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Abstract

A k-partite graph is said to be a semi-balanced k-partite graph if each
partite set has either n or m vertices. We deal with semi-balanced 3-
partite graphs. If G = (V1 ∪ V2 ∪ V3, E) is a semi-balanced 3-partite
graph with |V1| = |V2| ≥ |V3| ≥ 2 which satisfies the following conditions:

(1) for all x ∈ Vi (i = 1, 2), |N(x) ∩ Vj | ≥ |Vj |+2

2
(j = 1, 2, 3, j �= i),

and (2) for all x ∈ V3, |N(x) ∩ Vj | ≥ 2|Vj |−|V3|+2

2
(j = 1, 2), then G is

Hamiltonian. And we also show that a semi-balanced 3-partite graph
G = (V1 ∪ V2 ∪ V3, E), where |V1| = |V2| ≥ |V3|, is pancyclic if for all

x ∈ Vi, |N(x) ∩ Vj | ≥ 2|Vj |
3

(for all j �= i).

1 Introduction

In this paper, we deal with simple graphs. For a vertex v of a graph G, the neighbor-
hood of v in G is NG(v) = {u ∈ V (G) | uv ∈ E(G)}. Let δ(G) denote the minimum
degree of G. For a subset S ⊂ V (G), 〈S〉 denotes the subgraph induced by S.
A Hamiltonian cycle (respectively, Hamiltonian path) in G is a cycle (respectively,
path) which contains every vertex of G. Furthermore, for a subgraph H of G, a cycle
(respectively, path) which contains every vertex of H is said to be an H-Hamiltonian
cycle (respectively, H-Hamiltonian path).

A graph G is said to be pancyclic if G contains a cycle of length l, for all 3 ≤ l ≤
|V (G)|. A bipartite graph G with 2n vertices is said to be bipancyclic if G contains
a cycle of length 2l for all 2 ≤ l ≤ n. A k-partite graph is said to be a balanced
k-partite graph if each partite set has the same number of vertices. A k-partite graph
is said to be a semi-balanced k-partite graph if each partite set has either n or m
vertices. A k-regular spanning subgraph of G is said to be a k-factor. And for a
subgraph H of G, a k-regular spanning subgraph of H is said to be an H-k-factor.
For two graphs G1 and G2, the union of G1 and G2, denoted by G1∪G2, is the graph
with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).
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The earliest works on degree conditions of Hamiltonian graphs are given by
Dirac [3] and Ore [7].

Theorem 1.1 (Dirac [3]) Let G be a graph with n ≥ 3 vertices. If δ(G) ≥ n
2
, then

G is Hamiltonian.

Theorem 1.2 (Ore [7]) Let G be a graph with n ≥ 3 vertices. If d(u) + d(v) ≥ n
for any two non-adjacent vertices u and v of G, then G is Hamiltonian.

For balanced bipartite graphs, Moon and Moser [6] gave the following result.

Theorem 1.3 (Moon-Moser [6]) Let G be a balanced bipartite graph with 2n ≥ 4
vertices. If δ(G) ≥ n+1

2
, then G is Hamiltonian.

A graph G with a 1-factor is said to be a Hamiltonian alternating cycle graph
(HAC-graph) if every 1-factor is contained in a Hamiltonian cycle of G. A graph
with a 1-factor is said to be a Hamiltonian alternating path graph (HAP-graph) if
every 1-factor is contained in a Hamiltonian path of G.

For balanced bipartite graphs, Las Vergnas [5] gave the following result.

Theorem 1.4 (Las Vergnas [5]) Let G be a balanced bipartite graph with partite
sets V1, V2 (|Vi| = n). If for each pair x, y of nonadjacent vertices with x ∈ V1, y ∈ V2,
we have

Case 1: d(x) + d(y) ≥ n+ 2,
Case 2: d(x) + d(y) ≥ n+ 1,

then, in Case 1, G is an HAC-graph, and in Case 2, G is an HAP-graph.

Moreover, Yokomura [9] gave the following Ore-type condition for a balanced
3-partite graph to be Hamiltonian.

Theorem 1.5 (Yokomura [9]) Let G be a balanced 3-partite graph with partite sets
V1, V2 and V3, where |Vi| = n for i = 1, 2, 3. If |N(u) ∩ Vj | + |N(v) ∩ Vi| ≥ n + 1
for any two nonadjacent vertices u ∈ Vi and v ∈ Vj (1 ≤ i < j ≤ 3), then G is
Hamiltonian.

Also Chen et al. [2] gave the following Dirac-type condition for a balanced k-
partite graph to be Hamiltonian.

Theorem 1.6 (Chen et al. [2]) Let G be a balanced k-partite graph with kn ver-
tices. If the minimum degree satisfies

δ(G) >

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
k

2
− 1

k + 1

)
n if k is odd,

(
k

2
− 2

k + 2

)
n if k is even,

then G is Hamiltonian.
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Almost all known sufficient conditions for a graph to have a Hamiltonian cycle
imply that their graphs have many edges. Some sufficient conditions for a graph to
be Hamiltonian also imply that it is pancyclic. For example, Ore’s result [7] was
generalized by Bondy [1].

Theorem 1.7 (Bondy [1]) Let G be a graph with n ≥ 3 vertices. If d(u)+d(v) ≥ n
for any two non-adjacent vertices u and v of G, then G is either pancyclic or the
graph Kn

2
,n
2
.

Moreover, for balanced bipartite graphs, Schmeichel and Mitchem [8] showed the
following result:

Theorem 1.8 (Schmeichel and Mitchem [8]) Let G be a balanced bipartite
graph with 2n vertices, (n > 3). If d(v) ≥ n+1

2
for all v ∈ V (G), then G is bi-

pancyclic.

In each of the above results on k-partite graphs, the graphs are balanced and
thus have partite sets of the same size. In this paper, we consider some sufficient
conditions that 3-partite graphs such that one partite set consists of a different
number of vertices from the other partite sets to be Hamiltonian or pancyclic.

2 Hamiltonian semi-balanced 3-partite graphs

In this section, we give a degree condition for a semi-balanced 3-partite graph to be
Hamiltonian.

Theorem 2.1 Let G be a semi-balanced 3-partite graph with partite sets V1, V2, V3

and |V1| = |V2| ≥ |V3| ≥ 2. If G satisfies the conditions:
(1) for all x ∈ Vi (i = 1, 2),

|N(x) ∩ Vj| ≥ |Vj |+ 2

2
(j = 1, 2, 3, j �= i) , and

(2) for all x ∈ V3,

|N(x) ∩ Vj | ≥ 2 |Vj | − |V3|+ 2

2
(j = 1, 2) ,

then G is Hamiltonian.

Proof of Theorem 2.1. Let |V1| = |V2| = n and |V3| = m, where n ≥ m ≥ 2. Now
G is a semi-balanced 3-partite graph with 2n+m vertices.

For n ≤ 3, the graphs that satisfy the condition in the theorem are K2,2,2, K3,3,2

and K3,3,3. It is obvious that these graphs contain Hamiltonian cycles.

So we assume that n ≥ 4.
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In 〈V1 ∪ V2〉, each vertex v ∈ V1 is adjacent to n+2
2

vertices of V2 and each vertex
u ∈ V2 is adjacent to n+2

2
vertices of V1. So 〈V1 ∪ V2〉 is a balanced bipartite graph

satisfying the conditions of Theorem 1.3. Thus 〈V1 ∪ V2〉 is Hamiltonian and has a
1-factor F 1,2.

Let A be a set of m edges in F 1,2, and let S1 = V1 ∩ V (A), S2 = V2 ∩ V (A). For
〈S1 ∪ V3〉, each vertex w ∈ V3 is adjacent to at least

2n−m+ 2

2
− (n−m) =

m+ 2

2

vertices in S1 and each vertex v ∈ S1 is adjacent to at least m+2
2

vertices in V3 by
condition (1) in the theorem. So 〈S1 ∪ V3〉 is a balanced bipartite graph satisfying
the condition of Theorem 1.3. Thus 〈S1 ∪ V3〉 is Hamiltonian and has a 1-factor
F 1,3 = {viwi | vi ∈ S1, wi ∈ V3, i = 1, 2, . . . , m}. Similarly, 〈S2 ∪ V3〉 has a 1-factor
F 2,3 = {wiui | wi ∈ V3, ui ∈ S2, i = 1, 2, . . . , m}. From two 1-factors F 1,3 and F 2,3,
G has m paths:

P(i) = viwiui (vi ∈ S1, ui ∈ S2, wi ∈ V3, i = 1, 2, . . . , m) .

We create a new semi-balanced 3-partite graph H by adding each edge viui

(vi ∈ S1, ui ∈ S2) if there is no edge viui in G. Let B be the set of these added edges
and M = {viui | vi ∈ S1, ui ∈ S2, i = 1, 2, . . . , m}. Then H is a simple semi-balanced
3-partite graph with a 1-factor F 1,2

∗ = M ∪ (F 1,2 − A) in 〈V1 ∪ V2〉. And by The-
orem 1.4, 〈V1 ∪ V2〉 has a Hamiltonian cycle C1,2 which contains all edges of F 1,2

∗ .
Then by replacing m edges uivi of M with m paths P(i), respectively, and deleting
all edges of B, we can obtain a Hamiltonian cycle of G. �

3 Pancyclic semi-balanced 3-partite graphs

In this section, we give a degree condition for a semi-balanced 3-partite graph to
be pancyclic. In the proof of Theorem 3.2, we use following result, that is, Hall’s
Theorem [4].

Given any sets S1, S2, . . . , Sk, we say that an element si ∈ Si is a representative
for the set Si which contains it. If si �= sj for each i, j with 1 ≤ i < j ≤ k,
then {s1, s2, . . . , sk} are said to be a system of distinct representatives for the sets
S1, S2, . . . , Sk.

Theorem 3.1 (Hall [4]) A collection S1, S2, . . . , Sk (k ≥ 1) of finite nonempty sets
has a system of distinct representatives if and only if the union of every t (1 ≤ t ≤ k)
sets of these sets contains at least t elements.

Theorem 3.2 Let G be a semi-balanced 3-partite graph with partite sets V1, V2, V3

and |V1| = |V2| ≥ |V3|. If G satisfies the conditions:

for all x ∈ Vi,
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|N(x) ∩ Vj| ≥ 2|Vj|
3

(for all j �= i),

then G is pancyclic.

Proof of Theorem 3.2. Let |V1| = |V2| = n and |V3| = m, where n ≥ m. Let G be
a semi-balanced 3-partite graph on 2n +m vertices with partite sets V1, V2 and V3

that satisfies the condition in the theorem.

Let n = m = 1. For all x ∈ Vi,

|N(x) ∩ Vj| ≥ 2 |Vj|
3

=
2 · 1
3

=
2

3
(for all j �= i) .

Thus G = K1,1,1 = C3, and G is pancyclic.

So we assume that n ≥ 2.

First, we prove that a semi-balanced 3-partite graph has a cycle of length l for
all numbers l such that 2n ≤ l ≤ 2n +m.

Let n = 2. For all x ∈ Vi (i = 1, 2),

|N(x) ∩ V3−i| = 2 |V3−i|
3

≥ 2 · 2
3

=
4

3
.

Thus 〈V1 ∪ V2〉 = K2,2, and there exists a 〈V1 ∪ V2〉-Hamiltonian cycle of length
2n = 4. If n ≥ 3, for all vertices v ∈ Vi (i = 1, 2), v is adjacent to at least 2n

3

vertices of V3−i. Thus, from Theorem 1.3, there exists a 〈V1 ∪ V2〉-Hamiltonian cycle
of length 2n in G.

Let
C1,2 = v1u1v2u2 · · · vnunv1 (vi ∈ V1, ui ∈ V2)

be a 〈V1 ∪ V2〉-Hamiltonian cycle of length 2n and for w ∈ V3, let Sw = {e = xy ∈
E(C1,2) | {x, y} ⊂ N(w)}. We assume that {Sw | w ∈ V3} has a system of distinct
representatives S = {ew = xwyw | ew ∈ Sw, w ∈ V3}. And let P = {pw = xwyw |
xwyw ∈ S, w ∈ V3}. Then for all s ∈ {1, . . . , m}, by replacing s edges on C1,2 with
s disjoint paths of length 2 in P , we can expand C1,2 into a cycle of length 2n + s
in G.

For each wi ∈ V3, since |Vj −N(wi)| ≤ n
3
for j = 1, 2, it follows that |V1 ∪ V2

−N(wi)| ≤ 2n
3
. If all vertices of V1∪V2−N(wi) are removed from C1,2, the remaining

edges on C1,2 are edges whose two end vertices are adjacent to wi. By deleting one
vertex in C1,2, at most two edges are removed from C1,2. Since |E (C1,2)| = 2n,
C1,2 − (V1 ∪ V2 −N(wi)) has at least

2n
3

(
= 2n− (

2n
3
× 2

))
edges for each wi ∈ V3.

Therefore, for each vertex wi ∈ V3, there exist at least 2n
3

edges on C1,2 whose two
end vertices are adjacent to wi.

Let T be a subset of V3 which has more than 2m
3

vertices and |T | = 2m
3
+ α. We

assume that there exists an edge f of C1,2 whose two end vertices have no common
adjacent vertices in T . Thus, at least one of the end vertices of f , say v, is adjacent
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to at most m
3
+ α

2
vertices of T . And v is adjacent to at most

(m
3
+

α

2

)
+
(m
3
− α

)
=

2m

3
− α

2

(
<

2m

3

)

vertices of V3. This contradicts the condition of our theorem. Therefore, both end
vertices of each edge of C1,2 have a common adjacent vertex wi ∈ T .

Now, for each wi ∈ V3, let E(wi) be the set of edges on C1,2 whose two end
vertices are adjacent to wi. Then for W ⊆ V3,

if |W | ≤ 2m

3
, then

∣∣∣∣∣
⋃

wi∈W
E(wi)

∣∣∣∣∣ ≥
2n

3

(
≥ 2m

3

)
,

if
2m

3
< |W | , then

∣∣∣∣∣
⋃

wi∈W
E(wi)

∣∣∣∣∣ = 2n.

Thus, by Theorem 3.1, the collection {Sw | w ∈ V3} has a system of distinct
representatives and G has a cycle of length of 2n+ s for all s ∈ {1, . . . , m}.

To complete the proof of Theorem 3.2, we prove that G contains an l-cycle for
every 3 ≤ l ≤ 2n+ 1.

Let vu ∈ E (〈V1 ∪ V2〉) (v ∈ V1, u ∈ V2). Since |N(v) ∩N(u) ∩ V3| ≥ m
3
, v and

u have a common adjacent vertex, say w, in V3. Then C = vwuv is a 3-cycle of G.

If n = 3, 〈V1 ∪ V2〉 has a Hamiltonian cycle C1,2 = v1u1v2u2v3u3v1 and thus has a
path v1u1v2u2. Since |N(v1) ∩N(v2) ∩ V3| ≥ m

3
, v1 and v2 have a common adjacent

vertex, say w′, in V3. Then C = v1u1v2w
′v1 is a 4-cycle of G. Similarly, since

|N(v1) ∩N(u2) ∩ V3| ≥ m
3
, v1 and u2 have a common adjacent vertex, say w′′, in V3.

Then C = v1u1v2u2w
′′v1 is a 5-cycle of G.

If n ≥ 4, each vertex v ∈ V1 is adjacent to at least 2n
3

vertices in V2 and each
vertex u ∈ V2 is adjacent to at least 2n

3
vertices in V1. By Theorem 1.8, 〈V1 ∪ V2〉 has

a cycle
C1,2

2t = v1u1v2u2 · · · vtutv1 (vi ∈ V1, ui ∈ V2)

of length 2t for all t ∈ {2, . . . , n}. Since |N(v1) ∩N(u1) ∩ V3| ≥ m
3
, v1 and u1 have a

common adjacent vertex, say w∗, in V3. Then

v1w
∗u1v2u2 · · · vtutv1 (vi ∈ V1, ui ∈ V2)

is a (2t+ 1)-cycle. Thus G contains an l-cycle for every 3 ≤ l ≤ 2n+ 1.

We have already proved that a semi-balanced 3-partite graphG contains a cycle of
length of 2n+s for all s ∈ {1, . . . , m}; thus for all numbers l such that 3 ≤ l ≤ 2n+m,
G has a cycle of length l. Therefore G is pancyclic. �

A split graph is a graph in which the vertex set can be partitioned into a clique
and an independent set. We have the following result by Theorem 3.2.
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Proposition 3.3 Let G be a split graph with a clique K of 2n vertices and an inde-
pendent set V3 of m vertices, where m < n. If the clique K can be divided into two
subsets V1 and V2 such that |V1| = |V2| = n, and

|N(x) ∩ V3| ≥ 2m

3
for all x ∈ V1 ∪ V2, and

|N(x) ∩ Vi| ≥ 2n

3
(i = 1, 2) for all x ∈ V3,

then G is pancyclic.

Remarks

Hamiltonicity and pancyclicity in semi-balanced 3-partite graphs with |V1| ≥ |V2| =
|V3| are open problems, and should be considered by other approaches.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments
and feedback, which helped improve the paper.

References

[1] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory, Ser. B 11 (1971), 80–84.

[2] G. Chen, R. J. Faudree, R. J. Gould, M. S. Jacobson and L. Lesniak, Hamiltonicity
in balanced k-partite graphs, Graphs Combin. 11 (1995), 221–231.

[3] G.A. Dirac, Some Theorems on Abstract Graphs, Proc. Lond. Math. Soc. 2
(1952), 69–81.

[4] P. Hall, On Representatives of Subsets, J. Lond. Math. Soc. 10 (1935), 26–30.
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