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Abstract

For a graph G = (V,E) embedded in the projective plane, let F(G)
denote the set of faces of G. Then G is called a Cn-face-magic projective
graph if there exists a bijection f : V (G) → {1, 2, . . . , |V (G)|} such that
for any F ∈ F(G) with F ∼= Cn, the sum of all the vertex labels around
Cn is a constant S. We consider the m× n grid graph, denoted by Pm,n,
embedded in the projective plane in the natural way. We show that for
m,n � 2, Pm,n admits a C4-face-magic labeling if and only if m and n
have the same parity.

Letm � 3 and n � 3 be odd integers. We show that the C4-face-magic
value of a C4-face-magic labeling on Pm,n is either 2mn+ 1, 2mn+ 2, or
2mn + 3. In this paper, we characterize the C4-face-magic labelings on
Pm,n with C4-face-magic value 2mn + 2.

1 Introduction

Graph labelings were formally introduced in the 1970s by Kotzig and Rosa [15].
Graph labelings have been applied to graph decomposition problems, radar pulse
code designs, X-ray crystallography and communication network models. The in-
terested reader should consult Gallian’s comprehensive dynamic survey on graph
labelings [11] for further information.

We refer the reader to Chartrand, Lesniak and Zhang [5] for concepts and no-
tation not explicitly defined in this paper. The graphs in this paper are connected
multigraphs. The concept of a C4-face-magic labeling was first applied to planar
graphs. For a planar or projective graph G = (V,E) embedded in the plane or pro-
jective plane, let F(G) denote the set of faces of G. Then, G is called a Cn-face-magic
planar or projective graph if there exists a bijection f : V (G) → {1, 2, . . . , |V (G)|}
such that for any F ∈ F(G) with F ∼= Cn, the sum of all the vertex labels around
Cn is a constant S. Here, the constant S is called a Cn-face-magic value of G. More
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generally, C4-face-magic planar graph labelings are a special case of (a, b, c)-magic
labeling introduced by Lih [16]. For assorted values of a, b and c, Bača and others
[1, 2, 3, 12, 13, 14, 16] have analyzed the problem for various classes of graphs. Wang
[17] showed that the toroidal grid graph Cm × Cn has an antimagic labeling for all
integers m,n � 3. Recall that a graph with q edges is called antimagic if its edges can
be labeled with 1, 2, . . . , q without repetition such that the sums of the labels of the
edges incident to each vertex are distinct. Butt et al. [4] investigated face antimagic
labelings on toroidal and Klein bottle grid graphs. Here, a face antimagic labeling
on a toroidal or Klein bottle grid graph is a labeling of the vertices, edges and faces
of an m×n toroidal grid graph Cm×Cn or an m×n Klein bottle grid graph Km,n by
the consecutive integers from 1 up to |V (Cm ×Cn)|+ |E(Cm ×Cn)|+ |F(Cm ×Cn)|
or |V (Km,n)| + |E(Km,n)| + |F(Km,n)|, respectively, in such a way that the label of
a 4-sided face and the labels of the vertices and edges surrounding that face all to-
gether add up to a weight of that face. These face-weights then form an arithmetic
progression with common difference d.

Curran, Low and Locke [6, 7] investigated C4-face-magic labelings on an m × n
toroidal grid graph Cm × Cn. They showed that Cm × Cn admits a C4-face-magic
labeling if and only if either m = 2, or n = 2, or bothm and n are even. Curran, Low
and Locke [8] also examined C4-face-magic labelings on an m × n Klein bottle grid
graph. They showed that an m× n Klein bottle grid graph admits a C4-face-magic
labeling if and only if n is even. In this paper, we consider C4-face-magic labelings on
an m× n projective grid graph. We show, in Theorem 2.7, that an m× n projective
grid graph admits a C4-face-magic labeling if and only if both m and n have the
same parity. Also, when m and n are even, then the C4-face-magic value must be
2mn+2. Furthermore, when m and n are odd, then the C4-face-magic value is either
2mn + 1, 2mn + 2, or 2mn + 3.

In this paper, we investigate the C4-face-magic labelings on Pm,n with C4-face-
magic value 2mn+2 when m and n are odd. We show that a C4-face-magic labeling
X = {xi,j : (i, j) ∈ V (Pm,n)} with C4-face-magic value 2mn+ 2 is centrally balanced
in the sense that

xi,j + xm+1−i,n+1−j = mn + 1 for all (i, j) ∈ V (Pm,n).

Because of this additional structure on X, we are able to characterize and count
these C4-face-magic labelings on Pm,n. Further, we pose an open problem related to
C4-face-magic labelings on Pm,n when m and n are even.

2 Preliminaries

Definition 2.1. For a graph G = (V,E) embedded on the projective plane or plane
or torus or Klein bottle, let F(G) denote the set of faces of G. Then G is called a
Cn-face-magic projective or planar or toroidal or Klein bottle graph if there exists a
bijection f : V (G) → {1, 2, . . . , |V (G)|} such that for any F ∈ F(G) with F ∼= Cn,
the sum of all the vertex labels around Cn is a constant S. We call S the Cn-face-
magic value.
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Figure 1: 5× 5 projective grid graph P5,5.

Definition 2.2. Let m and n be integers such that m,n � 2. The m× n projective
grid graph, denoted by Pm,n, is the graph whose vertex set is

V (Pm,n) = {(i, j) : 1 � i � m, 1 � j � n} ,

and whose edge set consists of the following edges:

• there is an edge from (i, j) to (i, j + 1), for 1 � i � m and 1 � j � n− 1,

• there is an edge from (i, n) to (m+ 1− i, 1), for 1 � i � m,

• there is an edge from (i, j) to (i+ 1, j), for 1 � i � m− 1 and 1 � j � n and

• there is an edge from (m, j) to (1, n+ 1− j), for 1 � j � n.

The graph Pm,n has a natural embedding on the projective plane. This graph is
a multigraph since there are double edges on the vertex sets {(1, 1), (m,n)} and
{(m, 1), (1, n)}.
Example 2.3. The 5 × 5 projective grid graph P5,5 is illustrated in Figure 1. Due
to the orientation of the vertices in Pm,n, we refer to the vertices {(i, j) : 1 � j � n}
as column i of V (Pm,n) and {(i, j) : 1 � i � m} as row j of V (Pm,n).

Lemma 2.4. Let m and n be integers such that m,n � 2. Suppose that Pm,n is a
C4-face-magic projective graph. Then m and n have the same parity.

Proof. For the purposes of contradiction, we assume that m � 2 is even and n � 3 is
odd. Let n0 be the positive integer such that n = 2n0+1. Let {xi,j : (i, j) ∈ V (Pm,n)}
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be a C4-face-magic labeling on Pm,n Let a = x1,n0 + x1,n0+1. When we set the two
C4-face sums given below equal to each other

xi,j + xi,j+1 + xi+1,j + xi+1,j+1 = S = xi+1,j + xi+1,j+1 + xi+2,j + xi+2,j+1,

we obtain
xi,j + xi,j+1 = xi+2,j + xi+2,j+1.

Thus
x1,n0 + x1,n0+1 = xm−1,n0 + xm−1,n0+1.

When we set the two C4-face sums given below equal to each other

xm−1,n0 + xm−1,n0+1 + xm,n0 + xm,n0+1 = S = xm,n0 + xm,n0+1 + x1,n0+1 + x1,n0+2,

we obtain
xm−1,n0 + xm−1,n0+1 = x1,n0+1 + x1,n0+2.

Thus
x1,n0 + x1,n0+1 = x1,n0+1 + x1,n0+2

which, in turn, yields x1,n0 = x1,n0+2. This is a contradiction.

Lemma 2.5. Suppose m � 2 and n � 2 are even integers. Let {xi,j : (i, j) ∈
V (Pm,n)} be a C4-face-magic labeling on Pm,n with C4-face-magic value S. Then
S = 2mn + 2.

Proof. Let m0 and n0 be positive integers such that m = 2m0 and n = 2n0. Consider
the sum

1
4
mnS = m0n0S =

m0∑
i=1

n0∑
j=1

(x2i−1,2j−1 + x2i−1,2j + x2i,2j−1 + x2i,2j)

=

( mn∑
k=1

k

)
= 1

2
(mn)(mn + 1).

Thus S = 2mn+ 2.

Lemma 2.6. Let m � 3 and n � 3 be odd integers. Let {xi,j : (i, j) ∈ V (Pm,n)} be
a C4-face-magic labeling on Pm,n with C4-face-magic value S. Let D1 = x1,1 + xm,n

and D2 = xm,1 + x1,n be the face sums of the two digons constructed from the pair
of vertices at opposite corners of Pm,n. Recall that a digon is a two-sided polygon.
Then either

1. S = 2mn + 1 and D1 = D2 =
3
2
mn + 1

2
,

2. S = 2mn + 2 and D1 = D2 = mn + 1, or

3. S = 2mn + 3 and D1 = D2 =
1
2
mn + 3

2
.
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Proof. We first observe that, for 1 � j < n− 1, we have

x1,j + x1,j+1 + xm,n+1−j + xm,n−j = S = x1,j+1 + x1,j+2 + xm,n−j + xm,n−j−1.

Thus, for 1 � j < n− 1,

x1,j + xm,n+1−j = x1,j+2 + xm,n−j−1.

Hence, for 1 � j � (n− 1)/2, we have

x1,2j−1 + xm,n+2−2j = x1,2j+1 + xm,n−2j .

Thus
D1 = x1,1 + xm,n = x1,n + xm,1 = D2.

Hence,
2D1 = x1,1 + xm,n + x1,n + xm,1.

Therefore,

2D1 + (mn− 1)S =

m−1∑
i=1

n−1∑
j=1

(xi,j + xi+1,j + xi,j+1 + xi+1,j+1)

+
m−1∑
i=1

(xi,n + xi+1,n + xm−i,1 + xm+1−i,1)

+
n−1∑
j=1

(xm,j + xm,j+1 + x1,n−j + x1,n+1−j)

+ (x1,1 + xm,n + xm,1 + x1,n)

= 4

(mn∑
k=1

k

)
= (2mn)(mn + 1).

Thus
(mn− 1)S = 2m2n2 + 2mn− 2D1.

Since
10 � 2D1 � 4mn− 6,

we have
2m2n2 − 2mn+ 6 � (mn− 1)S � 2m2n2 + 2mn− 10.

Thus

2mn +
6

mn− 1
� S � 2mn + 4− 6

mn− 1
.

Since m � 3 and n � 3, we have

2mn+ 1 � S � 2mn+ 3.

We observe that
D1 = D2 = m2n2 +mn− 1

2
(mn− 1)S.

For S = 2mn + 1, we have D1 = D2 = 3
2
mn + 1

2
. Similarly, for S = 2mn + 2, we

have D1 = D2 = mn+ 1. Also, for S = 2mn+ 3, we have D1 = D2 =
1
2
mn + 3

2
.
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x1,4=24 x2,4=5 x3,4=19 x4,4=10 x5,4=14
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Figure 2: C4-face-magic labeling on P5,5 having C4-face-magic value 53.

Theorem 2.7. Let m and n be integers such that m,n � 2. Then Pm,n admits a
C4-face-magic labeling if and only if m and n have the same parity.

Proof. (⇒) Suppose Pm,n admits a C4-face-magic labeling. Then, by Lemma 2.4, m
and n have the same parity.

(⇐) Case 1. Assume m � 3 and n � 3 are odd integers. Let m0 and n0 be
integers such that m = 2m0 + 1 and n = 2n0 + 1. We define

• x2i−1,2j−1 = n(i− 1) + j for 1 � i � m0 + 1 and 1 � j � n0 + 1,

• x2i,2j = n(i− 1) + n0 + 1 + j for 1 � i � m0 and 1 � j � n0,

• x2i−1,2j = n(m− i+ 1)− j + 1 for 1 � i � m0 + 1 and 1 � j � n0 and

• x2i,2j−1 = n(m− i+ 1)− n0 − j + 1 for 1 � i � m0 and 1 � j � n0 + 1.

We observe that for the vertices (i, j) where i + j even, we assign the labels
1, 2, . . . , 1

2
mn + 1

2
in lexicographic order; however, for the vertices (i, j) where i + j

odd, we assign the labels 1
2
mn + 3

2
, 1
2
mn + 5

2
, . . . , mn in reverse lexicographic order.

See Figure 2 for an example of this labeling on the 5× 5 projective grid graph P5,5.

We have x2i−1,2j−1 + x2i−1,2j = mn + 1 for 1 � i � m0 + 1 and 1 � j � n0.
Also, we have x2i,2j−1 + x2i,2j = mn + 2 for 1 � i � m0 and 1 � j � n0. Thus, for
1 � i � m− 1 and 1 � j � n0, we have

xi,2j−1 + xi,2j + xi+1,2j−1 + xi+1,2j = 2mn + 3.
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Next, we have x2i−1,2j + x2i−1,2j+1 = mn + 2 for 1 � i � m0 + 1 and 1 � j � n0.
Also, we have x2i,2j + x2i,2j+1 = mn + 1 for 1 � i � m0 and 1 � j � n0. Thus, for
1 � i � m− 1 and 1 � j � n0, we have

xi,2j + xi,2j+1 + xi+1,2j + xi+1,2j+1 = 2mn + 3.

We observe that, for 1 � j � n0 + 1, x1,2j−1 + xm,n+2−2j = 1
2
mn + 3

2
and for

1 � j � n0, x1,2j + xm,n+1−2j =
3
2
mn + 3

2
. Thus, for 1 � j � n− 1, we have

x1,j + xm,n+1−j + x1,j+1 + xm,n−j = 2mn+ 3.

Similarly, for 1 � i � m0 + 1, x2i−1,1 + xm+2−2i,n = 1
2
mn+ 3

2
and for 1 � i � m0,

x2i,1 + xm+1−2i,n = 3
2
mn+ 3

2
. Thus, for 1 � i � m− 1, we have

xi,1 + xm+1−i,n + xi+1,1 + xm−i,n = 2mn + 3.

Case 2. Assume m � 2 and n � 2 are even integers. Let m0 and n0 be integers
such that m = 2m0 and n = 2n0. We define

• x2i−1,2j−1 = n(i− 1) + j for 1 � i � m0 and 1 � j � n0,

• x2i,2j = n(i− 1) + n0 + j for 1 � i � m0 and 1 � j � n0,

• x2i−1,2j = n(m− i+ 1)− j + 1 for 1 � i � m0 and 1 � j � n0 and

• x2i,2j−1 = n(m− i+ 1)− n0 − j + 1 for 1 � i � m0 and 1 � j � n0.

We observe that for the vertices (i, j) where i + j even, we assign the labels
1, 2, . . . , 1

2
mn in lexicographic order; however, for the vertices (i, j) where i+ j odd,

we assign the labels 1
2
mn + 1, 1

2
mn + 2, . . . , mn in reverse lexicographic order. See

Figure 3 for an example of this labeling on the 6× 6 projective grid graph P6,6.

We have x2i−1,2j−1 + x2i−1,2j = mn + 1 for 1 � i � m0 and 1 � j � n0. Also,
we have x2i,2j−1 + x2i,2j = mn + 1 for 1 � i � m0 and 1 � j � n0. Thus, for
1 � i � m− 1 and 1 � j � n0, we have

xi,2j−1 + xi,2j + xi+1,2j−1 + xi+1,2j = 2mn + 2.

Next, we have x2i−1,2j + x2i−1,2j+1 = mn + 2 for 1 � i � m0 and 1 � j � n0 − 1.
Also, we have x2i,2j + x2i,2j+1 = mn for 1 � i � m0 and 1 � j � n0 − 1. Thus, for
1 � i � m− 1 and 1 � j � n0 − 1, we have

xi,2j + xi,2j+1 + xi+1,2j + xi+1,2j+1 = 2mn + 2.

We observe that, for 1 � j � n0, x1,2j−1+xm,n+2−2j =
1
2
mn+1 and for 1 � j � n0,

x1,2j + xm,n+1−2j =
3
2
mn + 1. Thus, for 1 � j � n− 1, we have

x1,j + xm,n+1−j + x1,j+1 + xm,n−j = 2mn+ 2.

Similarly, for 1 � i � m0, x2i−1,1 + xm+2−2i,n = 1
2
mn + 1 and for 1 � i � m0,

x2i,1 + xm+1−2i,n = 3
2
mn+ 1. Thus, for 1 � i � m− 1, we have

xi,1 + xm+1−i,n + xi+1,1 + xm−i,n = 2mn + 2.



S.J. CURRAN/AUSTRALAS. J. COMBIN. 83 (3) (2022), 361–396 368

x1,1=1 x2,1=33 x3,1=7 x4,1=27 x5,1=13 x6,1=21

x1,2=36 x2,2=4 x3,2=30 x4,2=10 x5,2=24 x6,2=16

x1,3=2 x2,3=32 x3,3=8 x4,3=26 x5,3=14 x6,3=20

x1,4=35 x2,4=5 x3,4=29 x4,4=11 x5,4=23 x6,4=17

x1,5=3 x2,5=31 x3,5=9 x4,5=25 x5,5=15 x6,5=19

x1,6=34 x2,6=6 x3,6=28 x4,6=12 x5,6=22 x6,6=18
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Figure 3: C4-face-magic labeling on P6,6 having C4-face-magic value 74.

3 C4-face-magic projective grid graphs having an odd num-
ber of vertices and C4-face-magic value 2mn+ 2

In this section we characterize the C4-face-magic labelings on Pm,n having C4-face-
magic value 2mn + 2 when m and n are odd. In Lemma 3.4, we show that a
C4-face-magic labeling X = {xi,j : (i, j) ∈ V (Pm,n)} on Pm,n having C4-face-magic
value 2mn + 2 is centrally balanced in the sense that

xi,j + xm+1−i,n+1−j = mn + 1 for all (i, j) ∈ V (Pm,n).

In Definitions 3.6, 3.8, 3.10, and 3.12, we introduce permutations on the rows and
columns of X, called elementary projective labeling operations (see Definition 3.14),
that result in another C4-face-magic labeling on Pm,n. See Lemmas 3.7, 3.9, 3.11 and
3.13. Among all C4-face-magic labelings that can be obtained by applying a sequence
of elementary projective labeling operations to X , there is a unique labeling Z in
which the labels on both the central row and the central column of Z are in ascending
order. This labeling Z is called the standard projective labeling associated with X
(see Definition 3.17). Thus, we only need to characterize the standard centrally
balanced C4-face-magic labelings on Pm,n. See Theorem 3.16. In Definition 3.18, we
introduce the concept of a palindromic sequence labeling on the m × n planar grid
graph Pm × Pn. In Propositions 3.20 and 3.21, we show that there is a one-to-one
correspondence between the standard centrally balanced C4-face-magic labelings on
Pm,n and the palindromic sequence labelings on Pm ×Pn. We introduce the concept



S.J. CURRAN/AUSTRALAS. J. COMBIN. 83 (3) (2022), 361–396 369

of an (m,n)-projective factorization sequence in Definition 3.28. In Theorem 3.32,
we show that any palindromic sequence labeling on Pm × Pn can be constructed
from an (m,n)-projective factorization sequence or an (n,m)-projective factorization
sequence. Similarly, in Theorems 3.34 and 3.35, we show that any standard centrally
balanced C4-face magic labeling on Pm,n can be constructed from an (m,n)-projective
factorization sequence or an (n,m)-projective factorization sequence. In fact, this is
the only way to construct a standard centrally balanced C4-face-magic labeling on
Pm,n. These results allow us to count the number of C4-face-magic labelings on Pm,n

having C4-face-magic value 2mn + 2. See Theorems 3.40 and 3.41.

Notation 3.1. Throughout this section, we assume that both m � 3 and n � 3 are
odd integers. We write m = 2m0 + 1 and n = 2n0 + 1 for integers m0 and n0. For
any positive integer N , we let N+ = N +1. In particular, we have m+

0 = m0+1 and
n+
0 = n0 + 1.

Notation 3.2. We refer to the vertex (1
2
(m+1), 1

2
(n+1)) = (m+

0 , n
+
0 ) as the center

of the projective grid graph Pm,n. The graph automorphisms of Pm,n that are induced
by homeomorphisms of the projective plane are described in relation to the center
of Pm,n. We let Rθ denote the rotation by θ degrees in the counter-clockwise direc-
tion about the center. The symmetry H (V ) is the reflection about the horizontal
(vertical) axis passing through the center. Thus, for distinct integers m and n, the
set of symmetries on Pm,n is {R0, R180, H, V }. We let D+ (D−) denote the reflection
about the diagonal with positive (negative) slope passing through the center. When
m = n, the set of symmetries on Pm,m is D4 = {R0, R90, R180, R270, H, V,D+, D−}.
Definition 3.3. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a C4-face-magic labeling on
Pm,n with C4-face value S = 2(mn + 1). We say that X is centrally balanced if, for
all (i, j) ∈ V (Pm,n),

xi,j + xm+1−i,n+1−j =
1
2
S = mn+ 1.

Lemma 3.4. Suppose m � 3 and n � 3 are odd integers. Let X = {xi,j : (i, j) ∈
V (Pm,n)} be a C4-face-magic labeling on Pm,n with C4-face-magic value S = 2mn+2.
Then X is centrally balanced. Furthermore, xm+

0 ,n+
0
= 1

2
mn + 1

2
.

Proof. By Lemma 2.6, the digons formed by the vertex sets {(1, 1), (m,n)} and
{(m, 1), (1, n)} have face values

D1 = x1,1 + xm,n = 1
2
S = mn + 1

and
D2 = xm,1 + x1,n = 1

2
S = mn + 1.

Suppose that for some integer 1 � i < m,

xi,1 + xm+1−i,n = 1
2
S.

Since
xi,1 + xi+1,1 + xm+1−i,n + xm−i,n = S,
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we have
xi+1,1 + xm−i,n = 1

2
S.

Similarly, suppose that for some integer 1 � j < n,

x1,j + xm,n+1−j =
1
2
S.

Since
x1,j + x1,j+1 + xm,n+1−j + xm,n−j = S,

we have
x1,j+1 + xm,n−j =

1
2
S.

Hence,
xi,1 + xm+1−i,n = 1

2
S

for all 1 � i � m and
x1,j + xm,n+1−j =

1
2
S

for all 1 � j � n.

Suppose there exist integers 1 < i < m and 1 < j < n such that

1. for all 1 � i′ < i and 1 � j′ � n, xi′,j′ + xm+1−i′,n+1−j′ =
1
2
S and

2. for all 1 � j′ < j, xi,j′ + xm+1−i,n+1−j′ =
1
2
S.

We need to show that xi,j+xm+1−i,n+1−j =
1
2
S. When we add the two C4-face-values

xi−1,j−1 + xi−1,j + xi,j−1 + xi,j = S

and

xm+2−i,n+2−j + xm+2−i,n+1−j + xm+1−i,n+2−j + xm+1−i,n+1−j = S,

we obtain

(xi−1,j−1 + xm+2−i,n+2−j) + (xi−1,j + xm+2−i,n+1−j)

+(xi,j−1 + xm+1−i,n+2−j) + (xi,j + xm+1−i,n+1−j) = 2S.

Since

xi−1,j−1 + xm+2−i,n+2−j =
1
2
S,

xi−1,j + xm+2−i,n+1−j =
1
2
S, and

xi,j−1 + xm+1−i,n+2−j =
1
2
S,

we have
xi,j + xm+1−i,n+1−j =

1
2
S.

Since
2xm+

0 ,n+
0
= xm+

0 ,n+
0
+ xm+1−m+

0 ,n+1−n+
0
= mn + 1,

we have
xm+

0 ,n+
0
= 1

2
mn+ 1

2
.

This completes the proof.
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Lemma 3.5. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-magic
labeling on Pm,n with C4-face-magic value S = 2mn+ 2. For 1 � j � n0, let

aj = x1,j + x1,j+1.

Then,

1. for all 1 � i � m0 where i is odd and 1 � j � n0, we have

xi,j + xi,j+1 = aj , xi,n+1−j + xi,n−j = S − aj ,

xm+1−i,j + xm+1−i,j+1 = aj , and xm+1−i,n+1−j + xm+1−i,n−j = S − aj , and

2. for all 1 � i � m0 where i is even and 1 � j � n0, we have

xi,j + xi,j+1 = S − aj , xi,n+1−j + xi,n−j = aj ,

xm+1−i,j + xm+1−i,j+1 = S − aj , and xm+1−i,n+1−j + xm+1−i,n−j = aj .

Proof. When we equate the two C4-face sums

xi,j + xi,j+1 + xi+1,j + xi+1,j+1 = S and

xi+1,j + xi+1,j+1 + xi+2,j + xi+2,j+1 = S,

we obtain
xi,j + xi,j+1 = xi+2,j + xi+2,j+1. (1)

By (1), for all 1 � i � m0 where i is odd and 1 � j � n0, we have

xi,j + xi,j+1 = aj and xm+1−i,j + xm+1−i,j+1 = aj.

Since
aj + x2,j + x2,j+1 = x1,j + x1,j+1 + x2,j + x2,j+1 = S,

we have
x2,j + x2,j+1 = S − aj .

By (1), for all 1 � i � m0 where i is even and 1 � j � n0, we have

xi,j + xi,j+1 = S − aj and xm+1−i,j + xm+1−i,j+1 = S − aj .

Since

aj + x1,n+1−j + x1,n−j = xm,j + xm,j+1 + x1,n+1−j + x1,n−j = S,

we have
x1,n+1−j + x1,n−j = S − aj .

By (1), for all 1 � i � m0 where i is odd and 1 � j � n0, we have

xi,n+1−j + xi,n−j = S − aj and xm+1−i,n+1−j + xm+1−i,n−j = S − aj.
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Since

(S − aj) + x2,n+1−j + x2,n−j = x1,n+1−j + x1,n−j + x2,n+1−j + x2,n−j = S,

we have
x2,n+1−j + x2,n−j = aj .

By (1), for all 1 � i � m0 where i is even and 1 � j � n0, we have

xi,n+1−j + xi,n−j = aj and xm+1−i,n+1−j + xm+1−i,n−j = aj .

Definition 3.6. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-
magic labeling on Pm,n. Let η be a permutation on the set {1, 2, . . . , m0}. We define
a labeling on Pm,n, Z = {zi,j : (i, j) ∈ V (Pm,n)}, such that for all 1 � i � m0 and
1 � j � n, we have

zi,j = xη(i),j , if η(i)− i is even,

zi,j = xη(i),n+1−j , if η(i)− i is odd,

zm+
0 ,j = xm+

0 ,j,

zm+1−i,j = xm+1−η(i),j , if η(i)− i is even and

zm+1−i,j = xm+1−η(i),n+1−j , if η(i)− i is odd.

We let Eη denote the labeling operation given by Eη(X) = Z.

Lemma 3.7. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-magic
labeling on Pm,n and let η be a permutation on the set {1, 2, . . . , m0}. Let Eη be
the labeling operation defined in Definition 3.6. Then the labeling Z = Eη(X) is a
centrally balanced C4-face-magic labeling on Pm,n.

Proof. We first verify that Z is centrally balanced. Suppose that 1 � i � m0 and
1 � j � n. If η(i)− i is even, then

zi,j + zm+1−i,n+1−j = xη(i),j + xm+1−η(i),n+1−j =
1
2
S.

If η(i)− i is odd, then

zi,j + zm+1−i,n+1−j = xη(i),n+1−j + xm+1−η(i),j =
1
2
S.

Furthermore, we have

zm+
0 ,j + zm+1−m+

0 ,n+1−j = xm+
0 ,j + xm+1−m+

0 ,n+1−j =
1
2
S.

Next, we show that Z is a C4-face-magic labeling on Pm,n. For all 1 � i < m and
1 � j < n, one may use Lemma 3.5 to verify that

zi,j + zi,j+1 = xi,j + xi,j+1 and zi+1,j + zi+1,j+1 = xi+1,j + xi+1,j+1.
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Thus

zi,j + zi,j+1 + zi+1,j + zi+1,j+1

= xi,j + xi,j+1 + xi+1,j + xi+1,j+1 = S.

Since Z is centrally balanced, for 1 � i < m, we have

xi,n + xm+1−i,1 + xi+1,n + xm−i,1 =
1
2
S + 1

2
S = S.

Also, since Z is centrally balanced, for 1 � j < n, we have

xm,j + x1,n+1−j + xm,j+1 + x1,n−j =
1
2
S + 1

2
S = S.

Definition 3.8. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-
magic labeling on Pm,n. Let κ be a permutation on the set {1, 2, . . . , n0}. We define
a labeling on Pm,n, Z = {zi,j : (i, j) ∈ V (Pm,n)}, such that for all 1 � i � m and
1 � j � n0, we have

zi,j = xi,κ(j), if κ(j)− j is even,

zi,j = xm+1−i,κ(j), if κ(j)− j is odd,

zi,n+
0
= xi,n+

0
,

zi,n+1−j = xi,n+1−κ(j), if κ(j)− j is even and

zi,n+1−j = xm+1−i,n+1−κ(j), if κ(j)− j is odd.

We let Eκ denote the labeling operation given by Eη(X) = Z.

Lemma 3.9. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-magic
labeling on Pm,n and let κ be a permutation on the set {1, 2, . . . , n0}. Let Eκ be
the labeling operation defined in Definition 3.8. Then the labeling Z = Eκ(X) is a
centrally balanced C4-face-magic labeling on Pm,n.

The proof of Lemma 3.9 is similar to the proof of Lemma 3.7; we leave the details
of the proof to the reader.

Definition 3.10. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-
magic labeling on Pm,n. Let α : {1, 2, . . . , m0} → {0, 1}. We define a labeling on
Pm,n, Z = {zi,j : (i, j) ∈ V (Pm,n)}, such that for all 1 � i � m0 and 1 � j � n, we
have

zi,j = x(1−α(i))i+α(i)(m+1−i),j , and

zm+1−i,j = xα(i)i+(1−α(i))(m+1−i),j .

We let Eα denote the labeling operation given by Eα(X) = Z. The labeling operation
Eα has the effect of keeping the labelings on the vertices of columns i and m+ 1− i
the same if α(i) = 0 and swapping the labelings on the vertices of column i with
those of column m+ 1− i if α(i) = 1.
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Lemma 3.11. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-
magic labeling on Pm,n and let α : {1, 2, . . . , m0} → {0, 1}. Let Eα be the labeling
operation defined in Definition 3.10. Then the labeling Z = Eα(X) is a centrally
balanced C4-face-magic labeling on Pm,n.

Proof. First, we show that Z is centrally balanced. Suppose α(i) = 0. Then

zi,j = xi,j and zm+1−i,j = xm+1−i,j .

Thus
zi,j + zm+1−i,n+1−j = xi,j + xm+1−i,n+1−j =

1
2
S.

Suppose α(i) = 1. Then

zi,j = xm+1−i,j and zm+1−i,j = xi,j .

Thus
zi,j + zm+1−i,n+1−j = xm+1−i,j + xi,n+1−j =

1
2
S.

The proof that Z is a C4-face-magic labeling on Pm,n is similar to that in the proof
of Lemma 3.7.

Definition 3.12. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-
magic labeling on Pm,n. Let β : {1, 2, . . . , n0} → {0, 1}. We define a labeling on
Pm,n, Z = {zi,j : (i, j) ∈ V (Pm,n)}, such that for all 1 � i � m and 1 � j � n0, we
have

zi,j = xi,(1−β(j))j+β(j)(n+1−j), and

zi,n+1−j = xi,β(j)j+(1−β(j))(n+1−j).

We let Eβ denote the labeling operation given by Eβ(X) = Z. The labeling operation
Eβ has the effect of keeping the labelings on the vertices of rows j and n+ 1− j the
same if β(j) = 0 and swapping the labelings on the vertices of row j with those of
row n + 1− j if β(j) = 1.

Lemma 3.13. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-
magic labeling on Pm,n and let β : {1, 2, . . . , n0} → {0, 1}. Let Eβ be the labeling
operation defined in Definition 3.12. Then the labeling Z = Eβ(X) is a centrally
balanced C4-face-magic labeling on Pm,n.

The proof of Lemma 3.13 is similar to the proof of Lemma 3.11; we leave the
details of the proof to the reader.

Definition 3.14. We call each of the labeling operations Eη in Definition 3.6, Eκ in
Definition 3.8, Eα in Definition 3.10 and Eβ in Definition 3.12 an elementary projective
labeling operation.

Definition 3.15. We say that two centrally balanced C4-face-magic labelings on
Pm,n are projective labeling equivalent if one labeling can be obtained from the other
by applying a sequence of elementary projective labeling operations.



S.J. CURRAN/AUSTRALAS. J. COMBIN. 83 (3) (2022), 361–396 375

Given a centrally balanced C4-face-magic labeling X on Pm,n, the next theo-
rem identifies a canonical centrally balanced C4-face-magic labeling on Pm,n that is
projective labeling equivalent to X .

Theorem 3.16. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a centrally balanced C4-face-
magic labeling on Pm,n. Then there is a unique centrally balanced C4-face-magic
labeling Z = {zi,j : (i, j) ∈ V (Pm,n)} on Pm,n that is projective labeling equivalent to
X such that

1. z1,n+
0
< z2,n+

0
< · · · < zm,n+

0
and

2. zm+
0 ,1 < zm+

0 ,2 < · · · < zm+
0 ,n.

Proof. By Lemma 3.4, we have xm+
0 ,n+

0
= 1

2
(mn + 1) = 1

4
S. It is easy to check that

this value remains the same for any elementary projective labeling operation that we
apply to X. Since X is centrally balanced, for all 1 � i � m0, we have

xi,n+
0
+ xm+1−i,n+

0
= 1

2
S.

Thus, either xi,n+
0
< 1

4
S or xm+1−i,n+

0
< 1

4
S. We define a function α : {1, 2, . . . , m0} →

{0, 1} as follows. For each 1 � i � m0, we define

α(i) =

{
0, if xi,n+

0
< 1

4
S,

1, if xm+1−i,n+
0
< 1

4
S.

We replace X with Eα(X). This new centrally balanced C4-face-magic labeling on
Pm,n satisfies, for all 1 � i � m0,

xi,n+
0
< 1

4
S, and

xm+1−i,n+
0
> 1

4
S.

Choose a permutation η of {1, 2, . . . , m0} such that

xη(1),n+
0
< xη(2),n+

0
< · · · < xη(m0),n

+
0
.

We replace X with Eη(X). This new centrally balanced C4-face-magic labeling on
Pm,n satisfies,

x1,n+
0
< x2,n+

0
< · · · < xm,n+

0

A similar argument allows us to choose a function β : {1, 2, . . . , n0} → {0, 1} and a
permutation κ on {1, 2, . . . , n0} such that Z = Eκ(Eβ(X)) satisfies

z1,n+
0
< z2,n+

0
< · · · < zm,n+

0
, and

zm+
0 ,1 < zm+

0 ,2 < · · · < zm+
0 ,n.
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Definition 3.17. We refer to the centrally balanced C4-face-magic labeling Z in
Theorem 3.16 as the standard projective labeling associated with X. We say that Z
is a standard centrally balanced C4-face-magic labeling on Pm,n.

As a result of Theorem 3.16, we need only find all standard centrally balanced
C4-face-magic projective labelings on Pm,n. See Table 2 for an example of a standard
centrally balanced C4-face-magic projective labeling on P9,9.

Definition 3.18. Let Y = {yi,j : (i, j) ∈ V (Pm × Pn)} be a labeling on the planar
grid graph Pm × Pn. Suppose there exist palindromic sequences of positive integers
(a1, a2, . . . , am−1) and (b1, b2, . . . , bn−1). For convenience, let a0 = 0 and b0 = 0. We
say that Y is a palindromic sequence labeling on Pm × Pn provided that,

1. Y = {1, 2, . . . , mn} and

2. for all 1 � i � m and 1 � j � n, we have

yi,j = y1,1 +

( i−1∑
k=0

ak

)
+

( j−1∑
�=0

b�

)
.

Definition 3.19. Let X = {xi,j : (i, j) ∈ V (Pm,n)} be a standard centrally balanced
C4-face-magic labeling on Pm,n. The palindromic sequence labeling associated with
X is the labeling on the planar grid graph Pm × Pn given by Y = {yi,j : (i, j) ∈
V (Pm × Pn)} where

ym+
0 +σ1i,n

+
0 +σ2j

= xm+
0 +(−1)jσ1i,n

+
0 +(−1)iσ2j

for all 0 � i � m0, 0 � j � n0 and σ1, σ2 ∈ {−1, 1}. We refer to the transformation
T defined by T(X) = Y as the projective to palindromic sequence transformation.

Proposition 3.20. Suppose X = {xi,j : (i, j) ∈ V (Pm,n)} is a standard centrally
balanced C4-face-magic labeling on Pm,n. Let Y = T(X) = {yi,j : (i, j) ∈ V (Pm×Pn)}
where

ym+
0 +σ1i,n

+
0 +σ2j

= xm+
0 +(−1)jσ1i,n

+
0 +(−1)iσ2j

for all 0 � i � m0, 0 � j � n0 and σ1, σ2 ∈ {−1, 1}. Then Y is a palindromic
sequence labeling on Pm × Pn.

Proof. We first observe that Y = X = {1, 2, . . . , mn}.
For each 1 � i � m0, let ci = xm+

0 +1−i,n+
0
− xm+

0 −i,n+
0
. Similarly, for each 1 �

j � m0, let dj = xm+
0 ,n+

0 +1−j − xm+
0 ,n+

0 −j . Since X is a standard centrally balanced
C4-face-magic labeling on Pm,n, we have

xm+
0 +1−i,n+

0
> xm+

0 −i,n+
0
, for all 1 � i � m0, and

xm+
0 ,n+

0 +1−j > xm+
0 ,n+

0 −j, for all 1 � i � n0.

Thus, ci is positive for all 1 � i � m0 and dj is positive for all 1 � j � n0.
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Let c0 = 0 and d0 = 0. By Lemma 3.4, we have xm+
0 ,n+

0
= 1

2
(mn + 1) = 1

4
S. By

the definitions of ci and dj, we have

xm+
0 −i,n+

0
= xm+

0 ,n+
0
−

i∑
k=0

ck, for 0 � i � m0, and

xm+
0 ,n+

0 −j = xm+
0 ,n+

0
−

j∑
�=0

d�, for 0 � j � n0.

Since X is centrally balanced, we have

xm+
0 +i,n+

0
= xm+

0 ,n+
0
+

i∑
k=0

ck, for 0 � i � m0, and

xm+
0 ,n+

0 +j = xm+
0 ,n+

0
+

j∑
�=0

d�, for 0 � j � n0.

Hence,

xm+
0 +σ1i,n

+
0
= xm+

0 ,n+
0
+ σ1

( i∑
k=0

ck

)
, for 0 � i � m0 and σ1 ∈ {−1, 1}, and (2)

xm+
0 ,n+

0 +σ2j
= xm+

0 ,n+
0
+ σ2

( j∑
�=0

d�

)
, for 0 � j � n0 and σ2 ∈ {−1, 1}. (3)

Since X is a C4-face-magic labeling on Pm,n, (2) and (3) uniquely determine the
values of X which are given by

xm+
0 +σ1i,n

+
0 +σ2j

= 1
4
S + (−1)jσ1

( i∑
k=0

ck

)
+ (−1)iσ2

( j∑
�=0

d�

)
, (4)

for all 0 � i � m0, 0 � j � n0 and σ1, σ2 ∈ {−1, 1}. In order to verify (4), we need
to show that the face sums of each C4-face on Pm,n is S = 2mn + 2. We replace i
with i± 1 and j with j ± 1 in (4) to obtain

xm+
0 +σ1(i±1),n+

0 +σ2(j±1) =
1
4
S + (−1)j±1σ1

( i±1∑
k=0

ck

)
+ (−1)i±1σ2

( j±1∑
�=0

d�

)
, (5)

xm+
0 +σ1(i±1),n+

0 +σ2j
= 1

4
S + (−1)jσ1

( i±1∑
k=0

ck

)
+ (−1)i±1σ2

( j∑
�=0

d�

)
, and (6)

xm+
0 +σ1i,n

+
0 +σ2(j±1) =

1
4
S + (−1)j±1σ1

( i∑
k=0

ck

)
+ (−1)iσ2

( j±1∑
�=0

d�

)
, (7)

where 0 < i � m0 if i ± 1 represents i − 1, 0 � i < m0 if i ± 1 represents i + 1,
0 < j � n0 if j ± 1 represents j − 1 and 0 � j < n0 if j ± 1 represents j + 1. Adding
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(4), (5), (6) and (7), yields

xm+
0 +σ1(i±1),n+

0 +σ2(j±1) + xm+
0 +σ1(i±1),n+

0 +σ2j

+ xm+
0 +σ1i,n

+
0 +σ2(j±1) + xm+

0 +σ1i,n
+
0 +σ2j

= S.

For convenience, let cm+
0
= 0 and dn+

0
= 0. By (4) and

ym+
0 +σ1i,n

+
0 +σ2j

= xm+
0 +(−1)jσ1i,n

+
0 +(−1)iσ2j

,

we have

ym+
0 +σ1i,n

+
0 +σ2j

= ym+
0 ,n+

0
+ σ1

( i∑
s=0

cs

)
+ σ2

( j∑
t=0

dt

)
, (8)

for all 0 � i � m+
0 , 0 � j � n+

0 and σ1, σ2 ∈ {−1, 1}.
We need to show that Y = {yi,j : (i, j) ∈ V (Pm × Pn)} is a palindromic sequence

labeling on Pm × Pn. Let

ak = cm+
0 −k, for 0 � k � m0, (9)

ak = ck−m0, for m+
0 � k � m− 1, (10)

b� = dn+
0 −�, for 0 � � � n0, and (11)

b� = d�−n0, for n+
0 � � � n− 1. (12)

Then (a1, a2, . . . , am−1) and (b1, b2, . . . , bn−1) are palindromic sequences. Observe
that a0 = cm+

0
,= 0 and b0 = dn+

0
= 0. We need to show that for all 1 � i � m and

1 � j � n, we have

yi,j = y1,1 +

i−1∑
k=0

ak +

j−1∑
�=0

b�. (13)

Case 1. Assume 1 � i � m+
0 and 1 � j � n+

0 . Let σ1 = −1 and σ2 = −1. From
(8), we have

ym+
0 −i′,n+

0 −j′ = ym+
0 ,n+

0
−

( i′∑
s=0

cs

)
−

( j′∑
t=0

dt

)
, and (14)

y1,1 = ym+
0 ,n+

0
−

(m+
0∑

s=0

cs

)
−

( n+
0∑

t=0

dt

)
. (15)

Recall that cm+
0
= 0 and dn+

0
= 0. Subtracting (15) from (14) yields

ym+
0 −i′,n+

0 −j′ − y1,1 =

( m+
0∑

s=i′+1

cs

)
+

( n+
0∑

t=j′+1

dt

)
.
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Replacing i′ with m+
0 − i and j′ with n+

0 − j yields

yi,j − y1,1 =

m+
0∑

s=m+
0 −i+1

cs +

n+
0∑

t=n+
0 −j+1

dt

=
i−1∑
k=0

cm+
0 −k +

j−1∑
�=0

dn+
0 −�.

Hence, by (9) and (11), (13) holds for 1 � i � m+
0 and 1 � j � n+

0 .

Case 2. Assume m+
0 < i � m and n+

0 < j � n. From (8), we have

ym+
0 +i′,n+

0 +j′ = ym+
0 ,n+

0
+

( i′∑
s=1

cs

)
+

( j′∑
t=1

dt

)
, and (16)

y1,1 = ym+
0 ,n+

0
−

(m+
0∑

s=1

cs

)
−
( n+

0∑
t=1

dt

)
. (17)

Again, recall that cm+
0
= 0 and dn+

0
= 0. Subtracting (17) from (16) yields

ym+
0 +i′,n+

0 +j′ − y1,1 =

(m+
0∑

s=1

cs

)
+

( i′∑
s=1

cs

)
+

( n+
0∑

t=1

dt

)
+

( j′∑
t=1

dt

)
.

Replacing i′ with i−m+
0 and j′ with j − n+

0 yields

yi,j − y1,1 =

m+
0∑

s=1

cs +

i−m+
0∑

s=1

cs +

n+
0∑

t=1

dt +

j−n+
0∑

t=1

dt

=
m0∑
k=0

cm+
0 −k +

i−1∑
k=m+

0

ck−m0 +
n0∑
�=0

dn+
0 −� +

j−1∑
�=n+

0

d�−n0

Hence, by (9), (10), (11) and (12), (13) holds for m+
0 < i � m and n+

0 < j � n.

A similar argument to those in Cases 1 and 2 shows that (13) holds when either
1 � i � m+

0 and n+
0 < j � n, or m+

0 < i � m and 1 � j � n+
0 .

Proposition 3.21. Suppose Y = {yi,j : (i, j) ∈ V (Pm × Pn)} is a palindromic
sequence labeling on Pm × Pn. Let X = T(Y ) = {xi,j : (i, j) ∈ V (Pm,n)} where

xm+
0 +σ1i,n

+
0 +σ2j

= ym+
0 +(−1)jσ1i,n

+
0 +(−1)iσ2j

for all 0 � i � m0, 0 � j � n0 and σ1, σ2 ∈ {−1, 1}. Then X is a standard centrally
balanced C4-face-magic labeling on Pm,n.



S.J. CURRAN/AUSTRALAS. J. COMBIN. 83 (3) (2022), 361–396 380

Proof. Let (a1, a2, . . . , am−1) and (b1, b2, . . . , bn−1) be the palindromic sequences used
in Y . Let a0 = 0 and b0 = 0. Then, for all 1 � i � m and 1 � j � n,

yi,j = y1,1 +
i−1∑
k=0

ak +

j−1∑
�=0

b�. (18)

Since y1,1 is the smallest label in Y , we have y1,1 = 1. Also, ym,n is the largest label
in Y . Thus ym,n = mn. By equation (18),

mn = 1 +
m−1∑
k=0

ak +
n−1∑
�=0

b� = 1 + 2

( m0∑
k=1

ak

)
+ 2

( n0∑
�=1

b�

)
.

Thus

ym+
0 ,n+

0
= 1 +

m0∑
k=1

ak +

n0∑
�=1

b� =
1
2
(mn+ 1).

Let S = 2(mn + 1). Then ym+
0 ,n+

0
= 1

4
S.

Let c0 = 0 and d0 = 0. For 1 � k � m0 and 1 � � � n0, Let

ck = am+
0 −k = ak+m0 and

d� = bn+
0 −� = b�+n0 .

We can show that

ym+
0 +σ1i,n

+
0 +σ2j

= ym+
0 ,n+

0
+ σ1

( i∑
s=0

cs

)
+ σ2

( j∑
t=0

dt

)
, (19)

for all 0 � i � m+
0 , 0 � j � n+

0 and σ1, σ2 ∈ {−1, 1}. The proof that equation (19)
follows from equation (18) is similar to the proof that equation (13) follows from
equation (8) in Proposition 3.20.

Since X = T(Y ) and ym+
0 ,n+

0
= 1

4
S, we have

xm+
0 +σ1i,n

+
0 +σ2j

= 1
4
S + (−1)jσ1

( i∑
k=0

ck

)
+ (−1)iσ2

( j∑
�=0

d�

)
,

for all 0 � i � m0, 0 � j � n0 and σ1, σ2 ∈ {−1, 1}. It is straight forward to show
that X is a standard centrally balanced C4-face-magic labeling on Pm,n. We leave
the details to the reader.

Remark 3.22. The graphs Pm,n and Pm × Pn have the same vertex set. We
observe that the projective to palindromic sequence transformation T has the ef-
fect of applying the symmetry H iV j to the set of vertices {(m+

0 ± i, n+
0 ± j)} in

V (Pm,n) = V (Pm × Pn).

By Proposition 3.20, when we apply this transformation to a standard centrally
balanced C4-face-magic labeling X on Pm,n, the result is a palindromic sequence
labeling Y = T(X) on Pm × Pn.
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By Proposition 3.21, when we apply this transformation to a palindromic se-
quence labeling Y on Pm × Pn, the result is a standard centrally balanced C4-face-
magic labeling X = T(Y ) on Pm,n.

Since T is an involution, T is a one-to-one correspondence between standard cen-
trally balanced C4-face-magic projective labelings on Pm,n and palindromic sequence
labelings on Pm × Pn.

Definition 3.23. The horizontal lexicographic labeling HLL(m,n) = {xi,j : (i, j) ∈
V (Pm × Pn)} on Pm × Pn is defined by

xi,j = i+m(j − 1)

for all (i, j) ∈ V (Pm × Pn).

Similarly, the vertical lexicographic labeling VLL(m,n) = {xi,j : (i, j) ∈ V (Pm ×
Pn)} on Pm × Pn is defined by

xi,j = j + n(i− 1)

for all (i, j) ∈ V (Pm × Pn).

Notation 3.24. Let (a1, a2, . . . , an) be a sequence of positive integers and let r be
a positive integer. The concatenation of r copies of (a1, a2, . . . , an) is denoted by

(a1, a2, . . . , an)
r = (a1, a2, . . . , an, a1, a2, . . . , an, . . . , a1, a2, . . . , an)

where there are r copies of (a1, a2, . . . , an) in this sequence. For example,

(1, 5, 8)3 = (1, 5, 8, 1, 5, 8, 1, 5, 8).

Remark 3.25. The palindromic sequences related to the horizontal lexicographic
labeling HLL(m,n) on Pm × Pn are

(a1, a2, . . . , am−1) = (1)m−1, and

(b1, b2, . . . , bn−1) = (m)n−1.

The palindromic sequences related to the vertical lexicographic labeling VLL(m,n)
on Pm × Pn are

(a1, a2, . . . , am−1) = (n)m−1, and

(b1, b2, . . . , bn−1) = (1)n−1.

Definition 3.26. Let X = {xi,j : (i, j) ∈ V (Pm × Pn)} be a palindromic sequence
labeling on Pm×Pn, and let r be a positive integer. The r-horizontal connected sum
of X, denoted by Y = HCSr(X), is the palindromic sequence labeling on Pmr × Pn

given by

ymk+i,j = (mn)k + xi,j , for all 0 � k < r, 1 � i � m, and 1 � j � n.

Similarly, the r-vertical connected sum of X, denoted by Y = VCSr(X), is the
palindromic sequence labeling on Pm × Pnr given by

yi,nk+j = (mn)k + xi,j , for all 0 � k < r, 1 � i � m, and 1 � j � n.
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Remark 3.27. Let X = {xi,j : (i, j) ∈ V (Pm × Pn)} be a palindromic sequence
labeling on Pm × Pn that uses the palindromic sequences (a1, a2, . . . , am−1) and
(b1, b2, . . . , bn−1). Then the r-horizontal connected sum of X is a palindromic se-
quence labeling on Pmr × Pn that uses the palindromic sequences

(a′1, a
′
2, . . . , a

′
mr−1) = (a1, a2, . . . , am−1, (A, a1, a2, . . . , am−1)

r−1) and

(b′1, b
′
2, . . . , b

′
n−1) = (b1, b2, . . . , bn−1)

where A = 1 + b1 + b2 · · ·+ bn−1.

Similarly, the r-vertical connected sum of X is a palindromic sequence labeling
on Pmr × Pn that uses the palindromic sequences

(a′1, a
′
2, . . . , a

′
m−1) = (a1, a2, . . . , am−1) and

(b′1, b
′
2, . . . , b

′
nr−1) = (b1, b2, . . . , bn−1, (B, b1, b2, . . . , bn−1)

r−1)

where B = 1 + a1 + a2 · · ·+ am−1.

We introduce the following definition in order to discuss the main results of this
paper.

Definition 3.28. Suppose there exists a positive integer k such that one of the two
following conditions holds.

1. There are factorizations ofm = m1m2 . . .mk and n = n1n2 . . . nk, wheremi > 1
and ni > 1 for all 1 � i � k.

2. There are factorizations of m = m′
1m

′
2 . . .m

′
km

′
k+1 and n = n′

1n
′
2 . . . n

′
k, where

m′
i > 1 for all 1 � i � k + 1 and n′

i > 1 for all 1 � i � k.

We say that (m1, n1, m2, n2, . . . , mk, nk) is an (m,n)-projective factorization sequence
of length 2k. Also, we say (m′

1, n
′
1, m

′
2, n

′
2, . . . , m

′
k, n

′
k, m

′
k+1) is an (m,n)-projective

factorization sequence of length 2k + 1. For convenience, we let n′
k+1 = 1 and refer

to (m′
1, n

′
1, m

′
2, n

′
2, . . . , m

′
k+1, n

′
k+1) as an (m,n)-projective factorization sequence of

length 2k+1. In addition, we say that (m1, n1, m2, n2, . . . , mk, nk) and (m′
1, n

′
1, m

′
2, n

′
2,

. . . , m′
k+1, n

′
k+1) are (m,n)-projective factorization sequences.

Furthermore, we let τ(m,n) denote the number of distinct (m,n)-projective fac-
torization sequences.

Notation 3.29. Let k be a positive integer. Letm1, m2, . . . , mk and n1, n2, . . . , nk be
integers greater than 1 except possibly nk (for which nk � 1). LetX1 = HLL(m1, n1).
For 2 � i � k, let Xi = VCSni(HCSmi(Xi−1)). Let M = m1m2 · · ·mk and N =
n1n2 · · ·nk. By Remarks 3.25 and 3.27, Xk is a palindromic sequence labeling on
PM × PN .

Let X = {xi,j : (i, j) ∈ V (Pm × Pn)} be a palindromic sequence labeling
on Pm × Pn. Let Grid(m′, n′) = {(i, j) : 1 � i � m′ and 1 � j � n′}. Let
LabelX(Grid(m′, n′)) = {xi,j : (i, j) ∈ Grid(m′, n′)}.
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Definition 3.30. Let m � 3 and n � 3 be odd integers.

1. Let F = (mi, ni : 1 � i � k) be an (m,n)-projective factorization sequence.
Let X1 = HLL(m1, n1). For 2 � i � k, let Yi = HCSmi(Xi−1) and Xi =
VCSni(Yi). The horizontal palindromic sequence labeling associated with F is
given by HPSL(F ) = Xk.

2. Let F ′ = (n′
i, m

′
i : 1 � i � k) be an (n,m)-projective factorization sequence.

Let X ′
1 = VLL(m′

1, n
′
1). For 2 � i � k, let Y ′

i = VCSn′
i(X ′

i−1) and X ′
i =

HCSm′
i(Y ′

i ). The vertical palindromic sequence labeling associated with F ′ is
given by VPSL(F ′) = X ′

k.

Lemma 3.31. Let X = {xi,j : (i, j) ∈ V (Pm × Pn)} be a palindromic sequence
labeling on Pm×Pn. Let F = (mi, ni : 1 � i � k) be an (m,n)-projective factorization
sequence and let W = HPSL(F ). Suppose xi,j = wi,j for all (i, j) ∈ Grid(m′, n′).
Let z be smallest positive integer such that z ∈ LabelX(Grid(m′, n′)) and z + 1 /∈
LabelX(Grid(m′, n′)). Then either xm′+1,1 = z + 1 or x1,n′+1 = z + 1.

Proof. The labels 1, 2, . . . , z appear in LabelX(Grid(m′, n′)). We observe that xm′+1,1

< xi,j for all i > m′+1, or i = m′+1 and j > 1. Also, x1,n′+1 < xi,j for all j > n′+1,
or j = n′ + 1 and i > 1. Hence, among all vertices in V (Pm × Pn) \Grid(m′, n′), the
vertex with the smallest label from X is either (m′ + 1, 1) or (1, n′ + 1). Since z + 1
does not appear in LabelX(Grid(m′, n′)), either xm′+1,1 = z+1 or x1,n′+1 = z+1.

Theorem 3.32. Let m � 3 and n � 3 be odd integers. Let X = {xi,j : (i, j) ∈
V (Pm ×Pn)} be a palindromic sequence labeling on Pm×Pn. Then X is constructed
in one of the following two ways.

1. There exists an (m,n)-projective factorization sequence
F = (m1, n1, m2, n2, . . . , mk′, nk′) such that X = HPSL(F ).

2. There exists an (n,m)-projective factorization sequence
F ′ = (n′

1, m
′
1, n

′
2, m

′
2, . . . , n

′
k′, m

′
k′) such that X = VPSL(F ′).

(See Definition 3.30.)

Furthermore, distinct (m,n)-projective factorization sequences F1 and F2 give
rise to distinct palindromic sequence labelings HPSL(F1) and HPSL(F2) on Pm×Pn.
Similarly, distinct (n,m)-projective factorization sequences F ′

1 and F ′
2 give rise to

distinct palindromic sequence labelings VPSL(F ′
1) and VPSL(F ′

2) on Pm × Pn.

Proof. By Remarks 3.25 and 3.27, the constructions of HPSL(F ) and VPSL(F ′) are
palindromic sequence labelings on Pm × Pn.

We need to show that X must necessarily be either HPSL(F ) or VPSL(F ′). Let
(a1, a2, . . . , am−1) and (b1, b2, . . . , bn−1) be the palindromic sequences used inX. Then

xi,j = x1,1 +
i−1∑
k=0

ai +

j−1∑
�=0

b�, for all 1 � i � m and 1 � j � n,
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where a0 = 0 and b0 = 0.

In the proof we will choose the assumption that leads to the conclusion that
X = HPSL(F ) in part (1) of Theorem 3.32. The proof of part (2) of Theorem
3.32 is similar to the proof of part (1) of Theorem 3.32. By Definition 3.30, for
the (m,n)-projective factorization sequence F = (mk, nk : 1 � k � k′), we have
X1 = HLL(m1, n1) and for 2 � k � k′, Yk = HCSmk(Xk−1) and Xk = VCSnk(Yk).
Then HPSL(F ) = Xk′.

Given a palindromic sequence S of positive integers, we let ν(S) denote the
number of terms in S and σ(S) denote the sum of the terms in S. Define

A1 = 1,

B1 = m1,

HPS(1) = (A1)
m1−1 = (1)m1−1, and

VPS(1) = (B1)
n1−1 = (m1)

n1−1.

Then

ν(HPS(1)) = m1 − 1, (20)

ν(VPS(1)) = n1 − 1, (21)

σ(HPS(1)) = m1 − 1, and

σ(VPS(1)) = (n1 − 1)m1.

For all k � 2, define

Ak = σ(VPS(k − 1)) + 1,

HPS(k) =
(
HPS(k − 1), (Ak,HPS(k − 1))mk−1

)
, (22)

Bk = σ(HPS(k)) + 1, and

VPS(k) =
(
VPS(k − 1), (Bk,VPS(k − 1))nk−1

)
. (23)

Then

ν(HPS(k)) = mk

(
ν(HPS(k − 1)) + 1

)− 1, (24)

ν(VPS(k)) = nk

(
ν(VPS(k − 1)) + 1

)− 1, (25)

σ(HPS(k)) = mkσ(HPS(k − 1)) + (mk − 1)Ak, and

σ(VPS(k)) = nkσ(VPS(k − 1)) + (nk − 1)Bk.

We observe that HPS(k) and VPS(k − 1) are the palindromic sequences used in
Yk for all 1 < k � k′ and HPS(k) and VPS(k) are the palindromic sequences used
in Xk for all 1 � k � k′. Further, it should be pointed out that the integers mk and
nk, for all 1 � k � k′, are arbitrary positive integers with no assumption that mk is
a factor of m or nk is a factor of n. We will demonstrate that mk is a factor of m
and nk is a factor of n, for all 1 � k � k′, at the end of the proof.
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Let Mk = ν(HPS(Xk)) and Nk = ν(VPS(Xk)). By (20), (21), (24) and (25), we
have

M+
k = m1m2 · · ·mk and (26)

N+
k = n1n2 · · ·nk. (27)

Then Yk is a palindromic sequence labeling on PM+
k
×PN+

k−1
and Xk is a palindromic

sequence labeling on PM+
k
× PN+

k
.

Let W = HPSL(F ). We let (c1, c2, . . . , cMk′ ) and (d1, d2, . . . , dNk′ ) be the palin-
dromic sequences used in W . Then

wi,j = w1,1 +

i−1∑
k=0

ci +

j−1∑
�=0

d�, for all 1 � i � M+
k′ and 1 � j � N+

k′ ,

where c0 = 0 and d0 = 0.

We assume that xi,j = wi,j for all (i, j) ∈ Grid(m′, n′). We want to show under
various assumptions that either

xi,j = wi,j for all (i, j) ∈ Grid(m′ + 1, n′), or

xi,j = wi,j for all (i, j) ∈ Grid(m′, n′ + 1).

Let z be smallest positive integer such that z ∈ LabelX(Grid(m′, n′)) and z + 1 /∈
LabelX(Grid(m′, n′)). By Lemma 3.31, either xm′+1,1 = z + 1 or x1,n′+1 = z + 1.

Since x1,1 is the smallest label in X, we have x1,1 = 1.Thus 1∈LabelX(Grid(1, 1)),
but 2 /∈ LabelX(Grid(1, 1)) By Lemma 3.31, either x1,2 = 2 or x2,1 = 2. We will
assume that x2,1 = 2. We will see that the choice x2,1 = 2 leads to the conclusion in
part (1) of Theorem 3.32.

The choice x1,2 = 2 leads to the conclusion in part (2) of Theorem 3.32. Since
the proof of part (2) of Theorem 3.32 is similar to the proof of part (1) of Theorem
3.32, we leave the details of the proof of part (2) of Theorem 3.32 to the reader.

Since x2,1 = 2, we have LabelX(Grid(2, 1)) = {1, 2}. By Lemma 3.31, either
x1,2 = 3 or x3,1 = 3. We may continue to argue in this fashion. Let m1 be
the largest positive integer such that xm1,1 = m1, but xm1+1,1 �= m1 + 1. Thus
LabelX(Grid(m1, 1)) = {1, 2, . . . , m1}. By Lemma 3.31, either x1,2 = m1 + 1 or
xm1+1,1 = m1 + 1. Since xm1+1,1 �= m1 + 1, x1,2 = m1 + 1.

We observe that ai = 1 for all 1 � i < m1 and am1 > 1 . Thus xi,2 = m1+ i for all
1 � i � m1 and xm1+1,2 �= 2m1 + 1. Hence, LabelX(Grid(m1, 2)) = {1, 2, . . . , 2m1}
and xm1+1,2 �= 2m1 + 1. By Lemma 3.31, we have x3,1 = 2m1 + 1. We continue
to argue in this fashion. We let n1 be the largest integer such that xm1,n1 = m1n1,
but x1,n1+1 �= m1n1 + 1. Thus the labels from X coincide with X1 = HLL(m1, n1)
on Grid(m1, n1), but the labels from X do not coincide with HLL(m1, n1 + 1) on
Grid(m1, n1 + 1). Thus z = m1n1 = M+

1 N
+
1 is the largest label such that z ∈

LabelX(Grid(m1, n1)), but z+1 /∈ LabelX(Grid(m1, n1)). Also, x1,n1+1 �= M+
1 N

+
1 +1.

By Lemma 3.31, xm1+1,1 = M+
1 N

+
1 + 1. Hence, am1 = A2 = σ(VPS(1)) + 1 =
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(n1 − 1)m1 + 1. Therefore, the labels from X coincide with the labels from X1 =
HLL(m1, n1) on the vertices in Grid(M+

1 , N
+
1 ), z = M+

1 N
+
1 is the smallest positive

integer such that z ∈ LabelX(Grid(M+
1 , N

+
1 )) and z + 1 /∈ LabelX(Grid(M+

1 , N
+
1 ))

and xM+
1 +1,1 = z + 1.

In order to complete the proof by Mathematical Induction, we assume that for
some positive integer k that the labels from X coincide with the labels from Xk−1

on the vertices in Grid(M+
k−1, N

+
k−1), z = M+

k−1N
+
k−1 is the smallest positive integer

such that z ∈ LabelX(Grid(M+
k−1, N

+
k−1)) and z+1 /∈ LabelX(Grid(M+

k−1, N
+
k−1)) and

xM+
k−1+1,1 = z + 1.

For convenience, let n′ = N+
k−1. We first establish the following claim. Suppose

there exists a positive integer s such that, for some integer m′ with sM+
k−1 < m′ <

(s + 1)M+
k−1, the labels from X coincide with the labels from HCSs+1(Xk−1) on the

vertices in Grid(m′, n′). I.e., we have xi,j = wi,j for all (i, j) ∈ Grid(m′, n′). We want
to show that the labels from X must coincide with the labels from HCSs+1(Xk−1)
on the vertices in Grid(m′ + 1, n′). I.e., we want to show xi,j = wi,j for all (i, j) ∈
Grid(m′ + 1, n′). Then am′ = At for some 1 � t < k. Let z be the smallest positive
integer such that z ∈ LabelX(Grid(m′, n′)) and z + 1 /∈ LabelX(Grid(m′, n′)). Then
xi′,j′ = z for some (i′, j′) ∈ Grid(m′, n′). By Lemma 3.31, either xm′+1,1 = z + 1
or x1,n′+1 = z + 1. We want to show that xm′+1,1 = z + 1. For the purposes of
contradiction, assume x1,n′+1 = z + 1. Since the labels from X coincide with the
labels from HCSs(Xk−1) on Grid(m′, n′), and HCSs(Xk−1) = {1, 2, . . . , sM+

k−1N
+
k−1},

we have i′ > sM+
k−1.

Case 1. Assume ci′ = A1 = 1. We want to show i′ = m′ and am′ = 1 = A1 = cm′ .
For the purposes of contradiction, we assume i′ < m′. Since X and W coincide
on Grid(m′, n′), we have ai′ = ci′ = 1. Then z + 1 = xi′,j′ + ai′ = xi′+1,j′ ∈
LabelX(Grid(m′, n′)) which contradicts z+1 /∈ LabelX(Grid(m′, n′)). Hence, i′ = m′,
cm′ = A1 = 1 and xm′,j′ = z.

We observe that xm′,1 ∈ LabelX(Grid(m′, n′)), but xm′,1 + 1 = wm′,1 + cm′ =
wm′+1,1 /∈ LabelX(Grid(m′, n′)). Since z is the smallest positive integer with the
property that z ∈ LabelX(Grid(m′, n′)) and z + 1 /∈ LabelX(Grid(m′, n′)), we have
xm′,1 = z.

We next observe that xm′,2 = xm′,1 + b1 = z + m1. For the purposes of contra-
diction, we assume x1,n′+1 = z + 1. Thus xm1,n′+1 = x1,n′+1 + σ(HPS(1)) = z +m1.
This contradicts the condition that each of the labels from {1, 2, . . . , mn} is used
exactly once in X. Hence, z + 1 = xm′+1,1 = xm′,1 + am′ = z + am′ . Therefore,
am′ = 1 = A1 = cm′. Thus xm′+1,j = xm′,j + am′ = wm′,j + cm′ = wm′+1,j for all
1 � j � n′. Hence, xi,j = wi,j for all (i, j) ∈ Grid(m′ + 1, n′).

Case 2. Assume ci′ = At for some integer 2 � t � k − 1. We want to show i′ = m′

and am′ = σ(VPS(t − 1)) + 1 = At = cm′ . Let p1 = i′/M+
t−1 and p2 = N+

k−1/N
+
t−1.

We show that the labels from X on Grid(m′, n′) is a p1 × p2 array of copies of Xt−1

such that the labels in any two copies of Xt−1 differ by some constant. From (22)
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and (23), we have

HPS(k − 1) =
(
(HPS(t− 1), aiM+

t−1
: 1 � i < p1),HPS(t− 1)

)
and

VPS(k − 1) =
(
(VPS(t− 1), bjN+

t−1
: 1 � j < p2),VPS(t− 1)

)
,

where aiM+
t−1

= Asi such that si � t for all 1 � i < p1 and bjN+
t−1

= Btj such that

tj � t for all 1 � j < p2. Since HPS(t − 1) = (a1, a2, . . . , aMt−1) and VPS(t − 1) =
(b1, b2, . . . , bNt−1), we have

xi5M
+
t−1+i4,j5N

+
t−1+j4

= xi5M
+
t−1+1,j5N

+
t−1+1 +

i4−1∑
i=0

ai +

j4−1∑
j=0

bj

for all 0 � i5 < p1, 0 � j5 < p2, 1 � i4 � M+
t−1 and 1 � j4 � N+

t−1.

For the purposes of contradiction, we assume i′ < m′. Since X and W coincide
on Grid(m′, n′), we have ai′ = ci′ = At. Also, xi′,j′ = z is the label on the rightmost
column of a copy of Xt−1 lying within Grid(m′, n′). Let (i0, j0) be the lower leftmost
vertex and (i1, j1) be the upper rightmost vertex in this copy of Xt−1. Then i1 =
i0+Mt−1 = i0+ν(HPS(t−1)) and j1 = j0+Nt−1 = i0+ν(VPS(t−1)). Also, xi1,j1 =
xi0,j0 +σ(HPS(t−1))+σ(VPS(t−1)) and xi1,j1 = xi1,j0+σ(VPS(t−1)). Since {xi,j :
i0 � i � i1 and j0 � i � j1} contains the labels {xi0,j0, xi0,j0 +1, xi0,j0 +2, . . . , xi1,j1},
we have (i′, j′) = (i1, j1). Thus xi1,j1 = z and xi1,j0 = xi1,j1 −σ(VPS(t−1)). We have
xi1+1,j0 = xi1,j0 +At = (xi1,j1 − σ(VPS(t− 1)))+ (σ(VPS(t− 1)))+ 1) = z+1. Thus
z+1 = xi1+1,j0 ∈ LabelX(Grid(m′n′)) which contradicts z+1 /∈ LabelX(Grid(m′n′)).
Hence, i′ = m′, cm′ = At = σ(VPS(t− 1)) + 1 and xm′,j′ = z.

We have p1 = m′/M+
t−1 and p2 = N+

k−1/N
+
t−1. We observed that the labels from

X on Grid(m′, n′) is a p1 × p2 array of copies of Xt−1 such that the labels in any
two copies of Xt−1 differ by some constant. Thus the labels from X on the vertices
of column m′ from Grid(m′, n′) are a stack of copies of the rightmost column of
Xt−1 that lie one atop another such that the labels in any two copies differ by some
constant. Let j2 = Nt−1 + 1. We observe that xm′,j2 = xm′,1 + σ(VPS(t − 1)) and
wm′+1,1 = wm′,1 + cm′ = xm′,1 + At = xm′,j2 + 1. Thus xm′,j2 ∈ LabelX(Grid(m′, n′))
and xm′,j2 + 1 = wm′+1,1 /∈ LabelX(Grid(m′, n′)). Let i2 = m′ − Mt−1 = m′ −
ν(HPS(t − 1)). Then {xi,j : i2 � i � m′ and 1 � i � j2} contains the labels
{xi2,1, xi2,1+1, xi2,1+2, . . . , xm′,j2}. Since z is the smallest positive integer such that
z ∈ LabelX(Grid(m′, n′)) and z + 1 /∈ LabelX(Grid(m′, n′)), we have j′ = j2 and
xm′,j2 = z. Thus bj2 = Bt. Hence, xm′,j2+1 = xm′,j2 + Bt = z + σ(HPS(t)) + 1. For
the purposes of contradiction, we assume x1,n′+1 = z + 1. Let i3 = Mt + 1. Since
i3 = M+

t � M+
k−1 < m′, we have xi3,n′+1 = x1,n′+1 + σ(HPS(t)) = z + 1+ σ(HPS(t)).

Thus xi3,n′+1 = z + σ(HPS(t)) + 1 duplicates the label xm′,j2+1 = z + σ(HPS(t)) + 1.
This contradicts the condition that each of the labels from {1, 2, . . . , mn} is used
exactly once in X. Thus z + 1 = xm′+1,1 = xm′,1 + am′ = z − σ(VPS(t − 1)) + am′ .
Therefore, am′ = σ(VPS(t−1))+1 = At = cm′ . Thus xm′+1,j = xm′,j+am′ = wm′,j+
cm′ = wm′+1,j for all 1 � j � n′. Hence, xi,j = wi,j for all (i, j) ∈ Grid(m′ + 1, n′).

Therefore, the only time that we can choose x1,n′+1 = z + 1 is when the labels
from X on column m′ of Grid(m′, n′) is the rightmost column of the labels from
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HCSs(Xk−1) for some positive integer s. We let mk be the largest positive integer
such that the labels of X match the labels of HCSmk(Xk−1) on Grid(mkM

+
k−1, N

+
k−1),

but the labels of X do not match the labels of HCSmk+1(Xk−1) on Grid((mk +
1)M+

k−1, N
+
k−1). By assumption, there are at least two copies ofXk−1 in this horizontal

connected sum of Xk−1. Thus, we have mk > 1.

If we have X = HCSmk(Xk−1), then X = Yk. We set k′ = k and nk′ = 1. Then
Xk′ = VCS1(Yk′) = Yk′. Hence, X = Xk′.

Otherwise, X is a labeling on a larger set of vertices than the labeling Yk =
HCSmk(Xk−1) on Grid(M+

k , N
+
k−1). Thus the labels from X coincide with the labels

from Yk on the vertices in Grid(M+
k , N

+
k−1). Since Yk = HCSmk(Xk−1) is a palin-

dromic sequence labeling on PM+
k
× PN+

k−1
, z = M+

k N
+
k−1 is the smallest positive

integer such that z ∈ LabelX(Grid(M+
k , N

+
k−1)) but z+1 /∈ LabelXGrid(M+

k , N
+
k−1)).

Furthermore, x1,N+
k−1+1 = z + 1.

In order to further complete the proof by Mathematical Induction, we assume
that for some positive integer k that the labels from X coincide with the labels
from Yk on Grid(M+

k , N
+
k−1), z = M+

k N
+
k−1 is the smallest positive integer such that

z ∈ LabelX(Grid(M+
k , N

+
k−1)) and z + 1 /∈ LabelX(Grid(M+

k , N
+
k−1)) and x1,N+

k−1+1 =

z + 1.

For convenience, let m′ = M+
k . We establish the following claim. Suppose there

exists a positive integer s such that, for some integer n′ with sN+
k−1 < n′ < (s +

1)N+
k−1, the labels from X coincide with the labels from VCSs+1(Yk) on Grid(m′, n′).

I.e., we have xi,j = wi,j for all (i, j) ∈ Grid(m′, n′). We want to show that the labels
from X must coincide with the labels from VCSs+1(Yk) on Grid(m′, n′ + 1). I.e., we
want to show xi,j = wi,j for all (i, j) ∈ Grid(m′, n′ + 1). Then bn′ = Bt for some
1 � t < k. Let z be the smallest positive integer such that z ∈ LabelX(Grid(m′, n′))
and z + 1 /∈ LabelX(Grid(m′, n′)). Then xi′,j′ = z for some (i′, j′) ∈ Grid(m′, n′).
By Lemma 3.31, either xm′+1,1 = z + 1 or x1,n′+1 = z + 1. We want to show
that x1,n′+1 = z + 1. For the purposes of contradiction, assume xm′+1,1 = z + 1.
Since the labels from X coincide with the labels from VCSs(Yk) on Grid(m′, n′) and
VCSs(Yk) = {1, 2, . . . , sM+

k N
+
k−1}, we have j′ > sN+

k−1.

Case 3. Assume dj′ = B1 = m1. We want to show j′ = n′ and bn′ = m1 =
B1 = dn′. For the purposes of contradiction, we assume j′ < n′. Since X and W
coincide on Grid(m′, n′), we have bj′ = dj′ = m1. Thus the labels of X on the
vertices from row j′ of Grid(m′, n′) correspond to copies of a non-topmost row of
X1 = HLL(m1, n1) laid side by side such that the labels in any two copies differ
by some constant. Furthermore, ai′ �= A1 = 1; otherwise, z + 1 = xi′,j′ + ai′ =
xi′+1,j′ ∈ LabelX(Grid(m′, n′)) which contradicts z+1 /∈ LabelX(Grid(m′, n′)). Thus
ai′ = Ar for some r > 1 and ai′−i = A1 = 1 for 1 � i � m1 − 1. So xi′−m1+1,j′ =
z −m1 + 1 and xi′−m1+1,j′+1 = xi′−m1+1,j′ + bj′ = z + 1. Thus z + 1 = xi′−m1+1,j′+1 ∈
LabelX(Grid(m′, n′)) which contradicts z+1 /∈ LabelX(Grid(m′, n′)). Hence, j′ = n′,
dn′ = B1 = m1 and xi′,n′ = z.

We observe that xi+1,n′ = x1,n′ + i for all 1 � i � m1 − 1. Thus xm1,n′ ∈
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LabelX(Grid(m′, n′)), but

xm1,n′ + 1 = x1,n′ +m1 = w1,n′ + dn′ = w1,n′+1 /∈ LabelX(Grid(m′, n′)).

Also, {xi,n′ : 1 � i � m1} is the set {x1,n′, x1,n′ + 1, x1,n′ + 2, . . . , xm1,n′, }. Since z
is the smallest positive integer with the property that z ∈ LabelX(Grid(m′, n′)) and
z + 1 /∈ LabelX(Grid(m′, n′)), we have xm1,n′ = z.

We observe that xm1+1,n′ = xm1,n′ + am1 = z + A2 = z + σ(VPS(1)) + 1. For the
purposes of contradiction, we assume xm′+1,1 = z + 1. Since n1 = ν(VPS(1)) + 1,
xm′+1,n1 = xm′+1,1 + σ(VPS(1)) = z+1+ σ(VPS(1)). This contradicts the condition
that each of the labels from {1, 2, . . . , mn} is used exactly once inX. Hence, x1,n′+,1 =
z + 1. Since z = xm1,n′ = x1,n′ + (m1 − 1), we have z + 1 = x1,n′+,1 = x1,n′ + bn′ =
(z−m1+1)+bn′. Therefore, bn′ = m1 = B1 = dn′. Thus xi,n′+1 = xi,n′ +bn′ = wi,n′+
dn′ = wi,n′+1 for all 1 � i � m′. Hence, xi,j = wi,j for all (i, j) ∈ Grid(m′, n′ + 1).

Case 4. Assume dj′ = Bt for some integer 2 � t � k − 1. We want to show j′ = n′

and bn′ = σ(HPS(t)) + 1 = Bt = dn′. Let p1 = M+
k /M

+
t and p2 = j′/N+

t−1. An
argument similar to that in Case 2 shows that the labels from X on Grid(m′, n′) is
a p1 × p2 array of copies of Yt such that the labels in any two copies of Yt differ by
some constant.

For the purposes of contradiction, we assume j′ < n′. Since the labels of X and
W are the same on Grid(m′, n′), bj′ = dj′ = Bt. Then xi′,j′ = z is the label on
the topmost row of a copy of Yt that lies in Grid(m′, n′). Let (i0, j0) be the lower
leftmost vertex and (i1, j1) be the upper rightmost vertex in this copy of Yt. Then
i1 = i0 + ν(HPS(t)) and j1 = j0 + ν(VPS(t− 1)). Also, xi1,j1 = xi0,j0 + σ(HPS(t)) +
σ(VPS(t−1)) and xi1,j1 = xi0,j1+σ(HPS(t)). Since {xi,j : i0 � i � i1 and j0 � i � j1}
is the set of labels {xi0,j0, xi0,j0+1, xi0,j0+2, . . . , xi1,j1}, we have (i′, j′) = (i1, j1). Thus
xi1,j1 = z and xi0,j1 = xi1,j1 −σ(HPS(t)). We have xi0,j1+1 = xi0,j1 +Bt = z+1. Thus
z+1 = xi0,j1+1 ∈ LabelX(Grid(m′n′)) which contradicts z+1 /∈ LabelX(Grid(m′, n′)).
Hence, j′ = n′, dn′ = Bt and xi′,n′ = z.

We have p1 = M+
k /M

+
t and p2 = n′/N+

t−1. We observed that the labels from X
on Grid(m′, n′) is a p1×p2 array of copies of Yt such that the labels in any two copies
of Yt differ by some constant. Thus the labels from X on the vertices of row n′ of
Grid(m′, n′) are a list of copies of the topmost row of Yt laid side by side such that
the labels in any two copies differ by some constant.

Let i2 = ν(HPS(t)) + 1. Then xi2,n′ = x1,n′ + σ(HPS(t)). We observe that
xi2,n′ ∈ LabelX(Grid(m′, n′)). Also, w1,n′+1 = w1,n′ + dn′ = x1,n′ + Bt = xi2,n′ + 1.
Hence, xi2,n′ + 1 = w1,n′+1 /∈ LabelX(Grid(m′, n′)). Let j2 = n′ − ν(VPS(t− 1)). We
observe that {xi,j : 1 � i � i2 and j2 � j � n′} is the set of labels {x1,j2, x1,j2 +
1, x1,j2 +2, . . . , xi2,n′}. Since z is the smallest positive integer with the property that
z ∈ LabelX(Grid(m′, n′)) and z + 1 /∈ LabelX(Grid(m′, n′)), we have xi2,n′ = z.

Since i2 = M+
t , we have ai2 = At+1 = σ(VPS(t)) + 1. Thus xi2+1,n′ = xi2,n′ +

ai2 = z + σ(VPS(t)) + 1. Let j3 = Nt + 1 = ν(VPS(t)) + 1. We observe that
j3 = N+

t � N+
k−1. For the purposes of contradiction, we assume xm′+1,1 = z + 1,

Hence, xm′+1,j3 = xm′+1,1 + σ(VPS(t)) = z + 1 + σ(VPS(t)). This contradicts the
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condition that each of the labels from {1, 2, . . . , mn} is used exactly once in X. Thus
z+1 = x1,n′+1 = x1,n′ + bn′ = z− σ(HPS(t)) + bn′ . Therefore, bn′ = σ(HPS(t)) + 1 =
Bt = dn′. Thus xi,n′+1 = xi,n′ + bn′ = wi,n′ + dn′ = wi,n′+1 for all 1 � i � m′. Hence,
xi,j = wi,j for all (i, j) ∈ Grid(m′, n′ + 1).

Therefore, the only time that we can choose xm′+1,1 = z+1 is when the labels of
X on row n′ of Grid(m′, n′) is the topmost row of the labels on VCSs(Yk) for some
positive integer s. We let nk be the largest positive integer such that the labels of
X match the labels of VCSnk(Yk) on Grid(M+

k , nkN
+
k−1), but the labels of X do not

match the labels of VCSnk+1(Yk) on Grid(M+
k , (nk + 1)N+

k−1). By assumption, there
are at least two copies of Yk in this vertical connected sum of Yk. Thus, we have
nk > 1.

If X is a labeling on a larger set of vertices than the labeling Xk = VCSnk(Yk),
then we need to continue the inductive step. Thus the labels from X coincide with
the labels from Xk on Grid(M+

k , N
+
k ). Since Xk = VCSnk(Yk) is a palindromic

sequence labeling on PM+
k
× PN+

k
, z = M+

k N
+
k is the smallest positive integer such

that z ∈ LabelX(Grid(M+
k , N

+
k )) but z + 1 /∈ LabelX(Grid(M+

k , N
+
k )). Furthermore,

xM+
k +1,1 = z + 1.

Otherwise, we have X = VCSnk(Yk). We set k′ = k. Then nk′ = nk and X = Xk′.
This completes the inductive step of the proof.

From equations (26) and (27), we have

m = M+
k′ = m1m2 · · ·mk′ and

n = N+
k′ = n1n2 · · ·nk′.

Thus mk is a factor of m and nk is a factor of n for all 1 � k � k′. Also, each of
the factors mk and nk are greater than 1, for all 1 � k � k′, except possibly nk′

(for which nk′ � 1). We let F denote the (m,n)-projective factorization sequence
F = (mk, nk : 1 � k � k′). Then X = HPSL(F ).

Let Fi = (mi,1, ni,1, mi,2, ni,2, . . . , mi,ki, ni,ki), for i = 1 and 2, be distinct (m,n)-
projective factorization sequences. We need to show that HPSL(F1) and HPSL(F2)
are distinct palindromic sequence labelings on Pm × Pn. Let (ai,j : 1 � j � m) and
(bi,j : 1 � j � n) be the palindromic sequences used in HPSL(Fi) for i = 1 and
2. If either the sequences (ai,j : 1 � j � m), for i = 1 and 2, are different, or the
sequences (bi,j : 1 � j � n), for i = 1 and 2, are different, then the palindromic
sequence labelings HPSL(F1) and HPSL(F2) are distinct. If F1 and F2 have different
lengths, then either the number of distinct values in the sequences (ai,j : 1 � j � m),
for i = 1 and 2, are different, or the number of distinct values in the sequences
(bi,j : 1 � j � n), for i = 1 and 2, are different.

Suppose F1 and F2 have the same length k′ = k1 = k2. Let k be the smallest
positive integer such that either m1,k �= m2,k or n1,k �= n2,k. Since two factorizations
of m (or n) with exactly k factors each cannot have exactly k − 1 factors that are
the same, we have k � k′ − 1. In case n1,k′ = n2,k′ = 1, we have k � k′ − 2. Let
HPS(i, j) and VPS(i, j) be the palindromic sequences used in Xi,j for i = 1 and 2.

If m1,k �= m2,k, then the vertical palindromic sequence for Xi,k = VCSni,k(HCSmi,k
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(Xi,k−1)) is

VPS(i, k) =
(
VPS(i, k − 1), (Bi,k,VPS(i, k − 1))ni,k−1

)
,

where

Bi,k = mi,k[σ(HPS(i, k − 1)) + σ(VPS(i, k − 1)) + 1]− σ(VPS(i, k − 1)).

Since HPS(1, k−1) = HPS(2, k−1), VPS(1, k−1) = VPS(2, k−1) and m1,k �= m2,k,
we have B1,k �= B2,k.

If n1,k �= n2,k, then the horizontal palindromic sequence for Yi,k+1 = HCSmi,k+1

(VCSni,k(Yi,k)) is

HPS(i, k + 1) =
(
HPS(i, k), (Ai,k+1,HPS(i, k))

mi,k+1−1
)
,

where

Ai,k+1 = ni,k[σ(VPS(i, k − 1)) + σ(HPS(i, k)) + 1]− σ(HPS(i, k)).

Since VPS(1, k−1) = VPS(2, k−1), HPS(1, k) = HPS(2, k) and n1,k �= n2,k, we have
A1,k+1 �= A2,k+1. In all three cases, HPSL(F1) and HPSL(F2) are distinct palindromic
sequence labelings on Pm × Pn.

A similar argument shows that if F ′
1 and F ′

2 are distinct (n,m)-projective factor-
ization sequences, then VPSL(F ′

1) and VPSL(F ′
2) are distinct palindromic sequence

labelings on Pm × Pn.

Example 3.33. Table 1 illustrates the palindromic sequence labeling HPSL(3, 3, 3, 3)
on P9 × P9 that uses the palindromic sequences HPS(2) = (1, 1, 7, 1, 1, 7, 1, 1) and
VPS(2) = (3, 3, 21, 3, 3, 21, 3, 3). This labeling corresponds to the (9, 9)-projective
factorization sequence (3, 3, 3, 3).

Theorem 3.34. Let m � 3 and n � 3 be odd integers. Let X = {xi,j : (i, j) ∈
V (Pm,n)} be a standard centrally balance C4-face-magic labeling on Pm,n. Then X is
constructed in one of the following two ways.

1. There exists an (m,n)-projective factorization sequence
F = (m1, n1, m2, n2, . . . , mk′, nk′) such that X = T(HPSL(F )).

2. There exists an (n,m)-projective factorization sequence
F ′ = (n′

1, m
′
1, n

′
2, m

′
2, . . . , n

′
k′, m

′
k′) such that X = T(VPSL(F ′)).

Furthermore, distinct (m,n)-projective factorization sequences F1 and F2 give rise
to distinct palindromic sequence labelings T(HPSL(F1)) and T(HPSL(F2)) on Pm,n.
Similarly, distinct (n,m)-projective factorization sequences F ′

1 and F ′
2 give rise to

distinct palindromic sequence labelings T(VPSL(F ′
1)) and T(VPSL(F ′

2)) on Pm,n.

Proof. By Proposition 3.20, T(X) is a palindromic sequence labeling on Pm × Pn.
By Theorem 3.32, T(X) is constructed in one of the following two ways.
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61 62 63 70 71 72 79 80 81

58 59 60 67 68 69 76 77 78

55 56 57 64 65 66 73 74 75

34 35 36 43 44 45 52 53 54

31 32 33 40 41 42 49 50 51

28 29 30 37 38 39 46 47 48

7 8 9 16 17 18 25 26 27

4 5 6 13 14 15 22 23 24

1 2 3 10 11 12 19 20 21

Table 1: The palindromic sequence labeling HPSL(3, 3, 3, 3) on P9 × P9.
For convenience, we display P9 × P9 as a 9× 9 checkerboard.

1. There exists an (m,n)-projective factorization sequence
F = (m1, n1, m2, n2, . . . , mk′, nk′) such that T(X) = HPSL(F ).

2. There exists an (n,m)-projective factorization sequence
F ′ = (n′

1, m
′
1, n

′
2, m

′
2, . . . , n

′
k′, m

′
k′) such that T(X) = VPSL(F ′).

Since T is an involution, we have either X = T(HPSL(F )) or X = T(VPSL(F ′)).

By Theorem 3.32, given distinct (m,n)-projective factorization sequences F1 and
F2, the palindromic sequence labelings HPSL(F1) and HPSL(F2) on Pm × Pn are
distinct. Thus T(HPSL(F1)) and T(HPSL(F2)) are distinct standard centrally bal-
anced C4-face-magic projective labelings on Pm,n. Similarly, if F ′

1 and F ′
2 are distinct

(n,m)-projective factorization sequences, then T(VPSL(F ′
1)) and T(VPSL(F ′

2)) are
distinct standard centrally balanced C4-face-magic projective labelings on Pm,n.

Theorem 3.35. Let m � 3 be an odd integer. Let X = {xi,j : (i, j) ∈ V (Pm,m)}
be a standard centrally balance C4-face-magic labeling on Pm,m. There exists an
(m,m)-projective factorization sequence F = (m1, n1, m2, n2, . . . , mk′, nk′) such that
X = T(HPSL(F )).

Proof. By Theorem 3.34, X is constructed in one of the following two ways.

1. There exists an (m,m)-projective factorization sequence F = (m1, n1, m2,
n2, . . . , mk′, nk′) such that X = T(HPSL(F )).

2. There exists an (m,m)-projective factorization sequence F ′ = (n′
1, m

′
1, n

′
2,

m′
2, . . . , n

′
k′, m

′
k′) such that X = T(VPSL(F ′)).

If X is constructed in the first of these two ways, we are done. Otherwise, there
exists an (m,m)-projective factorization sequence F ′ = (n′

1, m
′
1, n

′
2, m

′
2, . . . , n

′
k′, m

′
k′)

such that X = T(VPSL(F ′)). We apply the reflection D+ about the diagonal line
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with positive slope passing through the center of Pm,m to X to obtain the labeling
Y . Then Y = T(HPSL(F ′)).

Example 3.36. Table 2 illustrates the standard centrally balanced C4-face-magic
projective labeling T(HPSL(3, 3, 3, 3)) on P9,9 with C4-face-magic value S = 164.
This labeling corresponds to the (9, 9)-projective factorization sequence (3, 3, 3, 3).

61 2 63 10 71 12 79 20 81

78 23 76 15 68 13 60 5 58

55 8 57 16 65 18 73 26 75

54 47 52 39 44 37 36 29 34

31 32 33 40 41 42 49 50 51

48 53 46 45 38 43 30 35 28

7 56 9 64 17 66 25 74 27

24 77 22 69 14 67 6 59 4

1 62 3 70 11 72 19 80 21

Table 2: The standard centrally balanced C4-face magic labeling
T(HPSL(3, 3, 3, 3)) on P9,9. For convenience, we display P9,9 as a 9 × 9
projective checkerboard.

Notation 3.37. Let m � 3 be an odd integer. We define the function β given by

β(m) =

{ (
(m−1

4
)!
)2
, if m ≡ 1 (mod 4),

(m−3
4

)!(m+1
4

)!, if m ≡ 3 (mod 4).

The following theorem gives us the minimum number of distinct C4-face-magic
projective labelings on Pm,n having C4-face-magic value 2mn + 1 or 2mn + 3 for
distinct odd integers m and n.

Theorem 3.38. [9] Let m � 3 and n � 3 be distinct odd integers. Then the number
of distinct C4-face-magic projective labelings on Pm,n having C4-face-magic value
2mn + 1 or 2mn + 3 (up to symmetries on the projective plane) is at least(

τ(m,n) + τ(n,m)
)
2m/2+n/2−3β(m)β(n).

The next theorem gives us the minimum number of distinct C4-face-magic pro-
jective labelings on Pm,m having C4-face-magic value 2m2 + 1 or 2m2 + 3.

Theorem 3.39. [9] Let m � 3 be an odd integer. Then the number of distinct
C4-face-magic projective labelings on Pm,m having C4-face-magic value 2m2 + 1 or
2m2 + 3 (up to symmetries on the projective plane) is at least

τ(m,m)2m−3
(
β(m)

)2
.
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We determine the number of centrally balanced C4-face-magic projective labelings
on Pm,n when m and n are distinct odd integers in the theorem below.

Theorem 3.40. Let m � 3 and n � 3 be distinct odd integers. Then the num-
ber of distinct centrally balanced C4-face-magic projective labelings on Pm,n (up to
symmetries on the projective plane) is(

τ(m,n) + τ(n,m)
)
2m/2+n/2−3(m−1

2
)!(n−1

2
)!.

Proof. We first count the number of centrally balanced C4-face-magic projective la-
belings on Pm,n. For each standard centrally balanced C4-face-magic labeling X
on Pm,n, there are 2m0m0!2

n0n0! elementary projective labeling operations that give
rise to 2m0m0!2

n0n0! centrally balanced C4-face-magic projective labelings on Pm,n

associated with X. Of these elementary projective labeling operations, 4 of them
result from the symmetries R0, R180, H and V . Thus there are 1

4
(2m0m0!2

n0n0!) =
2m/2+n/2−3(m−1

2
)!(n−1

2
)! distinct centrally balanced C4-face-magic projective labelings

on Pm,n associated with X (up to symmetries on the projective plane). By Theo-
rem 3.34, each (m,n)-projective factorization sequence F and each (n,m)-projective
factorization sequence F ′ are associated with unique standard centrally balanced C4-
face-magic projective labelings X on Pm,n given by T(HPSL(F )) and T(VPSL(F ′)).
Thus there are

(
τ(m,n)+τ(n,m)

)
2m/2+n/2−3(m−1

2
)!(n−1

2
)! distinct standard centrally

balanced C4-face-magic labeling X on Pm,n (up to symmetries on the projective
plane).

We determine the number of centrally balanced C4-face-magic projective labelings
on Pm,m in the next theorem below.

Theorem 3.41. Let m � 3 be an odd integer. Then the number of distinct cen-
trally balanced C4-face-magic projective labelings on Pm,m (up to symmetries on the
projective plane) is

τ(m,m)2m−3
(
(m−1

2
)!
)2
.

The proof is similar to that of Theorem 3.40. We now state the minimum number
of C4-face-magic labelings on Pm,n when m and n are distinct odd integers.

Theorem 3.42. Let m � 3 and n � 3 be distinct odd integers. Then the num-
ber of distinct C4-face-magic projective labelings on Pm,n (up to symmetries on the
projective plane) is at least(

τ(m,n) + τ(n,m)
)
2m/2+n/2−3

(
(m−1

2
)!(n−1

2
)! + 2β(m)β(n)

)
.

Proof. By Theorem 3.40, there are
(
τ(m,n) + τ(n,m)

)
2m/2+n/2−3(m−1

2
)!(n−1

2
)! dis-

tinct standard centrally balanced C4-face-magic labeling X on Pm,n (up to symme-
tries on the projective plane). By Theorem 3.38, for each value S = 2mn + 1 and
S = 2mn+3, there are at least

(
τ(m,n)+τ(n,m)

)
2m/2+n/2−3β(m)β(n) C4-face-magic

projective labelings on Pm,n with C4-face-magic value S. Therefore, by Lemma 2.6,
there are at least(

τ(m,n) + τ(n,m)
)
2m/2+n/2−3

(
(m−1

2
)!(n−1

2
)! + 2β(m)β(n)

)
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distinct C4-face-magic projective labelings on Pm,n (up to symmetries on the projec-
tive plane).

Theorem 3.43. Let m � 3 be an odd integer. Then the number of distinct C4-face-
magic projective labelings on Pm,m (up to symmetries on the projective plane) is at
least

τ(m,m)2m−3
((
(m−1

2
)!
)2

+ 2
(
β(m)

)2)
.

Proof. We make use of Theorems 3.39 and 3.41 to verify this theorem. The proof is
similar to that of Theorem 3.42.

These results lead us to ask the following question.

Problem 3.44. Can one characterize the C4-face-magic labelings on the m × n
projective grid graph Pm,n when m and n are even?

Due to Lemma 2.5, the C4-face-magic value of a labeling in Problem 3.44 must
be 2mn+ 2. Curran and Locke [10] have characterized the C4-face-magic projective
labelings on the 4 × 4 projective grid graph P4,4. They show that there are 144
C4-face-magic projective labelings on P4,4 up to symmetries on the projective plane.
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[2] M. Bača, On magic labelings of honeycomb, Discrete Math. 105 (1992), 305–
311. doi.org/10.1016/0012-365X(92)90153-7.
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