of (I)-(VII) listed below. We bold the
representative of each class that we use.

(I) 1324, 4231

(II) 1234, 4321

(III) 4123, 3214, 2341, 1432

(IV) 1243, 4312, 2143, 3421

(V) 1423, 4213, 4132, 3241, 2431, 1342, 3124, 2314.

(VI) 2413, 3142

(VII) 3412, 2143

To give one instance of how these classes arise, if we have an n × n (0, 1)-matrix
that contains a 1 in the four positions (i1, k1), (i2, k2), (i3, k3), (i4, k4) and 1 ≤ i1 <
i2 < i3 < i4 ≤ n where (k1, k2, k3, k4) has the pattern (4, 2, 3, 1), then by taking the
columns in the reverse order we get 1’s in the positions (i1, k4), (i2, k3), (i3, k2), (i4, k1)
where (k4, k3, k2.k1) has the pattern (1, 3, 2, 4). Notice that each of classes (I), (II),
(III), (IV), and (V) contain the pattern 123, indeed each pattern within these classes
contains either the pattern 123 or 321. Classes (VI) and (VII) contain neither the
pattern 123 nor the pattern 321.

We first prove Lemmas 3.2 and Lemma 3.3 which imply that Theorem 3.1 holds
for the classes which contain a permutation with a 123 pattern, that is, for the classes
(I), (II), (III), (IV), and (V).

Lemma 3.2 Let σk be a permutation of {1, 2, . . . , k} with 4 ≤ k ≤ n that contains
one of the patterns 1234, 4123, 1243, and 1423. Then any σk-avoiding blocker of size
n is either a row or a column.

Proof. It suffices to prove that the lemma is true for k = 4, that is, for σ4 equal
to one of 1234, 4123, 1243, and 1423 where each of these patterns contains a 123
subpattern. By Theorem 2.10 a 123-avoiding blocker, and thus a σ4-avoiding blocker
of size n, must contain the (1, n) position or the (n, n) position. Using symmetry,
we suppose that the (1, n) position is in the blocker and then again by Theorem
2.10, at least one of (1, n − 1) and (2, n) is also in the blocker. Using symmetry
again, we suppose that (1, n− 1) is also in the blocker. The positions (1, n− 1) and
(1, n) have labels i and j, respectively, and are colored red in (4) below. As is our
general procedure, we use the n = 10 case to aid in describing and understanding
our arguments. The letters in the 10× 10 examples correspond to the Hankel-cyclic
permutation matrices again.
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If the blocker contains all the positions in row 1, we are done. If the element in
position a in row 1 is not in the blocker, then the positions with color green in (4)
give a σ4-avoiding permutation matrix given by (1, n−1, n−2, . . . , 2, n) not meeting
the blocker, a contradiction.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Thus we may assume that position (1, 1) with label a is in our blocker. We now
locate the first element from the left in row 1 which is not in the blocker, say in
position k of row 1. In the illustration (5), it is the green e. So in this case, each
of the red a, b, c, d and i, j is in the minimum blocker. Moreover, no more positions
with labels a, b, c, d, i, j can be in the minimum blocker.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

We now construct a σ4-avoiding permutation matrix that does not meet the minimum
blocker. We do this by identifying the position in row 1 immediately before its first
non-blocker position (the position labeled d in this case of n = 10). We then take
the position in the first row with label e and all the positions of the Hankel-cyclic
permutation matrix with labels d except the position in the first and last row, where
we take the position immediately preceding it (so in the same column of the first
position of row 1 in the blocker):
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The result is a σ4-avoiding permutation matrix given by (k, k − 2, . . . , 1, n, n −
1, . . . , k + 1, k − 1). This contradiction show that our minimum blocker consists
of the n positions of row 1. �

Lemma 3.3 Let σk be a permutation of {1, 2, . . . , k} with 4 ≤ k ≤ n that contains
the pattern 1324. Then any σk-avoiding blocker of size n is either a row or a column.

Proof. Since the pattern 1324 contains 123 as a subpattern, then as in the proof of
Lemma 3.2 we may assume that the blocker contains the two positions (1, n−1) and
(1, n). If the blocker contains all the positions in row 1 we are done. Otherwise, we
locate the rightmost position in row 1 which is not in the blocker. We use the n = 10
case again to help clarify our proof. Referring to (6), we suppose f is this rightmost
position so that the positions containing g, h, i, j in row 1 are in the blocker.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

We construct a 1324-avoiding permutation matrix by first proceeding down the south-
east diagonal starting from this rightmost position labeled f in (6) stopping just
before we arrive at a position whose label is not among the labels of the positions
in row 1 known to be in the blocker (b in this case). In general, we obtain positions
with every other label in row 1 to the right of its non-blocker position as illustrated
in (7) also for the case when the first non-blocker position in row 1 has label c.
Using the letter of the position in row 1 above the last position on this southeast
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diagonal, we complete our permutation matrix using the positions with this letter in
the remaining rows (h and f in the two cases illustrated).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

If the right most position in the first row which is not in the blocker is the first
position with label a, then our construction is illustrated in (8).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

�

Corollary 3.4 Theorem 3.1 holds for the classes (I), (II), (III), (IV ), and (V ).

None of permutations in classes (VI) and (VII) contains a 123-pattern. In the
next two lemmas we prove that Theorem 3.1 holds for these two classes as well.

Lemma 3.5 If a 3412-avoiding blocker or a 2413-avoiding blocker of cardinality n
of n× n permutation matrices contains both the (1, 1) and (1, n) positions, then the
blocker is the first row.

Proof. Suppose there is a blocker containing both positions (1, 1) and (1, n), and
it is not the first row. First, we locate the left most entry in the first row not in the
blocker. In the 10 × 10 example shown, we suppose that d is this entry, implying
that a, b and c in the first row are in the blocker and hence all other a’s, b’s, and c’s
are not in the blocker. Then we can construct a permutation matrix which avoids
both 3412 and 2413 as in the following example:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. �

Corollary 3.6 If a 3412-avoiding blocker or a 2413-avoiding blocker of cardinality n
is not a row or a column, then it does not contain any pair of the following positions:

1. (1, 1) and (1, n)

2. (1, 1) and (n, 1)

3. (1, n) and (n, n)

4. (n, 1) and (n, n)

Proof. Since both 3412-avoiding and 2413-avoiding are preserved by reflecting
through the diagonal and Hankel diagonal and rotating 180◦, Lemma 3.5 implies
the corollary. �

Lemma 3.7 Let 4 ≤ k ≤ n and σk be a permutation with length k containing either
the pattern 2413 or the pattern 3412. Then any σk-avoiding blocker of cardinality n
of n× n permutation matrices is the set of n positions in a row or column.

Proof. It is sufficent to prove that the statement is true for k = 4. Since the proofs
for the two patterns are very similar, we treat them simultaneously. We use induction
on n.

For n = 4, suppose that there is a 2413-avoiding blocker (respectively, 3412-
avoiding blocker) of size 4 which is not a row or column. It then follows from
the Frobenius-König theorem that there exists some permutation matrix that does
not use any position in the blocker. If this permutation is not (2, 4, 1, 3)-avoiding
(respectively, (3, 4, 1, 2)-avoiding), then it must be the permutation matrix corre-
sponding to the permutation (2, 4, 1, 3) (respectively, (3, 4, 1, 2)), a contradiction.
So we assume it is (2, 4, 1, 3) (respectively, (3, 4, 1, 2)) and none of the positions
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(1, 2), (2, 4), (3, 1), (4, 3) (respectively, (1, 3), (2, 4), (3, 1), (4, 2)) is in the blocker, that
is, the positions of the 0’s in the respective matrices:

⎡
⎢⎢⎣

c 0 b a
e a d 0
0 c f e
f b 0 d

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

c f 0 a
d e a 0
0 b c d
b 0 f e

⎤
⎥⎥⎦ .

For each of a, b, c, d, e, f at least one of the two occurrences must be in the blocker,
for otherwise we get a 2413-avoiding (respectively, (3, 4, 1, 2)-avoiding) permutation
matrix using the two positions with the same letter. Thus a 2413-avoiding blocker
(respectively, (3, 4, 1, 2)-avoiding blocker) contains at least 6 positions, a contradic-
tion.

From now on we use the word ‘blocker’ in referring to either a 2413-avoiding
blocker or 3412-avoiding blocker. So suppose that the lemma is true for all n ≤ m.
Thus for any n ≤ m, the only blockers of size n are either a row or a column.

We need to prove the statement is true for n = m + 1. Note that none of the
corner positions (1, 1), (1, n), (n, 1) and (n, n) can be used to create a 2413 or 3412
pattern in a permutation. So if there is a position in the blocker in row 1, row n,
column 1, or column n other than these four positions (that is, in one of the positions
in yellow letters in (9)), we may put a 1 in one of these four corner positions as part
of a permutation matrix and obtain an m×m submatrix by removing the row and
the column containing that corner position. According to Corollary 3.6, at least one
of the two corner positions in row 1, row n, column 1 and column n is not in the
blocker and hence we can always find a position for a 1 in a possible permutation
matrix that avoids our patterns.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

Case 1: There is an element in our blocker B in one of the yellow positions, say,
a position in the last column.

For example, if the red d in (10) is in the blocker B, then we consider the corner
positions in the column of d, that is, the positions occupied by j and i in the last
column. According to Corollary 3.6, at least one of these positions is not in the
blocker. Suppose e.g. the position with an i is not in the blocker. Then we remove
the last column and the last row to obtain an m×m matrix C in which by induction
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its corresponding blocker B′ has cardinality at most m.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h

j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

If there is a σ-avoiding permutation matrix Q contained in C not meeting B, then
with the 1 in position (n, n) we obtain a σ-avoiding permutation matrix. Otherwise,
by the inductive hypothesis, the set B′ of positions of the blocker B contained in C
form either a row or column of C. Since the cardinality of B is n = m + 1, such
a row or column of C cannot also contain the letter d. Thus B′ is either the (i)
row of C corresponding to the position of d in the column n or (ii) the column of C
corresponding to the position of d in row n. If (i) then our blocker B is a row. Now
suppose that (ii) holds, that is, B is given by the positions in red in (11).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h

j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Now consider them×m matrix C ′ obtained by deleting the first row and last column.
Since C ′ contains only n − 2 positions of B, the inductive assumption implies that
C ′ contains a σ-avoiding permutation matrix which remains σ-avoiding by including
the 1 in the position j in the upper right corner, a contradiction.

Case 2: No position in our blocker is in one of the non-corner positions in rows 1
and n, and columns 1 and n, that is, the yellow positions in (9).

We then choose the most northwest (NW) Hankel diagonal containing a position
of the blocker (so by the assumptions in this case, it is not the first or second Hankel
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diagonal), and choose that position.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Suppose, as shown in (12), the red f is the chosen position in the blocker (note
again that our assumptions in this case imply that it is not a position occupied by
an a or b); thus all other positions containing an f are not in the blocker and all
positions other than the (1, 1) position NW of this red f are possible. To construct
the 2413-avoiding (resp. 3412-avoiding) matrix, we first take the longest Hankel
diagonal in the left top corner above the position occupied by f as in (13), thus
the Hankel diagonal (of a t × t principal submatrix) above this NW position (the
positions occupied by e’s in (12).

Consider the complementary principal (n − t) × (n − t) submatrix in the right
bottom corner (n − t = 5 in the illustration (13)). If there is a (n − t) × (n −
t) 2413-avoiding (respectively, 3412-avoiding) permutation matrix contained in this
submatrix, then with the green e′s, we have an n × n 2413-avoiding (respectively,
3412-avoiding) permutation matrix (see (13)).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d

f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

So suppose now that there does not exist a 2413-avoiding (respectively, 3412-avoid-
ing) permutation matrix contained in this (n− t)× (n− t) submatrix on the bottom
right. Then by induction there are at least (n − t) positions of our blocker in this
submatrix. In this case, take the Hankel diagonal of the (n − t − 1) × (n − t − 1
principal submatrix in the lower right (all the positions of the f ′s in (14) and consider
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the (t + 1)× (t + 1) complementary submatrix D on the upper left in (14).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e

g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

If we are able to construct a (t + 1) × (t + 1) 2413-avoiding (respectively, 3412-
avoiding) permutation matrix in D, then with the Hankel diagonal in the lower
(n− t− 1)× (n− t− 1) principal submatrix (the positions of the green f ′s in (13)),
we have a 2413-avoiding (respectively, 3412-avoiding) permutation matrix of size n.
Note that since the (n− t−1)×(n− t−1) submatrix on the bottom right contains at
least (n− t−1) positions of our blocker, the (t+1)× (t+1) submatrix D contains at
most (t+1) positions of our blocker. To block all 2413-avoiding permutation matrix
in this (n − t + 1)× (n− t + 1) submatrix, these (n− t + 1) positions must form a
row or column by induction. But that is a contradiction since there are no positions
in our blocker in the positions of the yellow cells.

The proof of Theorem 3.1 is now complete. �

4 Coda

In this section we discuss a number of additional properties of blockers of 123-avoiding
permutation matrices and possible directions for further development. Recall that
the sequence (Cn : n ≥ 1) of Catalan numbers [7] is:

Cn =

(
2n
n

)
n+ 1

, (n ≥ 0) : 1, 1, 2, 5, 14, 21, 42, 132, . . . .

The Catalan numbers satisfy the recursion

Cn+1 =
n∑

i=0

CiCn−i where C0 = 1.

Let Hn = [hij ] be the n× n matrix where hij equals the number of 123-avoiding
n × n permutation matrices with a 1 in position (i, j), 1 ≤ i, j ≤ n. Thus the row
and column sums of Hn equal the total number of 123-avoiding n × n permutation
matrices, that is, the Catalan number Cn. The matrix Hn is symmetric, Hankel-
symmetric, and centro-symmetric. Its rows and columns are blockers of the 123-
avoiding n × n permutation matrices. (If there other blockers whose corresponding
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entries in Hn add to Cn for all n, then the positions of these entries have the property
that every 123-avoiding n × n permutation matrix has a 1 in exactly one of these
positions.)

Example 4.1 In the case n = 4, we have C4 = 14 and

H4 =

⎡
⎢⎢⎣

1 3 5 5
3 4 2 5
5 2 4 3
5 5 3 1

⎤
⎥⎥⎦ .

The entries in each row and column sum to C4 = 14 but so do the entries on the
Hankel diagonal also sum to C4 = 14 (note that in this case these entries are also
Catalan numbers). �

Theorem 4.2 Let Hn be the n × n matrix whose (i, j)-entry equals the number of
123-avoiding n × n permutation matrices with a 1 in position (i, j), 1 ≤ i, j ≤ n.
Then the sum of the entries of Hn on its Hankel diagonal equals the Catalan number
Cn.

Proof. Consider a position (i, n+1−i) on the Hankel diagonal of Hn and let P = [pij]
be a 123-avoiding n × n permutation matrix with pi,n+1−i = 1. Then not both the
(i−1)×(j−1) and (n− i)×(n−j) submatrices of P above, left and below, right can
contain a 1, and then this implies both must be zero matrices. Hence the number
of 123-avoiding n× n permutation matrices with a 1 in position (i, n+ 1− i) equals
Ci−1Cn−i. The recurrence relation for the Catalan numbers now completes the proof.

�

A characterization of minimal 123-avoiding blockers would be of interest as would
the maximum number of 0’s in a minimal blocker of 123-avoiding n×n permutation
matrices. Some examples of blockers of 123-avoiding permutation matrices are below,
and these illustrate the many possibilities:

• n = 6
⎡
⎢⎢⎢⎢⎢⎢⎣

y y y y
y
y

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

y y y y
y y
y y

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

y y
y

y y y y y
y y

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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• n = 7 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y y
y

y y y y
y y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• n = 8 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y y y
y

y y y y y y
y y y
y y y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For k = 3 and σ3 = (1, 2, 3), we now obtain a lower bound on the maximum size
of a σ3-avoiding blocker.

Theorem 4.3 Let n ≥ 3 and let σ3 = (1, 2, 3). Then there is a minimal σ3-avoiding
blocker Bn of n× n permutation matrices. of size

⌊
n+ 1

2

⌋⌈
n+ 1

2

⌉
.

This blocker Bn is a blocker of the entire set Pn of n× n permutation matrices.

Proof. As before there are only two possibilities to consider, namely, σ3 =
123 or 132. We again illustrate the argument with n = 10 which easily general-
izes for arbitrary n. We make use of the Hankel-cyclic decomposition of J10. Let Bn

be the set of positions in the lower right
⌊
n+1
2

⌋ × ⌈
n+1
2

⌉
submatrix designated with

yellow below. By the Frobenius-Kőnig theorem, this set Bn of positions blocks all
of Pn: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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This set of positions is a minimal blocker of the 123-avoiding permutation matrices.
This follows from the fact that given any position in Bn there is a 123-avoiding
permutation matrix containing that position and no other position in Bn which
otherwise contains only positions on the Hankel diagonal (labeled with j’s) and the
diagonal of length (n− 1) above it (labeled with i’s):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g h i j
b c d e f g h i j a
c d e f g h i j a b
d e f g h i j a b c
e f g h i j a b c d
f g h i j a b c d e
g h i j a b c d e f
h i j a b c d e f g
i j a b c d e f g h
j a b c d e f g h i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�

Conjecture 4.4 Let σ3 be a permutation of {1, 2, 3}. The maximum cardinality of
a minimal σ3-avoiding blocker of n× n permutation matrices is

⌊
n+ 1

2

⌋⌈
n+ 1

2

⌉
.

�

Let A be an n× n (0, 1)-matrix and σk a permutation of {1, 2, . . . , k}. If A does
not contain a σk-avoiding permutation matrix, then its 0’s determine a blocker of
σk-avoiding n× n permutation matrices. This blocker contains at least one minimal
blocker. Conversely, if A contains a σk-avoiding permutation matrix. Then its 0’s
do not contain a blocker. Thus: A does not contain a σk-avoiding permutation
matrix if and only if its zeros are in positions containing a minimal blocker. So
the analogue of the Frobenius-König theorem for σk-avoiding permutation matrices
rests on determining all minimal blockers of σk-avoiding permutation matrices. In
the proof of Theorem 4.3 we have exhibited only one such minimal blocker but
conjectured to be of maximum size.

As a referee suggested, one can also consider blockers that simultaneously avoid
several patterns (see e.g. [1]), mesh patterns (see e.g. [3]), and more general patterns
(see e.g. [4]). This referee also raised the following very interesting question:

Question 4.5 Let B be an n× n (0, 1)-matrix. Determine the maximal subset Qn

of the set Pn of n × n permutation matrices such that B blocks all permutation
matrices in Qn.
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The matrix in Example 2.6⎡
⎢⎢⎢⎢⎢⎢⎣

y y y y

y

y

⎤
⎥⎥⎥⎥⎥⎥⎦

is a 123-avoiding blocker of 6×6 permutation matrices but it also blocks permutation
matrices corresponding to permutations (i1, i2, . . . , i6) where i1 ∈ {3, 4, 5, 6}, i3 =
5 or i5 = 4. �

We conclude with a discussion concerning patterns in derangements matrices
Jn − In.

Example 4.6 Consider the derangement matrix Jn − In, e.g. with n = 5,

J5 − I5 =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦ .

Then every pattern of length n− 1 occurs in some permutation matrix P ≤ Jn − In
as argued below. Notice that by definition we get all patterns i1i2 · · · in of length n
other than those having at least one ij = j for some j.

Step 1. For a given pattern 1, 4, 3, 7, 6, 2, 5 of size n − 1 = 7, construct the
corresponding permutation matrix.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1
1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 2. Shifting the lower triangular part (excluding the diagonal, green in this
example) down by 1 unit. The shifting does not change the pattern.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 1

0 1
0 1

0 1
0

1 0
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Step 3. Add a column from the left and put a 1 in the row which does not have
a 1. Note that the first row must have a 1 since it contains the first row of the n− 1
by n− 1 permutation completely.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

0 1
0 1

0 1
1 0

1 0
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This works in general: Jn − In contains a permutation with any pattern of length
n− 1. �
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