
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 83(3) (2022), Pages 337–347

Jump sizes for polygonal balancing numbers

Jeremiah Bartz Bruce Dearden Joel Iiams

University of North Dakota, Department of Mathematics
Grand Forks, ND 58202-8376

U.S.A.
jeremiah.bartz@und.edu bruce.dearden@und.edu joel.iiams@und.edu

Abstract

Polygonal balancing numbers are generalizations of the ordinary triangu-
lar balancing numbers introduced by Behera and Panda [Fib. Quart. 37
(1999), 98–105]. An ordinary balancing number corresponds in a natural
way to a solution in positive integers to the Pell Equation x2 − 2y2 = 1
and vice versa. Given a fundamental solution of the Pell Equation in
positive integers, one can produce all other solutions by multiplication
by a unit in Z[

√
2]. A corresponding transformation on the sequence of

ordinary balancing numbers produces all terms in the sequence.
For s-agonal balancing numbers, the companion equation is Pell-like.

All solutions of the companion equation can be generated by multiplying
by units of Z[

√
2], but it is no longer true that every solution in positive

integers to the companion equation corresponds to an s-agonal balancing
number. The general s-agonal balancing number must satisfy additional
congruence conditions. The corresponding transformation on s-agonal
balancing numbers must be applied a certain number j(t) times, where
t = s − 2. This integer j(t) is the jump size. For an odd prime p we
prove that if p ≡ ±1 modulo 8, then j(p) divides (p−1)/2, and if p ≡ ±3
modulo 8, then j(p) divides p+ 1.

1 Introduction

Behera and Panda [4] defined a balancing number as an integer B such that

1 + 2 + · · ·+ (B − 1) = (B + 1) + (B + 2) + · · ·+M,

for someM , which we call a counterbalancing number. For example, since 1+· · ·+5 =
7+8, we see that (B,M) = (6, 8) is a balancing, counterbalancing number pair. This
is equivalent to the Diophantine equation involving triangular numbers given by

(B − 1)B

2
+

B(B + 1)

2
=

M(M + 1)

2
, or B2 =

M(M + 1)

2
. (1)
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Solving equation (1) for the positive counterbalancing number M , we have that

M =
−1 +

√
8B2 + 1

2
. (2)

Thus, 8B2+1 must be an odd, perfect square for B to be a balancing number. Panda
and Behera [4] also found that a particular function and its inverse,

f(x) = 3x+
√
8x2 + 1 and f−1(x) = 3x−

√
8x2 + 1,

provide the next and previous balancing numbers from a given one:

Bk+1 = f(Bk) = 3Bk +
√
8B2

k + 1 and Bk−1 = f−1(Bk) = 3Bk −
√

8B2
k + 1. (3)

From equations (3), they deduced the fundamental recurrence relation

Bk+1 = 6Bk − Bk−1, for k ≥ 2 with B0 = 0 and B1 = 1.

Panda [10] introduced the Lucas-balancing numbers, defined by

Ck =
√

8B2
k + 1, with C0 = 1 and C1 = 3, (4)

as an analog of the Lucas numbers relative to the Fibonacci numbers. From equation
(2), we see that Ck = 2Mk + 1. Thus, rather than basing an analysis of balancing
numbers on B and C we may use M rather than C if it is to our advantage.

Using definition (4) and that of the function f(x), we see that

Bk+1 = 3Bk + Ck. (5)

Although Liptai [8] does not explicitly refer to the Lucas-balancing numbers, he
showed that the balancing numbers and Lucas-balancing numbers satisfy the Pell
equation

C2 − 8B2 = 1. (6)

The equations, functions, and recursions from (1) to (6) provide the foundations
for subsequent studies of balancing numbers and Lucas-balancing numbers, and their
properties.

Balancing numbers have been generalized in numerous ways [1–3, 6–14]. Espe-
cially in [3] the problem was generalized from balancing the triangular equation to
balancing sequences for polygonal numbers of any number of sides s ≥ 3. The
ordinary balancing numbers correspond to the case s = 3.

The s-agonal balancing equation is

P (s, b− 1) + P (s, b) = P (s,m), (7)

where P (s, n), the s-sided polygonal number of order n, is given by the well-known
formula

P (s, n) =
n∑

i=1

(
(s− 2)i− (s− 3)

)
=

1

2
n
(
(s− 2)n− (s− 4)

)
. (8)
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Now we balance the sequence
(
(s−2)i− (s−3)

)
i≥1

at an index b to obtain the s-

agonal-balancing equation (7). For b satisfying the s-agonal-balancing equation (7),
we call b an s-agonal-balancing index with corresponding s-agonal-balancing number
given by B = (s− 2)b − (s − 3). Additionally, the s-agonal-counterbalancing index
m corresponds to the s-agonal-counterbalancing number M = (s− 2)m− (s− 3).

Substituting the expression for P (s, n) from formula (8) into the s-agonal-bal-
ancing equation (7), we obtain

b− 1

2

(
(s− 2)(b− 1)− (s− 4)

)
+

b

2

(
(s− 2)b− (s− 4)

)
=

m

2

(
(s− 2)m− (s− 4)

)
.

Making the substitutions b = (B + (s− 3))/(s− 2) and b− 1 = (B − 1)/(s− 2) and
simplifying, we have

1

(s− 2)

(
2B2 + 2(s− 3)

)
= (s− 2)m2 − (s− 4)m.

Solving this quadratic equation for m, and selecting the positive root to ensure that
m is positive, we obtain an explicit relationship between m and B given by

m =
(s− 4) +

√
8B2 + s2 − 8

2(s− 2)
. (9)

In order for m and B to be integers, equation (9) requires the following three
conditions for B to be an s-agonal-balancing number:

8B2 + s2 − 8 is a perfect square,

(s− 4) +
√
8B2 + s2 − 8 is divisible by 2(s− 2), and (10)

B must be of the form (s− 2)b− (s− 3).

Since C =
√
8B2 + s2 − 8, condition (10) may be expressed in the form

(s− 4) + C is divisible by 2(s− 2).

For a given s-agonal-balancing number B and s-agonal-counterbalancing index
m, we call C the corresponding Lucas-s-agonal-balancing number. Additionally, we
see that there is a direct relationship between the s-agonal-counterbalancing number
M = (s − 2)m − (s − 3), its s-agonal-counterbalancing index m and the Lucas-s-
agonal-balancing number C given by

m =
(s− 4) + C

2(s− 2)
=

M + (s− 3)

(s− 2)
. (11)

Specifically, we have

C = 2(s− 2)m− (s− 4) and C = 2M + (s− 2).

We define extended s-agonal-balancing, Lucas-s-agonal-balancing and s-agonal-
counterbalancing numbers by the three conditions.
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Definition 1.1. For any s ≥ 3, we say a triple (B,C,M) of integers, with C > 0
and M > 0 is an extended s-agonal-balancing triple if it satisfies the three conditions

C2 − 8B2 = s2 − 8,

C ≡ −(s− 4) ≡ s (mod 2(s− 2)), (12)

B ≡ −(s− 3) ≡ 1 (mod (s− 2)). (13)

We note that, as a consequence of equation (11), equation (12) may be rewritten in
terms of M as

M ≡ 1 (mod (s− 2)).

Both reflect the requirement that m be an integer. Importantly, this allows both
congruence conditions (12) and (13) to be expressed using the same modulus, s− 2.

Remark 1.2. Notice that when s = 3 these conditions are automatically satisfied.

For a specific s ≥ 3, we use B[s] to denote an s-agonal-balancing number, C [s] for
the corresponding Lucas-s-agonal-balancing number and M [s] will denote the corre-
sponding s-agonal-counterbalancing number. For completeness, we denote by b[s] and
m[s] the corresponding s-agonal-balancing index and the s-agonal-counterbalancing
index, respectively.

In the next section we develop matrix versions of the transformations between
solutions of the s-agonal companion equation and the corresponding s-agonal num-
bers. In the third section we prove theorems on the jump sizes for prime powers. In
the last section we include some possibilities for further research.

2 Transformations between solutions

We proceed by solving the family y2 − 8x2 = s2 − 8 of s-agonal Pell equations. As
was shown in [3] the solutions of an individual s-agonal Pell equation directly involve
the (ordinary) balancing numbers and Lucas-balancing numbers.

For any s ≥ 3 the trivial solution to the s-agonal Pell equation is given by

x
[s]
0 = 1 and y

[s]
0 = s.

As with ordinary balancing numbers we may define functions that map a solution
of the general s-agonal companion equation to another solution.

f(x; s) = 3x+
√

8x2 + (s2 − 8) and g(y; s) = 3y +
√
8y2 − 8(s2 − 8).

The inverses of f and g have corresponding forms [3]:

f−1(x; s) = 3x−
√

8x2 + (s2 − 8) and g−1(y; s) = 3y −
√
8y2 − 8(s2 − 8).

The forms for the k-fold compositions f k and gk directly involve the (ordinary)
balancing numbers. By extending the recursions for the balancing numbers Bk and
the Lucas-balancing numbers Ck to negative values of k the k-fold compositions of
the inverses also have similar forms.
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Theorem 2.1. For k ∈ N, the k-fold compositions of f(x; s) and of g(y; s) are given
by

fk(x; s) = Ckx+Bk

√
8x2 + (s2 − 8) and gk(y; s) = Cky +Bk

√
8y2 − 8(s2 − 8).

Similarly, the k-fold compositions of f−1(x; s) and g−1(y; s) are

(
f−1

)k
(x; s) = Ckx− Bk

√
8x2 + (s2 − 8)

and
(
g−1

)k
(y; s) = Cky − Bk

√
8y2 − 8(s2 − 8).

The combined action of fk(x; s) and gk(y; s) may be represented by matrix mul-
tiplication.

Corollary 2.2. For any solution (x, y) of the s-agonal Pell equation, and for any
k ∈ Z, we have

fk(x; s) = Ckx+Bky

gk(y; s) = 8Bkx+ Cky,

where we have suppressed the apparent dependence of f k on y, and of gk on x. In
matrix form, we see that

[
fk(x; s)
gk(y; s)

]
=

[
Ck Bk

8Bk Ck

] [
x
y

]
=

[
3 1
8 3

]k [
x
y

]
.

Since the matrix form for [fk(x; s), gk(y; s)]T is exactly the same as for the or-
dinary balancing generator functions [f(x), g(y)]T , only the initial conditions distin-
guish solutions to the s-agonal Pell equations for different values of s.

Definition 2.3. We denote the generator transformation F defined by the pair of
functions f(x; s) and g(y; s) by

F

([
x
y

])
=

[
3 1
8 3

] [
x
y

]
= F

[
x
y

]
.

For s-agonal-balancing numbers, we are interested in solutions on the branch of
the hyperbola y2 − 8x2 = s2 − 8 with y > 0. However, because of the congruence
restrictions, not every solution of the s-agonal Pell equation gives rise to an s-agonal
balancing triple. There is however an integer j, the jump, which is a function of
t = s − 2, so that the j-fold composition of F applied to a solution of the s-agonal
Pell equation whose indices satisfy the congruence condition, gives another solution
of the s-agonal Pell equation whose indices satisfy the congruence conditions.

Example 2.4. For the convenience of the reader we provide some tables of jump
values for small powers of small primes. These are given in Tables 1 through 4.

Certainly the tables hint at patterns in the jump sizes for prime powers. However
not every sequence of jump sizes for prime powers conforms. In particular j(13) =
j(169) = 14 whereas one would expect j(169) = 14 ∗ 131. Also j(29) = 10 although
one would expect j(29) = 30.
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s 4 6 10 18 34 66 130 258 514 1026
k 1 2 3 4 5 6 7 8 9 10
t = 2k 2 4 8 16 32 64 128 256 512 2048
j(t) 1 2 4 8 16 32 64 128 256 512
j(t) 20 21 22 23 24 25 26 27 28 29

Table 1: Jump sizes for powers of 2

s 5 11 29 83 245 731 2189 6563 19685 59051
k 1 2 3 4 5 6 7 8 9 10
t = 3k 3 9 27 81 243 729 2187 6561 19683 59049
j(t) 4 12 36 108 324 972 2916 8748 26244 78732
j(t) 4 4 ∗ 31 4 ∗ 32 4 ∗ 33 4 ∗ 34 4 ∗ 35 4 ∗ 36 4 ∗ 37 4 ∗ 38 4 ∗ 39

Table 2: Jump sizes for powers of 3

s 7 27 127 627 3127 15627 78127 390627 1953127 9765627
k 1 2 3 4 5 6 7 8 9 10

t = 5k 5 25 125 625 3125 15625 78125 390625 1953125 9765625
j(t) 6 30 150 750 3750 18750 93750 468750 2343750 11718750
j(t) 6 6 ∗ 51 6 ∗ 52 6 ∗ 53 6 ∗ 54 6 ∗ 55 6 ∗ 56 6 ∗ 57 6 ∗ 58 6 ∗ 59

Table 3: Jump sizes for powers of 5

s 9 51 345 2403 16809 117651 823545 5764803 40353609 282475251
k 1 2 3 4 5 6 7 8 9 10

t = 7k 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249
j(t) 3 21 147 1029 7203 50421 352947 2470629 17294403 121060821
j(t) 3 3 ∗ 71 3 ∗ 72 3 ∗ 73 3 ∗ 74 3 ∗ 75 3 ∗ 76 3 ∗ 77 3 ∗ 78 3 ∗ 79

Table 4: Jump sizes for powers of 7
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3 Jump sizes for prime powers

Let (u, v) be a solution to the companion equation for s-agonal balancing numbers.
Let T : Z2 −→ Z

2 be the map sending (a, b) −→ (3a+b, 8a+3b). We seek to find the
jump size j which is the smallest positive integer so that T j(u, v) = (h, k) satisifies
u ≡ h (mod 2(s− 2)), and v ≡ k (mod s− 2). This value is a function of the prime
factorization of t, where t = s− 2. Signify this as j(t).

We will focus on the least integer l(t) for which T l(t)(u, v) = (h, k) satisifies the
congruences u ≡ h (mod 2(s − 2)), and v ≡ k (mod 2(s − 2)). As a price we can
only deduce that j(t)|l(t), since v ≡ k (mod 2(s− 2)) implies v ≡ k (mod s− 2).

What we gain is that we can reframe our problem to compute the order of the

matrix A =

[
3 1
8 3

]
which is an element of SL(2,Z2t) for any positive integer t =

(s− 2).

Next write the unique prime factorization of t

t = 2m

⎛
⎝ ∏

pi≡±1 (mod 8)

peii

⎞
⎠

⎛
⎝ ∏

qj≡±3 (mod 8)

q
fj
j

⎞
⎠ .

By the Chinese Remainder Theorem l(t) is the least common multiple of the numbers
l(pg) over all maximal prime power factors of 2t.

3.1 The case p = 2

Theorem 3.1. For all integers n ≥ 1, A2n ≡
[
1 2n

0 1

]
(mod 2n+1).

Proof. We proceed by induction. When n = 1 we have A2 =

[
17 6
48 17

]
≡

[
1 2
0 1

]

(mod 4).

Assume that A2n ≡
[
1 2n

0 1

]
(mod 2n+1) for some n ≥ 1, then

A2n+1
= (A2n)2 ≡

[
1 2n

0 1

] [
1 2n

0 1

]
(mod 2n+1).

Thus modulo 2n+2, we see that A2n+1
is equivalent to[

1 + a2n+1 2n + c2n+1

b2n+1 1 + d2n+1

] [
1 + a2n+1 2n + c2n+1

b2n+1 1 + d2n+1

]

for some integers a, b, c, d. After matrix multiplication this is

[
1 + 2n+2[a + 2n−1b+ 2n(a2 + bc)] 2n+1 + 2n+2[2n−1(a+ d) + 2n(ac+ cd)]

2n+2[b+ 2n(ab+ bd)] 1 + 2n+2[d+ 2n−1b+ 2n(bc+ d2)]

]
.

The result now follows when we apply 2n+2 as modulus.
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t = p j(t) (p− 1)/2 t = p j(p) (p− 1)/2 t = p j(t) (p− 1)/2
7 3 6 47 23 23 97 48 48
17 8 8 71 35 35 103 17 51
23 11 11 73 36 36 113 28 56
31 15 15 79 13 39 127 63 63
41 5 20 89 44 44 137 34 68

Table 5: Jump sizes for primes p ≡ ±1 (mod 8)

Corollary 3.2. For all non-negative integers l(2n) = 2n.

Proof. The preceeding theorem indicates that l(2n)|2n, and simultaneously that it
cannot be a proper divisor.

Corollary 3.3. For all non-negative integers n, j(2n)|2n.

Computationally the value of l(2n) is exactly twice the value of j(2n).

3.2 The case of a prime p ≡ ±1 (mod 8)

Theorem 3.4. Let p ≡ ±1 (mod 8) be a prime. Then l(p) divides (p− 1)/2.

Proof. When p is an integral prime congruent to ±1 modulo 8 the Legendre symbol(
2
p

)
= 1. Thus there is an integer r so that r2 ≡ 2 (mod p). In this instance

the matrix A is diagonalizable over the field Zp with eigenvalues α = 3 + 2r and
α−1 = 3−2r with corresponding eigenvectors the column vectors 〈1, 2r〉 and 〈1,−2r〉.

The diagonal matrix B = diag(α, α−1) has multiplicative order equal to Op(α)
which must be a divisor of |Z∗

p| = p − 1. Since A is similar to B we have that
l(p)|(p − 1). The small subtlety here is that A ≡ I2 (mod 2) so the value of l(p) is
determined by considering p as the only modulus.

Moreover, in Zp we have (1+ r)2 = 1+2r+ r2 ≡ 3+2r (mod p), so α is a square
mod p and l(p) divides Op(α) which must divide (p− 1)/2.

Corollary 3.5. For any integral prime p congruent to ±1 (mod 8), j(p)|(p− 1)/2.

This agrees with numerical evidence as in Table 4 for values of j(p) when p ≡ ±1
(mod 8).

3.3 The case of a prime q ≡ ±3 (mod 8)

Theorem 3.6. Let q ≡ ±3 (mod 8) be a prime. Then l(q) divides (q + 1).

Proof. When q is a prime congruent to ±3 modulo 8 the Legendre symbol
(

2
q

)
= −1.

Thus the polynomial x2−2 is irreducible modulo q. Thus we can build F ∼= GF (q2) ∼=
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t = q j(q) q + 1 t = q j(q) q + 1 t = q j(q) q + 1
3 4 4 29 10 30 61 62 62
5 6 6 37 38 38 67 68 68
11 12 12 43 44 44 83 84 84
13 14 14 53 54 54 101 102 102
19 20 20 59 20 60 107 108 108

Table 6: Jump sizes for primes q ≡ ±3 (mod 8)

Zq[x]/〈x2 − 2〉. Now there is an element r ∈ F so that r2 ≡ 2 (mod p). In this
instance the matrix A is diagonalizable over the field F with eigenvalues α = 3 + 2r
and α−1 = 3 − 2r with corresponding eigenvectors the column vectors 〈1, 2r〉 and
〈1,−2r〉.

The diagonal matrix B = diag(α, α−1) has order in SL(2, q2) equal to O(α) which
must be a divisor of |F∗| = (q2 − 1). Let φ be the Frobenius automorphism for F

where φ(z) = zp for all z ∈ F. We know that the fixed field of φ is the subfield of
order q and that φ permutes the roots of x2 − 2. Therefore

φ(α) = (3 + 2r)q = 3q + (2r)q = 3 + 2qrq = 3 + 2(−r).

Consequently αq+1 = αqα = (3 − 2r)(3 + 2r) = 1. This means that the order of α
divides q + 1.

Corollary 3.7. For any integral prime q congruent to ±3 (mod 8), j(q)|(q + 1).

This agrees with numerical evidence in Table 5.

3.4 The case when t is an odd prime power

Theorem 3.8. Let p ≡ ±1 (mod 8) be a prime and let t = pe for some positive
integer e. Then l(t) divides pe−1l(p).

Proof. If l(pe) = x, then Apx = (Ax)p ≡
[
1 + ape bpe

cpe 1 + dpe

]p
(mod pe+1). But then

Apx ≡
([

1 0
0 1

]
+ pe

[
a b
c d

])p

(mod pe+1).

Since the identity matrix is central the binomial theorem applies and the Fresh-
man’s Dream (when a and b commute (a + b)n = an + bn) gives l(pe+1)|px.

By induction we have that l(pe) divides pe−1l(p).

Corollary 3.9. For any odd integer prime p and positive integer e, j(pe)|pe−1l(p).
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4 Further research

In this short section we provide some directions for further research.

There are two generalizations of triangular balancing numbers which can be gen-
eralized to the polygonal case. First, in [2] the authors extended the definition of
balancing number to upper k-gap balancing numbers. A second generalization is to
add an integer weight w to the right hand side of the defining equation for balancing
numbers. What are the jump sizes for the general upper k-gap polygonal balancing
numbers, and/or the weighted polygonal balancing numbers?
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[6] T. Kovács, K. Liptai and P. Olajos, On (a, b)-balancing numbers, Publ. Math.
Debrecen 77 no. 3-4 (2010), 485–498.

[7] R. Kreskin and O. Karaatl, Some new properties of balancing numbers and
square triangular numbers, J. Integer Seq. 15 no. 1 (2012), Art. 12.1.4, 13 pp.

[8] K. Liptai, Fibonacci balancing numbers, Fibonacci Quart. 42 no. 4 (2004), 330–
340.

[9] G.K. Panda, Sequence balancing and cobalancing numbers, Fibonacci Quart.
45 no. 3 (2007), 265–271.

[10] G.K. Panda, Some fascinating properties of balancing numbers, Proc. Eleventh
Int. Conf. Fibonacci Numbers and their Applic’ns, C ongr. Numer. 194 (2009),
185–189.

[11] G.K. Panda and P.K. Ray, Cobalancing numbers and cobalancers, Int. J. Math.
Math. Sci. 2005 no. 8, 1189–1200.



J. BARTZ ET AL. /AUSTRALAS. J. COMBIN. 83 (3) (2022), 337–347 347

[12] G.K. Panda and P.K. Ray, Some links of balancing and cobalancing numbers
with Pell and associated Pell numbers, Bull. Inst. Math. Acad. Sin. (N.S.) 6
no. 1 (2011), 41–72.

[13] P.K. Ray, Balancing and Lucas-balancing sums by matrix methods, Mathemat-
ical Reports 17 (2015), 225–233.

[14] B. Sadek and D. Ali, Some results on balancing, cobalancing, (a, b)-type bal-
ancing and, (a, b)-type cobalancing numbers, Integers 13 (2013), Paper A20,
14pp..

[15] The On-Line Encyclopedia of Integer Sequences, http://www.oeis.org.

(Received 20 Jan 2021; revised 16 Dec 2021, 6 June 2022)

http://www.oeis.org

	Introduction
	Transformations between solutions
	Jump sizes for prime powers
	The case p=2
	The case of a prime p18mu(mod6mu8)
	The case of a prime q38mu(mod6mu8)
	The case when t is an odd prime power

	Further research

