On degree conditions of semi-balanced 3-partite Hamiltonian graphs

Kuniharu Yokomura

STEM Education Center, Tokai University Hiratsuka 259-1292 Japan k.yokomura@tsc.u-tokai.ac.jp

Abstract

A k-partite graph is said to be a semi-balanced k-partite graph if each partite set has either n or m vertices. We deal with semi-balanced 3-partite graphs. If $G = (V_1 \cup V_2 \cup V_3, E)$ is a semi-balanced 3-partite graph with $|V_1| = |V_2| \ge |V_3| \ge 2$ which satisfies the following conditions: (1) for all $x \in V_i$ (i = 1, 2), $|N(x) \cap V_j| \ge \frac{|V_j|+2}{2}$ $(j = 1, 2, 3, j \ne i)$, and (2) for all $x \in V_3$, $|N(x) \cap V_j| \ge \frac{2|V_j|-|V_3|+2}{2}$ (j = 1, 2), then G is Hamiltonian. And we also show that a semi-balanced 3-partite graph $G = (V_1 \cup V_2 \cup V_3, E)$, where $|V_1| = |V_2| \ge |V_3|$, is pancyclic if for all $x \in V_i$, $|N(x) \cap V_j| \ge \frac{2|V_j|}{3}$ (for all $j \ne i$).

1 Introduction

In this paper, we deal with simple graphs. For a vertex v of a graph G, the *neighborhood* of v in G is $N_G(v) = \{u \in V(G) \mid uv \in E(G)\}$. Let $\delta(G)$ denote the *minimum* degree of G. For a subset $S \subset V(G)$, $\langle S \rangle$ denotes the subgraph induced by S. A Hamiltonian cycle (respectively, Hamiltonian path) in G is a cycle (respectively, path) which contains every vertex of G. Furthermore, for a subgraph H of G, a cycle (respectively, path) which contains every vertex of H is said to be an H-Hamiltonian cycle (respectively, H-Hamiltonian path).

A graph G is said to be *pancyclic* if G contains a cycle of length l, for all $3 \leq l \leq |V(G)|$. A bipartite graph G with 2n vertices is said to be *bipancyclic* if G contains a cycle of length 2l for all $2 \leq l \leq n$. A k-partite graph is said to be a *balanced* k-partite graph if each partite set has the same number of vertices. A k-partite graph is said to be a *semi-balanced* k-partite graph if each partite set has either n or m vertices. A k-regular spanning subgraph of G is said to be a k-factor. And for a subgraph H of G, a k-regular spanning subgraph of H is said to be an H-k-factor. For two graphs G_1 and G_2 , the union of G_1 and G_2 , denoted by $G_1 \cup G_2$, is the graph with $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2)$. The earliest works on degree conditions of Hamiltonian graphs are given by Dirac [3] and Ore [7].

Theorem 1.1 (Dirac [3]) Let G be a graph with $n \ge 3$ vertices. If $\delta(G) \ge \frac{n}{2}$, then G is Hamiltonian.

Theorem 1.2 (Ore [7]) Let G be a graph with $n \ge 3$ vertices. If $d(u) + d(v) \ge n$ for any two non-adjacent vertices u and v of G, then G is Hamiltonian.

For balanced bipartite graphs, Moon and Moser [6] gave the following result.

Theorem 1.3 (Moon-Moser [6]) Let G be a balanced bipartite graph with $2n \ge 4$ vertices. If $\delta(G) \ge \frac{n+1}{2}$, then G is Hamiltonian.

A graph G with a 1-factor is said to be a Hamiltonian alternating cycle graph (HAC-graph) if every 1-factor is contained in a Hamiltonian cycle of G. A graph with a 1-factor is said to be a Hamiltonian alternating path graph (HAP-graph) if every 1-factor is contained in a Hamiltonian path of G.

For balanced bipartite graphs, Las Vergnas [5] gave the following result.

Theorem 1.4 (Las Vergnas [5]) Let G be a balanced bipartite graph with partite sets $V_1, V_2(|V_i| = n)$. If for each pair x, y of nonadjacent vertices with $x \in V_1, y \in V_2$, we have

Case 1:
$$d(x) + d(y) \ge n + 2$$
,
Case 2: $d(x) + d(y) \ge n + 1$,

then, in Case 1, G is an HAC-graph, and in Case 2, G is an HAP-graph.

Moreover, Yokomura [9] gave the following Ore-type condition for a balanced 3-partite graph to be Hamiltonian.

Theorem 1.5 (Yokomura [9]) Let G be a balanced 3-partite graph with partite sets V_1, V_2 and V_3 , where $|V_i| = n$ for i = 1, 2, 3. If $|N(u) \cap V_j| + |N(v) \cap V_i| \ge n + 1$ for any two nonadjacent vertices $u \in V_i$ and $v \in V_j$ $(1 \le i < j \le 3)$, then G is Hamiltonian.

Also Chen et al. [2] gave the following Dirac-type condition for a balanced k-partite graph to be Hamiltonian.

Theorem 1.6 (Chen et al. [2]) Let G be a balanced k-partite graph with kn vertices. If the minimum degree satisfies

$$\delta(G) > \begin{cases} \left(\frac{k}{2} - \frac{1}{k+1}\right)n & \text{if } k \text{ is odd,} \\ \left(\frac{k}{2} - \frac{2}{k+2}\right)n & \text{if } k \text{ is even,} \end{cases}$$

then G is Hamiltonian.

Almost all known sufficient conditions for a graph to have a Hamiltonian cycle imply that their graphs have many edges. Some sufficient conditions for a graph to be Hamiltonian also imply that it is pancyclic. For example, Ore's result [7] was generalized by Bondy [1].

Theorem 1.7 (Bondy [1]) Let G be a graph with $n \ge 3$ vertices. If $d(u)+d(v) \ge n$ for any two non-adjacent vertices u and v of G, then G is either pancyclic or the graph $K_{\frac{n}{2},\frac{n}{2}}$.

Moreover, for balanced bipartite graphs, Schmeichel and Mitchem [8] showed the following result:

Theorem 1.8 (Schmeichel and Mitchem [8]) Let G be a balanced bipartite graph with 2n vertices, (n > 3). If $d(v) \ge \frac{n+1}{2}$ for all $v \in V(G)$, then G is bipancyclic.

In each of the above results on k-partite graphs, the graphs are balanced and thus have partite sets of the same size. In this paper, we consider some sufficient conditions that 3-partite graphs such that one partite set consists of a different number of vertices from the other partite sets to be Hamiltonian or pancyclic.

2 Hamiltonian semi-balanced 3-partite graphs

In this section, we give a degree condition for a semi-balanced 3-partite graph to be Hamiltonian.

Theorem 2.1 Let G be a semi-balanced 3-partite graph with partite sets V_1, V_2, V_3 and $|V_1| = |V_2| \ge |V_3| \ge 2$. If G satisfies the conditions: (1) for all $x \in V_i$ (i = 1, 2),

$$|N(x) \cap V_j| \ge \frac{|V_j| + 2}{2}$$
 $(j = 1, 2, 3, j \ne i), and$

(2) for all $x \in V_3$,

$$|N(x) \cap V_j| \ge \frac{2|V_j| - |V_3| + 2}{2}$$
 $(j = 1, 2),$

then G is Hamiltonian.

Proof of Theorem 2.1. Let $|V_1| = |V_2| = n$ and $|V_3| = m$, where $n \ge m \ge 2$. Now G is a semi-balanced 3-partite graph with 2n + m vertices.

For $n \leq 3$, the graphs that satisfy the condition in the theorem are $K_{2,2,2}$, $K_{3,3,2}$ and $K_{3,3,3}$. It is obvious that these graphs contain Hamiltonian cycles.

So we assume that $n \ge 4$.

In $\langle V_1 \cup V_2 \rangle$, each vertex $v \in V_1$ is adjacent to $\frac{n+2}{2}$ vertices of V_2 and each vertex $u \in V_2$ is adjacent to $\frac{n+2}{2}$ vertices of V_1 . So $\langle V_1 \cup V_2 \rangle$ is a balanced bipartite graph satisfying the conditions of Theorem 1.3. Thus $\langle V_1 \cup V_2 \rangle$ is Hamiltonian and has a 1-factor $F^{1,2}$.

Let A be a set of m edges in $F^{1,2}$, and let $S_1 = V_1 \cap V(A)$, $S_2 = V_2 \cap V(A)$. For $\langle S_1 \cup V_3 \rangle$, each vertex $w \in V_3$ is adjacent to at least

$$\frac{2n-m+2}{2} - (n-m) = \frac{m+2}{2}$$

vertices in S_1 and each vertex $v \in S_1$ is adjacent to at least $\frac{m+2}{2}$ vertices in V_3 by condition (1) in the theorem. So $\langle S_1 \cup V_3 \rangle$ is a balanced bipartite graph satisfying the condition of Theorem 1.3. Thus $\langle S_1 \cup V_3 \rangle$ is Hamiltonian and has a 1-factor $F^{1,3} = \{v_i w_i \mid v_i \in S_1, w_i \in V_3, i = 1, 2, ..., m\}$. Similarly, $\langle S_2 \cup V_3 \rangle$ has a 1-factor $F^{2,3} = \{w_i u_i \mid w_i \in V_3, u_i \in S_2, i = 1, 2, ..., m\}$. From two 1-factors $F^{1,3}$ and $F^{2,3}$, G has m paths:

$$P_{(i)} = v_i w_i u_i \ (v_i \in S_1, \ u_i \in S_2, \ w_i \in V_3, \ i = 1, 2, \dots, m)$$

We create a new semi-balanced 3-partite graph H by adding each edge $v_i u_i$ $(v_i \in S_1, u_i \in S_2)$ if there is no edge $v_i u_i$ in G. Let B be the set of these added edges and $M = \{v_i u_i \mid v_i \in S_1, u_i \in S_2, i = 1, 2, ..., m\}$. Then H is a simple semi-balanced 3-partite graph with a 1-factor $F_*^{1,2} = M \cup (F^{1,2} - A)$ in $\langle V_1 \cup V_2 \rangle$. And by Theorem 1.4, $\langle V_1 \cup V_2 \rangle$ has a Hamiltonian cycle $C^{1,2}$ which contains all edges of $F_*^{1,2}$. Then by replacing m edges $u_i v_i$ of M with m paths $P_{(i)}$, respectively, and deleting all edges of B, we can obtain a Hamiltonian cycle of G.

3 Pancyclic semi-balanced 3-partite graphs

In this section, we give a degree condition for a semi-balanced 3-partite graph to be pancyclic. In the proof of Theorem 3.2, we use following result, that is, Hall's Theorem [4].

Given any sets S_1, S_2, \ldots, S_k , we say that an element $s_i \in S_i$ is a representative for the set S_i which contains it. If $s_i \neq s_j$ for each i, j with $1 \leq i < j \leq k$, then $\{s_1, s_2, \ldots, s_k\}$ are said to be a system of distinct representatives for the sets S_1, S_2, \ldots, S_k .

Theorem 3.1 (Hall [4]) A collection S_1, S_2, \ldots, S_k $(k \ge 1)$ of finite nonempty sets has a system of distinct representatives if and only if the union of every t $(1 \le t \le k)$ sets of these sets contains at least t elements.

Theorem 3.2 Let G be a semi-balanced 3-partite graph with partite sets V_1, V_2, V_3 and $|V_1| = |V_2| \ge |V_3|$. If G satisfies the conditions: for all $x \in V_i$,

$$|N(x) \cap V_j| \ge \frac{2|V_j|}{3} \quad (for \ all \ j \ne i),$$

then G is pancyclic.

Proof of Theorem 3.2. Let $|V_1| = |V_2| = n$ and $|V_3| = m$, where $n \ge m$. Let G be a semi-balanced 3-partite graph on 2n + m vertices with partite sets V_1 , V_2 and V_3 that satisfies the condition in the theorem.

Let n = m = 1. For all $x \in V_i$,

$$|N(x) \cap V_j| \ge \frac{2|V_j|}{3} = \frac{2 \cdot 1}{3} = \frac{2}{3}$$
 (for all $j \ne i$).

Thus $G = K_{1,1,1} = C_3$, and G is pancyclic.

So we assume that $n \geq 2$.

First, we prove that a semi-balanced 3-partite graph has a cycle of length l for all numbers l such that $2n \leq l \leq 2n + m$.

Let n = 2. For all $x \in V_i$ (i = 1, 2),

$$|N(x) \cap V_{3-i}| = \frac{2|V_{3-i}|}{3} \ge \frac{2 \cdot 2}{3} = \frac{4}{3}.$$

Thus $\langle V_1 \cup V_2 \rangle = K_{2,2}$, and there exists a $\langle V_1 \cup V_2 \rangle$ -Hamiltonian cycle of length 2n = 4. If $n \geq 3$, for all vertices $v \in V_i$ (i = 1, 2), v is adjacent to at least $\frac{2n}{3}$ vertices of V_{3-i} . Thus, from Theorem 1.3, there exists a $\langle V_1 \cup V_2 \rangle$ -Hamiltonian cycle of length 2n in G.

Let

$$C^{1,2} = v_1 u_1 v_2 u_2 \cdots v_n u_n v_1 \quad (v_i \in V_1, u_i \in V_2)$$

be a $\langle V_1 \cup V_2 \rangle$ -Hamiltonian cycle of length 2n and for $w \in V_3$, let $S_w = \{e = xy \in E(C^{1,2}) \mid \{x,y\} \subset N(w)\}$. We assume that $\{S_w \mid w \in V_3\}$ has a system of distinct representatives $S = \{e_w = x_w y_w \mid e_w \in S_w, w \in V_3\}$. And let $P = \{p_w = x_w y_w \mid x_w y_w \in S, w \in V_3\}$. Then for all $s \in \{1, \ldots, m\}$, by replacing s edges on $C^{1,2}$ with s disjoint paths of length 2 in P, we can expand $C^{1,2}$ into a cycle of length 2n + s in G.

For each $w_i \in V_3$, since $|V_j - N(w_i)| \leq \frac{n}{3}$ for j = 1, 2, it follows that $|V_1 \cup V_2 - N(w_i)| \leq \frac{2n}{3}$. If all vertices of $V_1 \cup V_2 - N(w_i)$ are removed from $C^{1,2}$, the remaining edges on $C^{1,2}$ are edges whose two end vertices are adjacent to w_i . By deleting one vertex in $C^{1,2}$, at most two edges are removed from $C^{1,2}$. Since $|E(C^{1,2})| = 2n$, $C^{1,2} - (V_1 \cup V_2 - N(w_i))$ has at least $\frac{2n}{3} (= 2n - (\frac{2n}{3} \times 2))$ edges for each $w_i \in V_3$. Therefore, for each vertex $w_i \in V_3$, there exist at least $\frac{2n}{3}$ edges on $C^{1,2}$ whose two end vertices are adjacent to w_i .

Let T be a subset of V_3 which has more than $\frac{2m}{3}$ vertices and $|T| = \frac{2m}{3} + \alpha$. We assume that there exists an edge f of $C^{1,2}$ whose two end vertices have no common adjacent vertices in T. Thus, at least one of the end vertices of f, say v, is adjacent

to at most $\frac{m}{3} + \frac{\alpha}{2}$ vertices of T. And v is adjacent to at most

$$\left(\frac{m}{3} + \frac{\alpha}{2}\right) + \left(\frac{m}{3} - \alpha\right) = \frac{2m}{3} - \frac{\alpha}{2} \left(<\frac{2m}{3}\right)$$

vertices of V_3 . This contradicts the condition of our theorem. Therefore, both end vertices of each edge of $C^{1,2}$ have a common adjacent vertex $w_i \in T$.

Now, for each $w_i \in V_3$, let $E(w_i)$ be the set of edges on $C^{1,2}$ whose two end vertices are adjacent to w_i . Then for $W \subseteq V_3$,

if
$$|W| \le \frac{2m}{3}$$
, then $\left| \bigcup_{w_i \in W} E(w_i) \right| \ge \frac{2n}{3} \left(\ge \frac{2m}{3} \right)$,
if $\frac{2m}{3} < |W|$, then $\left| \bigcup_{w_i \in W} E(w_i) \right| = 2n$.

Thus, by Theorem 3.1, the collection $\{S_w \mid w \in V_3\}$ has a system of distinct representatives and G has a cycle of length of 2n + s for all $s \in \{1, \ldots, m\}$.

To complete the proof of Theorem 3.2, we prove that G contains an *l*-cycle for every $3 \le l \le 2n + 1$.

Let $vu \in E(\langle V_1 \cup V_2 \rangle)$ $(v \in V_1, u \in V_2)$. Since $|N(v) \cap N(u) \cap V_3| \ge \frac{m}{3}$, v and u have a common adjacent vertex, say w, in V_3 . Then C = vwuv is a 3-cycle of G.

If n = 3, $\langle V_1 \cup V_2 \rangle$ has a Hamiltonian cycle $C^{1,2} = v_1 u_1 v_2 u_2 v_3 u_3 v_1$ and thus has a path $v_1 u_1 v_2 u_2$. Since $|N(v_1) \cap N(v_2) \cap V_3| \ge \frac{m}{3}$, v_1 and v_2 have a common adjacent vertex, say w', in V_3 . Then $C = v_1 u_1 v_2 w' v_1$ is a 4-cycle of G. Similarly, since $|N(v_1) \cap N(u_2) \cap V_3| \ge \frac{m}{3}$, v_1 and u_2 have a common adjacent vertex, say w'', in V_3 . Then $C = v_1 u_1 v_2 w' v_1$ is a 5-cycle of G.

If $n \ge 4$, each vertex $v \in V_1$ is adjacent to at least $\frac{2n}{3}$ vertices in V_2 and each vertex $u \in V_2$ is adjacent to at least $\frac{2n}{3}$ vertices in V_1 . By Theorem 1.8, $\langle V_1 \cup V_2 \rangle$ has a cycle

$$C_{2t}^{1,2} = v_1 u_1 v_2 u_2 \cdots v_t u_t v_1 \ (v_i \in V_1, \ u_i \in V_2)$$

of length 2t for all $t \in \{2, \ldots, n\}$. Since $|N(v_1) \cap N(u_1) \cap V_3| \ge \frac{m}{3}$, v_1 and u_1 have a common adjacent vertex, say w^* , in V_3 . Then

$$v_1 w^* u_1 v_2 u_2 \cdots v_t u_t v_1 \ (v_i \in V_1, \ u_i \in V_2)$$

is a (2t+1)-cycle. Thus G contains an l-cycle for every $3 \le l \le 2n+1$.

We have already proved that a semi-balanced 3-partite graph G contains a cycle of length of 2n+s for all $s \in \{1, \ldots, m\}$; thus for all numbers l such that $3 \leq l \leq 2n+m$, G has a cycle of length l. Therefore G is pancyclic.

A split graph is a graph in which the vertex set can be partitioned into a clique and an independent set. We have the following result by Theorem 3.2.

Proposition 3.3 Let G be a split graph with a clique K of 2n vertices and an independent set V_3 of m vertices, where m < n. If the clique K can be divided into two subsets V_1 and V_2 such that $|V_1| = |V_2| = n$, and

$$|N(x) \cap V_3| \ge \frac{2m}{3}$$
 for all $x \in V_1 \cup V_2$, and
 $|N(x) \cap V_i| \ge \frac{2n}{3}$ $(i = 1, 2)$ for all $x \in V_3$,

then G is pancyclic.

Remarks

Hamiltonicity and pancyclicity in semi-balanced 3-partite graphs with $|V_1| \ge |V_2| = |V_3|$ are open problems, and should be considered by other approaches.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and feedback, which helped improve the paper.

References

- [1] J. A. Bondy, Pancyclic graphs I, J. Combin. Theory, Ser. B 11 (1971), 80–84.
- [2] G. Chen, R. J. Faudree, R. J. Gould, M. S. Jacobson and L. Lesniak, Hamiltonicity in balanced k-partite graphs, *Graphs Combin.* 11 (1995), 221–231.
- [3] G.A. Dirac, Some Theorems on Abstract Graphs, Proc. Lond. Math. Soc. 2 (1952), 69–81.
- [4] P. Hall, On Representatives of Subsets, J. Lond. Math. Soc. 10 (1935), 26–30.
- [5] M. Las Vergnas, Problèmes de couplages et problems hamiltoniens en théorie des graphes, Dissertation, Université de Paris VI (1972).
- [6] J. W. Moon and L. Moser, On Hamiltonian bipartite graphs, Israel J. Math. 1 (1963), 163–165.
- [7] O. Ore, Note on Hamilton Circuits, Amer. Math. Monthly 67 (1960), 55.
- [8] E. Schmeichel and J. Mitchem, Bipartite graphs with cycles of all even lengths, J. Graph Theory 6 (1982), 429–439.
- [9] K. Yokomura, A degree sum condition on hamiltonian cycles in balanced 3-partite graphs, *Discrete Math.* 178 (1998), 293–297.

(Received 14 May 2021; revised 28 Mar 2022, 13 July 2022)