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Abstract

Determination of connected graphs is a fundamental theme of spectral
graph theory. In this work, the task of separating a pair of connected
graphs is done with the help of the spectral code function. The verb “to
separate” is used here as a synonym of the verb to discriminate or to
distinguish. By definition, the spectral code of a connected graph G is
an eventually zero sequence Γ(G) := (%1(G), %2(G), %3(G), . . . ) whose kth
term is the k-largest complementarity eigenvalue of the graph. The spec-
tral code of a graph is a convenient vector representation of the so-called
complementarity spectrum of the graph. The spectral code separation
technique runs as follows: while comparing two connected graphs, say
G and H, we start by considering %1, which is nothing but the spectral
radius function; in case of equality %1(G) = %1(H), the second largest
complementarity eigenvalue function %2 enters into action; in case of a
new equality, we pass to %3, and so on. Complementarity eigenvalues
perform more efficiently the separation role usually played by classical
eigenvalues.
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1 Introduction

All graphs considered in this work are finite, undirected, unlabeled, loopless and
without multiple edges. The attention is further restricted to graphs that are con-
nected. We denote by C the set of connected graphs of arbitrary order. As discovered
by Collatz and Sinogowitz [3] in the fifties, two distinct connected graphs may have
the same characteristic polynomial. This means that the eigenvalues of a graph may
not provide enough information to identify the graph itself, i.e., the classical spec-
trum could be unable to separate or distinguish a pair of connected graphs. This
phenomenon is nowadays called cospectrality or spectral indetermination. A word
of clarification is in order: labeled graphs that are isomorphic are considered simply
as the same graph. We are using unlabeled graphs in order to avoid the nuisance
of graph isomorphism. For handling the difficult problem of identifying a graph by
means of a collection of spectral parameters, we shift the attention from classical
eigenvalues to complementarity eigenvalues. Although the idea of using complemen-
tarity eigenvalues as tools for identifying and enumerating connected graphs was
already suggested in Seeger [13] and further explored in Pinheiro et al. [10], this area
of research is still at the embryonic stage. The transition from classical eigenvalues to
complementarity eigenvalues is a major change in the way of perceiving the concept
of spectral information contained in a graph.

For the reader’s convenience, we recall that a scalar λ ∈ R is a complementarity
eigenvalue of a graph G if it is a complementarity eigenvalue (or Pareto eigenvalue)
of the associated adjacency matrix, i.e., if there exists a nonzero vector x ∈ Rn

satisfying the complementarity system

x ≥ 0 , AGx− λx ≥ 0 , 〈x,AGx− λx〉 = 0 , (1)

where n is the order of G, 〈·, ·〉 is the inner product of Rn, and x ≥ 0 means
that x is componentwise nonnegative. The complementarity spectrum or set of
complementarity eigenvalues of G is denoted by Π(G). See Seeger [12] for the theory
of complementarity spectra of general matrices, and Fernandes et al. [5] for the first
published paper on complementarity spectra of graphs. The adjacency matrix of G
depends on the way of labeling the vertices, but the set Π(G) does not. Indeed,
the complementarity spectrum of a matrix is invariant under permutation similarity
transformations. As shown in [5], the complementarity spectrum of a connected
graph G admits the representation

Π(G) = {%(F ) : F ∈ S(G)}, (2)

where %(F ) is the spectral radius of F and S(G) is the set of connected induced sub-
graphs of G. Hence, Π(G) can be computed by evaluating the spectral radius of each
connected induced subgraph of G or, alternatively, by solving the complementarity
system (1) with the help of any existing algorithm.

Classical spectra and complementarity spectra differ in many ways. To start
with, there is no such a thing as a characteristic polynomial whose zeros are the
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complementarity eigenvalues of the graph. Secondly, complementarity eigenvalues
are not counted with associated multiplicities: the complementarity spectrum of a
graph is a set and not a multiset as is the case of the classical spectrum. Perhaps
the most striking difference between classical spectra and complementarity spectra
concerns cardinality: the number of eigenvalues of a connected graph of order n is at
most n, whereas the number of complementarity eigenvalues is at least n and usually
much larger than n. As shown in [5], the maximum number of complementarity
eigenvalues of a connected graph of order n increases faster than any polynomial in
the variable n. The recent paper of Seeger and Sossa [14] provides updated informa-
tion on cardinality of complementarity spectra of various classes of connected graphs.
The complementarity spectrum of any connected graph belongs to F(R), the set of
nonempty finite subsets of R. The reader should be aware that c(G) := card[Π(G)]
may change significatively if G is replaced by another graph of the same order. By
way of example, Figure 1 displays a graph of order 14 with as many as 5085 com-
plementarity eigenvalues. Such a graph is to be compared with a star of order 14,
which has only 14 complementarity eigenvalues.

Figure 1: Graph of order 14 with 5085 complementarity eigenvalues

Our numerical experience with low order connected graphs suggests that the
complementarity spectral map Π : C → F(R) is a promising separation tool. The
verb “to separate” is used here as a synonym of the verb to discriminate or to
distinguish. In the parlance of classical set theory, an abstract function f separates
the points of a set X (in short, f separates X) if the values f(x1) and f(x2) are
different when the points x1, x2 ∈ X are different. This amounts to saying that f
is an injection on X. The purpose of this work is to explore whether Π serves to
separate the members of C or, at least, to separate the members of some large subset
of C.

Definition 1. Let G be a class of connected graphs. We say that G is separable
if the restriction of Π to G is an injection; i.e., if two graphs in G have the same
complementarity spectrum, then they are the same graph.

For the sake of precision, the concept of separability introduced in Definition 1
should be called Π-separability. However, we prefer to omit the reference to Π and use
an alleviated terminology. Classical spectra will no longer show up in the discussion.
A word of caution is in order: the class under examination may have infinitely many
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members, so we could be comparing in fact the complementarity spectra of connected
graphs that are not necessarily of the same order. A class of connected graphs is
called finite if it has finitely many members and homogeneous if all its members have
the same order. We are mainly interested in the classes

Cn := connected graphs of order n,

Tn := trees of order n,

but we shall consider also some more specialized examples. A first question that
comes to mind is whether the class of connected graphs is separable, i.e., whether
the map Π is able to separate the universal class C. In spite of massive numerical
experimentation, we have not yet found a pair of distinct connected graphs with
the same complementarity spectrum. Of course, failure in finding a counterexample
is not a proof that C is separable. This issue is difficult and probably a long time
will pass before we get a formal proof of the separability of C or before we find a
counterexample. In this work we would like to present at least some partial advances
in this research area.

The organization of the paper is as follows. Section 2 introduces the concept of
spectral code of a connected graph and the associated concept of separability index
of a class of connected graphs. The spectral code is a representation of the com-
plementarity spectrum as a sequence formed with the complementarity eigenvalues
arranged in decreasing order. The separability index of a class, say G, is the minimal
number of successive complementarity eigenvalues (starting from the largest one)
that are needed to separate G. Computing separability indices is a major concern of
this work.

Section 3 deals with the separability indices of classes of connected graphs of
low or moderate order. For such classes, it is possible to compute the separability
index as a result of exhaustive numerical experimentation. In this section, we also
comment on separation of pairs of cospectral graphs.

Section 4 gives the exact separability index for many important classes of con-
nected graphs. The classes under consideration are homogeneous, or finite nonho-
mogeneous, or infinite.

2 Spectral code of a graph

The notation that we use in this work is for the most part standard. For instance,
the symbols Kn, Pn, Sn, and Cn indicate respectively the complete graph, the path,
the star, and the cycle on n vertices. The cycle Cn is defined starting from n = 3.
As said before, the function Π takes values in F(R). It is not always easy to work
with a function whose values are finite sets of various cardinalities. Instead of the
set-valued function Π, we can use an equivalent function Γ : C → `(R) with values on
the vector space of real sequences with finitely many nonzero terms. By an obvious
reason, a sequence of that sort is called an eventually zero sequence. By definition,
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Γ assigns to a connected graph G an eventually zero sequence

Γ(G) := (%1(G), %2(G), %3(G), . . . )

called the spectral code of G. Here, %k(G) stands for the kth largest complementarity
eigenvalue of G, with the convention %k(G) = 0 for all k ≥ c(G). For instance, for a
complete graph of order 8 and a star of order 6, we get

Γ(K8) = (7, 6, 5, 4, 3, 2, 1, 0, 0, . . . ) ,

Γ(S6) = (
√

5, 2,
√

3,
√

2, 1, 0, 0, . . . ) ,

respectively. Three additional examples are given in Table 1 to help familiarize the
reader with the general look of a spectral code.

Figure 2: Graphs with 8, 10, and 15 complementarity eigenvalues, respectively

In general, a complementarity eigenvalue is either an integer or an irrational. This
is clear from the representation formula (2) and the fact that the spectral radius of
any graph is either an integer or an irrational. The first two graphs mentioned in
Table 1 are somewhat special, because it is rather unusual to get a radical represen-
tation for each complementarity eigenvalue. By a radical representation we mean an
expression involving only integers and square roots. In our numerical experiments,
complementarity eigenvalues are always computed with double-precision arithmetic,x
but we display them with 6 decimal places only. The third graph mentioned in Ta-
ble 1 is also special, but for a different reason. That graph has the maximum number
of complementarity eigenvalues among all graphs on 6 vertices. In principle, we could
change the spectral code of G by the finite vector

γ(G) := (%1(G), %2(G), %3(G), . . . , 1, 0 ) (3)

obtained by dropping all the zeros after the first one. However, working with (3)
is not always a convenient strategy, mainly because the number of components of
this vector may change from one graph to another, even if we focus on graphs of a
prescribed order. The number of components of (3) is equal to c(G). The concept
of separability can be reworded in terms of the spectral code function: a class G of
connected graphs is separable if and only if the restriction of Γ to G is an injection,
i.e., if two graphs in G have the same spectral code, then they are the same. The
spectral code is a sort of password that is intended to identify the graph, the kth
letter of the password being the kth largest complementarity eigenvalue of the graph.
It would be disturbing of course if two or more graphs share the same spectral code.
For this reason, it is helpful to know in advance if the graphs under consideration
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Table 1: Complementarity eigenvalues arranged in decreasing order, cf. graphs in Figure 2

1st graph in Fig 2 2nd graph in Fig 2 3rd graph in Fig 2
exact numerical exact numerical

%1 (1/2)(1 +
√
33) 3.372281 [(1/2)(7 +

√
33)]1/2 2.524338 3.169195

%2 3 3.000000
√
6 2.449490 2.935432

%3 (1/2)(1 +
√
17) 2.561553 [(1/2)(5 +

√
17)]1/2 2.135779 2.855773

%4 2 2.000000 2 2.000000 2.685544

%5
√
3 1.732051 [2 +

√
2]1/2 1.847759 2.561553

%6
√
2 1.414214

√
3 1.732051 2.481194

%7 1 1.000000 (1/2)(1 +
√
5) 1.618034 2.302776

%8 0 0.000000
√
2 1.414214 2.170086

%9 0 0.000000 1 1.000000 2.135779
%10 0 0.000000 0 0.000000 2.000000
%11 0 0.000000 0 0.000000 1.732051
%12 0 0.000000 0 0.000000 1.618034
%13 0 0.000000 0 0.000000 1.414214
%14 0 0.000000 0 0.000000 1.000000
%15 0 0.000000 0 0.000000 0.000000

belong or not to a separable class. If yes, then we can trust the spectral code as
discriminating tool; otherwise the spectral code does not fulfill properly its assigned
task. Should we use the spectral code in full extent or just the most relevant part of
it? If we truncate the spectral code of G after the tth entry, then we get the finite
dimensional vector

Γt(G) := (%1(G), %2(G), . . . , %t(G)).

Using the function Γt instead of Γ is like using the first t letters of a password instead
of the entire password. This is of course a metaphorical way of speaking. The first
two terms in a spectral code are by far the most important ones. Fortunately, these
terms are easy to compute because they are given by the explicit formulas

%1(G) = %(G) , (4)

%2(G) = max
F∈S(G)
|F |=|G|−1

%(F ) . (5)

Recall that %(G) is the spectral radius of G and S(G) is the set of connected induced
subgraphs of G. Parenthetically, any graph in the feasible set of (5) is called a child
of G. An eldest child of G is a child that achieves the maximal value (5). In our
numerical experiments, we use (4) and (5) if we need to compute only the first two
complementarity eigenvalues of a graph, but we rely on Theorem 4.1 in Seeger [12]
if we need to compute the entire complementarity spectrum. The theorem just
mentioned tells us how to compute the complementarity spectrum of an arbitrary
matrix, say A, by examining some special eigenvalues in each principal submatrix
of A. The details can be consulted in [12]. The representation formula (2) is quite
useful when it comes to addressing theoretical issues concerning highly structured
graphs of large order.
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2.1 The concept of separability index

Truncated spectral codes can be used to measure the degree of separability of a
class G of connected graphs. It is implicitly understood that G has at least two
members, otherwise the separation or discrimination problem has no sense. We define
the separability index of G as the minimum number of complementarity eigenvalues
needed for separating G, i.e.,

s(G) := inf{t ≥ 1 : Γt separates G} .

We use the convention s(G) = ∞ if no truncated spectral code is able to separate
G, but we do not know yet if such a situation could arise in practice. A sufficient
condition for a class to be separable is to have a finite separability index. Note that:

• s(G) = 1 means that the spectral radius alone suffices to separate G. This
happens if G is for instance the infinite class of complete graphs.

• s(G) = 2 means that the spectral radius is not sharp enough to separate G, but
the spectral radius together with the second largest complementarity eigenvalue
function do the separation job. By way of example, the infinite class of complete
bipartite graphs belongs to this category.

• s(G) = 3 means that also the 3rd largest complementarity eigenvalue func-
tion is needed for separating G, but we can dispense from the 4th largest
complementarity eigenvalue function. An example of this case is the finite
nonhomogeneous class of connected graphs with 8 edges.

The smaller the value of s(G), the easier it is to separate G. The separability
index is monotonic in the sense that G1 ⊆ G2 implies s(G1) ≤ s(G2). However, it is
not because G has many members that s(G) should be large. The term s(G) depends
more on the structure of the members of G than in their number.

3 Experimental results on separability indices

In what follows, the symbol

C(n1, n2) := ∪n2
n=n1

Cn (6)

stands for the class of connected graphs of order between n1 and n2, both extremes
inclusive. In particular, C(1, n) is the set of connected graphs of order up to n. Note
that, for each n ≥ 2, the class C(1, n) is finite but not homogeneous. A matter of
exhaustive numerical testing shows that

Γ3 separates the 143 members of C(1, 6), but Γ2 does not,

Γ4 separates the 996 members of C(1, 7), but Γ3 does not,

Γ9 separates the 12113 members of C(1, 8), but Γ8 does not,

Γ16 separates the 273193 members of C(1, 9), but Γ15 does not.

(7)



A. SEEGER AND D. SOSSA/AUSTRALAS. J. COMBIN. 84 (1) (2022), 220–237 227

As mentioned in (7), the connected graphs of order up to 9 can be separated with
Γ16, but not with Γ15, cf. Figure 3. Checking this statement took around 22 hours in
a computer OS High Sierra, processor 3.4 GHz Intel Core i5 and memory 8GB. The
codes were implemented with Matlab R2017a.

Figure 3: Graphs of order 9 sharing the 15 largest complementarity eigenvalues, but not
the 16th largest

Tables 2 and 3 include part of the information provided in (7), and also display
the separability index of some particular classes, among which are Cn, Tn, and

STn := starlike trees of order n,

Un := unicyclic graphs of order n,

Rn := regular connected graphs of order n,

BPn := bipartite connected graphs of order n.

By passing to union as in (6), we form the class T(n1, n2) := ∪n2
n=n1

Tn. The same
mechanism is used to form ST(n1, n2), U(n1, n2), and so on. Since a starlike tree
has at least 4 vertices, the class ST(n1, n2) is defined only if n1 ≥ 4. Consistently,
ST(4, n) corresponds to the class of starlike trees on at most n vertices. The classes
U(3, n), R(1, n), and BP(2, n) are defined in a similar way.

Table 2: Separability index of some particular classes of connected graphs

n Cn C(1, n) Un U(3, n) Rn R(1, n) BPn BP(2, n)
4 1 2 1 2 1 2 1 1
5 2 2 1 2 1 2 1 2
6 2 3 1 2 2 2 2 3
7 4 4 1 2 2 2 3 3
8 9 9 2 2 3 3 3 3
9 16 16 3 3 3 3 3 4

Due to a prohibitive computational cost, Table 2 runs for values of n up to 9
only. Computing the separability index of C(1, 10) would require computation of
the complementary spectrum of 11 989 764 connected graphs in all, among them the
11 716 571 connected graphs of order 10. In the considered experimental range, the
separability indices s(Cn), s(Un), s(Rn), and s(BPn), are nondecreasing as a function
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of n. This observation is somehow consistent with intuition, but we do not have a
formal proof of such a monotonicity behavior for larger values of n.

Table 3: Separability index of some particular classes of trees

n Tn T(1, n) STn ST(4, n)
4 1 1 1 1
5 1 2 1 1
6 1 2 1 1
7 2 2 1 2
8 2 3 1 2
9 2 3 1 2
10 2 3 1 2
11 3 3 1 2
12 3 4 1 2
13 3 4 1 2
14 3 6 1 2
15 4 7 1 2

Table 3 runs for values of n up to 15. The column Tn, for n until 14, is filled
with information provided in Pinheiro et al. [10, Table 1]. The case n = 15 is added
now. Note that T15 is the class of smaller order trees for which 3 complementarity
eigenvalues are not enough to accomplish separation. The column STn is filled with
ones, because distinct starlike trees of the same order have different spectral radii,
cf. Oliveira et al. [9]. However, the spectral radius alone is not able to separate
starlike trees of different order; see the last column of Table 3.

Connected graphs can be partitioned according to the number of vertices, but
also according to the number of edges. We could consider for instance the problem
of computing the separability index of the class Cm of connected graphs with m
edges. The class Cm is finite but not homogeneous. Table 4 displays the separability
index of Cm for values of m up to 9.

Table 4: Spectral separability index of Cm

m 1 2 3 4 5 6 7 8 9
s(Cm) 1 1 1 2 2 2 2 3 3

Connected graphs can be partitioned according to even more sophisticated crite-
ria, for instance, a combination of order and cyclomatic number. By definition, the
cyclomatic number of a connected graph G is the nonnegative integer e(G)−|G|+1,
where e(G) is the number of edges. A k-cyclic graph is a connected graph whose
cyclomatic number is equal to k. Table 5 displays the separability index of the class
Ck
n of k-cyclic graphs of order n. Note that C0

n = Tn and C1
n = Un. The case C2

n

corresponds to the class of bicyclic graphs of order n, and so on. The parameter k
ranges from 0 to kn := (n− 1)(n− 2)/2.

Table 5 shows that, at least in the considered experimental range, s(Ck
n) is non-

decreasing as a function of n. Observe however that s(Ck
n) is rather chaotic as a
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Table 5: Spectral separability index of Ckn

n=4 n=5 n=6 n=7 n=8 n= 9
k=0 1 1 1 2 2 2
k=1 1 1 1 1 2 3
k=2 1 1 2 2 3 4
k=3 1 1 2 2 3 4
k=4 - 1 2 4 7 10
k=5 - 1 1 3 5 9
k=6 - - 1 4 7 10
k=7 - - 1 4 7 12
k=8 - - 1 3 9 15
k=9 - - 1 2 8 16
k=10 - - 1 2 7 15
k=11 - - - 1 7 13
k=12 - - - 1 6 12

function of k. For instance, the column n = 8 gives us no clue about the value of
s(C13

8 ). In general, we can only assert that s(Ck
n) goes down to 1 as k approaches kn.

We should be aware that, for a fixed k, the term s(Ck
n) could be highly sensitive with

respect to n. Consider for instance the row k = 8. Note that s(C8
n) jumps abruptly

when n passes from 7 to 8. Another big jump occurs when n passes from 8 to 9.
Presumably, s(C8

n) will continue increasing at a fast rate as n goes to infinity.

3.1 Cospectral graphs that can be separated with the spectral code

Two graphs with the same characteristic polynomial are said to be cospectral. Pairs
of cospectral connected graphs are not hard to find. As explained in Schwenk [11],
cospectrality among trees is the rule rather than the exception. Many authors have
developed general techniques for constructing cospectral pairs, cf. [6, 7, 8]. What is
quite surprising is that cospectrality may occur abundantly even in a narrow class of
graphs. For instance, Mowshowitz [8] shows how to construct infinitely many pairs
of cospectral double-brooms. Figure 4 displays one of these pairs.

Figure 4: Example of a Mowshowitz’s pair of cospectral double-brooms

Preliminary numerical experiments of ours show that complementarity eigenval-
ues are more efficient as tools for separating connected graphs than classical eigenval-
ues. Some partial theoretical results corroborate this impression. Let us examine for
instance the family of Mowshowitz’s pairs of cospectral double-brooms. Metaphori-
cally speaking, a double-broom is a broomstick with bristles on both extremes. At a
more formal level, a double broom is a tree obtained by coalescing stars at the end-
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vertices of a path. More precisely, a double-broom graph DBm(r, s) with parameters
m ≥ 2 and r, s ≥ 0 is a tree obtained by attaching r leaves to one endvertex of a
path Pm and s leaves to the other endvertex of the path. When min{r, s} ≤ 1, the
double-broom DBm(r, s) degenerates into a broom (with bristles only on one side of
the broomstick), which further degenerates into a path if max{r, s} ≤ 1.

Proposition 1. For each positive integer k, the double-brooms

Ak := DB2 (3 + k, 3 + 2k) and Bk := DB3 (1 + k, 4 + 2k)

are cospectral, but they have a different second largest complementarity eigenvalue.

Proof. The cases k = 0 and k = 1 can be checked by hand, cf. Table 6, so we
work with k ≥ 2. Note that |Ak| = |Bk| = 8 + 3k. The double-brooms Ak and
Bk have the same characteristic polynomial, cf. [8, Theorem 10]. By applying the
variational formula (5), we get %2(Ak) = %(Ãk) and %2(Bk) = %(B̃k), where Ãk :=
DB2 (2 + k, 3 + 2k) and B̃k := DB3 (k, 4 + 2k) are the eldest children of Ak and Bk,
respectively. We must prove that the spectral radii of Ãk and B̃k are different. As
mentioned in Del Vecchio et al. [4], for all integers m, r, s ≥ 2, the characteristic
polynomial of DBm (r, s) is given by

ϕ(λ,DBm (r, s)) = λr+s−2
[
λ2ϕ(λ, Pm)− (r + s)λϕ(λ, Pm−1) + rs ϕ(λ, Pm−2)

]
with the convention ϕ(λ, Pm−2) = 1 if m = 2. In particular,

ϕ(λ,DB2 (r, s)) = λr+s−2
[
λ4 − (r + s+ 1)λ2 + rs

]
,

ϕ(λ,DB3 (r, s)) = λr+s−1
[
λ4 − (r + s+ 2)λ2 + (r + s+ rs)

]
.

The largest roots of these polynomials are

%(DB2 (r, s)) = (1/2)1/2
[
r + s+ 1 +

√
(r + s+ 1)2 − 4rs

]1/2
%(DB3 (r, s)) = (1/2)1/2

[
r + s+ 2 +

√
(r + s+ 2)2 − 4(r + s+ rs)

]1/2
,

respectively. Hence,

%(Ãk) = (1/2)1/2
[
6 + 3k +

√
k2 + 8k + 12

]1/2
,

%(B̃k) = (1/2)1/2
[
6 + 3k +

√
k2 + 8k + 20

]1/2
,

from where we see that %(Ãk) is smaller than %(B̃k).

Remark 1. We could multiply the number of separation results in the same vein as
Proposition 1. As shown in Table 2, Γ16 suffices to separate all members of C9, be
they cospectral or not. However, much more than 16 complementarity eigenvalues
are needed for separating cospectral connected graphs of order 10. In fact, a matter
of exhaustive numerical testing shows that Γ29 separates all cospectral connected
graphs of order 10, but Γ28 does not, cf. Figure 5.
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Table 6: Γ2 separates each Mowshowitz’s pair Ak, Bk of cospectral double-brooms

%(Ak) , %2
k Ak Bk %(Bk) Ak Bk

0 DB2(3, 3) DB3(1, 4) 2.302776 2.175328 2.288246
1 DB2(4, 5) DB3(2, 6) 2.689994 2.606010 2.681899
2 DB2(5, 7) DB3(3, 8) 3.031927 2.971267 3.026925
3 DB2(6, 9) DB3(4, 10) 3.340999 3.294556 3.337672
4 DB2(7, 11) DB3(5, 12) 3.624921 3.587894 3.622583
5 DB2(8, 13) DB3(6, 14) 3.888844 3.858430 3.887129
6 DB2(9, 15) DB3(7, 16) 4.136396 4.110837 4.135096

Figure 5: Γ28 is unable to separate these cospectral graphs

4 Theoretical results on separability indices

There are many classes of connected graphs that can be separated with the help
of the spectral radius alone. Such classes have a separability index equal to 1.
Propositionr 2 mentions some illuminating examples, but we shall not indulge in
this case. After all, classes with separability index equal to 1 fall into the realm of
classical graph spectral theory.

Recall that a lollipop graph is obtained as a graph coalescence of a path and
a complete graph. While participating in a graph coalescence, a path is rooted at
an endvertex and a complete graph is rooted at any vertex. Paths and complete
graphs are particular instances of a lollipop graph: in a sense, they can be viewed as
degenerate lollipop graphs. A wheel graph is a graph join of K1 and a cycle, whereas
a ladder graph is a Cartesian product of P2 and another path of arbitrary order.
A triangular (respectively, quadrilateral) book is a connected graph formed with
two or more copies of C3 (respectively, C4) sharing a common edge. Metaphorically
speaking, each cycle is a page of the book and the common edge is the spine or base
of the book.

Proposition 2. The class of starlike trees of order n is an example i of homogeneous
class with separability index equal to 1. Examples of infinite classes with separability
index equal to 1 include: the class of paths, the class of complete graphs, the class
of stars, the class of wheels, the class of ladders, the class of lollipops, the class of
triangular books, and the class of quadrilateral books.
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Proof. A path graph is determined by the number of vertices, which in turn is de-
termined by the spectral radius. The same remark applies to a complete graph, a
star, a wheel, and a ladder. Let us examine the case of a lollipop graph. For integers
m ≥ 1 and q ≥ 3, let L(m, q) be the lollipop graph obtained by coalescing a path
Pm+1 and a complete graph Kq. Such a connected graph has n = m+q vertices. The
parameter q corresponds to the clique number of the graph. It is shown in Cioabă
and Gregory [2, Lemma 2.4] that

q − 1 +
1

q(q − 1)
< %(L(m, q)) < q − 1 +

1

(q − 1)2
.

From these inequalities, we see that the spectral radius determines the clique number.
Once the parameter q has been identified, it is possible to deduce the parameter
m because %(L(·, q)) is an increasing function. Summarizing, the spectral radius
determines (m, q) and this pair of parameters describes the lollipop graph itself. The
case of STn is because distinct members of this class have different spectral radii, cf.
Oliveira et al. [9]. Let TB(p) be the triangular book with p pages and QB(q) be the
quadrilateral book with q pages. The spectral radii %(TB(p)) = (1/2)(1 +

√
1 + 8p )

and %(QB(q)) = 1 +
√
q are increasing as a function of p and q, respectively. Hence,

the spectral radius of a triangular (respectively, quadrilateral) book determines the
number of pages and, a posteriori, the triangular (respectively, quadrilateral) book
itself.

Let CB be the class of complete bipartite graphs. This class is infinite because
we are not bounding the number of vertices.

Proposition 3. CB has separability index equal to 2.

Proof. Let Kp,q be the complete bipartite graph with parameters p and q. Without
loss of generality, we may assume that 1 ≤ p ≤ q. Clearly, %(Kp,q) =

√
pq and

%2(Kp,q) =
√
p(q − 1). Since K2,6 and K3,4 have the same spectral radius, we know

that s(CB) ≥ 2. Let Kp,q and Kr,s be complete bipartite graphs with 1 ≤ p ≤ q
and 1 ≤ r ≤ s. Suppose that Γ2(Kp,q) = Γ2(Kr,s). In such a case, pq = rs and
p(q − 1) = r(s− 1). This yields (p, q) = (r, s).

It is worthwhile noticing that the spectral radius function % : C → R is constant
on various subsets of C. In such a situation, it is the second largest complementar-
ity eigenvalue function %2 that plays the leading role in the task of discriminating
connected graphs. By way of example, % is constant on the class of sunlet graphs.
Recall that a sunlet graph is obtained by attaching a pendant vertex to each vertex
of a cycle. If the cycle under consideration is of order r, then the associated sunlet
is a connected graph of order 2r. The next result is advanced as a conjecture.

Conjecture 1. The infinite class of sunlet graphs has separability index equal to 2.

We present below an argument in favour of this conjecture. Let Mr be the
sunlet whose underlying cycle has r vertices. Determining a sunlet is a matter of
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identifying the parameter r. The spectral radius function provides no information
on this parameter, because %(Mr) = 1 +

√
2 for all r ≥ 3. We examine then the

function
r ∈ {3, 4, . . .} 7→ g(r) := %2(Mr) = %(M̃r),

where M̃r is the unique child of Mr. Uniqueness of the child of Mr is obvious: the
induced subgraph M̃r is obtained by removing any of the r pendant vertices of Mr.
Proving Conjecture 1 amounts to checking that g is injective. The adjacency matrix
of M̃r is obtained by dropping the last row and last column of

AMr =

[
ACr Ir
Ir 0

]
,

where Ir is the identity matrix of order r and ACr is the adjacency matrix of the
cycle Cr. The numerical evaluation of g(r) offers no difficulty when r remains in
a reasonable range. If g were strictly increasing, as is suggested by Figure 6, then
Conjecture 1 would be true.

Figure 6: Behavior of %2(Mr) as a function of r

Remark 2. Let k ≥ 3 be an integer. The function % is constant on the class of k-
regular connected graphs. However, it is not true that the first two complementarity
eigenvalues suffice to separate an arbitrary pair of k-regular connected graphs. To
see this, consider the 4-regular connected graphs G and H shown in Figure 7. Since

(%(G), %2(G)) = (%(H), %2(H)) = (4.000000, 3.503224),

we need to call the function %3 to separate these graphs. Hence, the separability
index of the class of 4-regular connected graphs is at least 3.

The proposition below concerns the separability index of a special class of trees,
namely, trees of diameter 3.

Proposition 4. Trees of diameter 3 form an infinite class with separability index
equal to 2.
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Figure 7: Pair of 4-regular graphs sharing the two largest complementarity eigenvalues

Proof. Let T3 be the class of trees of diameter 3. The members of T3 are trees of
the form T (r, s), where the parameters r and s are integers such that s ≥ r ≥ 1. By
definition, T (r, s) is constructed by attaching r pendant vertices to one endvertex of
P2 and s pendant vertices to the other endvertex of P2. Hence, T (r, s) has r + s+ 2
vertices in all. The spectral radius of T (r, s) is given by

%(T (r, s)) =

[
r + s+ 1 +

√
(r + s+ 1)2 − 4sr

2

]1/2
.

Since T (6, 10) and T (8, 9) have the same spectral radius, it follows that s(T3) ≥ 2.
The second largest complementarity eigenvalue of T (r, s) also has an explicit formula,
namely,

%2(T (r, s)) = %(T (r − 1, s)) =

[
r + s+

√
(r + s)2 − 4s(r − 1)

2

]1/2
.

Let G be a tree of diameter 3 and suppose that a := %(G) and b := %2(G) are
known. With this information at hand, it is possible to identify the parameters r
and s that describe G. Indeed, we claim that the system

r + s+ 1 +
√

(r + s+ 1)2 − 4rs = 2a2 ,

r + s+
√

(r + s)2 − 4s(r − 1) = 2b2

has a unique solution (r, s) such that s ≥ r ≥ 1. For proving this claim, we square
in √

(r + s+ 1)2 − 4rs = 2a2 − (r + s+ 1) ,√
(r + s)2 − 4s(r − 1) = 2b2 − (r + s)

and, after simplification, we get

s = b2 +
b2

r − 1− b2
, s = a2 +

a2

r − a2
.

The above equations describe a pair of hyperbolas intersecting at a unique point in
the region s ≥ r ≥ 1. The r-component of this point is equal to the smallest root of
the quadratic equation

b2 +
b2

r − 1− b2
= a2 +

a2

r − a2
.
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The s-component is derived afterwards by substituting the obtained value of r into
either of the two hyperbolas.

As reported in Tables 2 to 5, separability index equal to 3 is obtained for instance
with the homogeneous classes

C8
7, C2

8, C3
8, U9,

R8, R9, BP7, BP8, BP9,
T11, T12, T13, T14,

and the finite nonhomogeneous classes
C8, C9, C(1, 6), U(3, 9),
R(1, 8), R(1, 9), BP(2, 6), BP(2, 7), BP(2, 8),
T(1, 8), T(1, 9), T(1, 10), T(1, 11).

The next proposition presents two infinite classes with separability index equal
to 3. The first class is denoted by E and it is formed with all elementary graphs. An
elementary graph is understood as a graph of any order that is either a path, a cycle,
a star or a complete graph. The second class is denoted by SL and it is formed with
all Smith-like graphs. By definition, a Smith-like graph is a connected graph whose
spectral radius is less than or equal to 2.

Table 7: The three largest complementarity eigenvalues of each Smith-like graph

G |G| %(G) %2(G) %3(G)
P1 1 0 0 0
P2 2 1 0 0
Pn n ≥ 3 2 cos (π/(n+ 1)) 2 cos (π/n) 2 cos (π/(n− 1))
S4 4 2 cos (π/6) 2 cos (π/4) 1
Yn n ≥ 5 2 cos (π/(2n− 2)) 2 cos (π/(2n− 4)) 2 cos (π/(2n− 6))

S(2, 2, 1) 6 2 cos (π/12) 2 cos (π/8) 2 cos (π/6)
S(3, 2, 1) 7 2 cos (π/18) 2 cos (π/12) 2 cos (π/10)
S(4, 2, 1) 8 2 cos (π/30) 2 cos (π/18) 2 cos (π/12)
S(2, 2, 2) 7 2 2 cos (π/12) 2 cos (π/8)
S(3, 3, 1) 8 2 2 cos (π/18) 2 cos (π/12)
S(5, 2, 1) 9 2 2 cos (π/30) 2 cos (π/18)

S5 5 2 2 cos (π/6) 2 cos (π/4)
Cn n ≥ 3 2 2 cos (π/n) 2 cos (π/(n− 1))
Hn n ≥ 6 2 2 cos (π/(2n− 4)) 2 cos (π/(2n− 6))

Proposition 5. Examples of infinite classes with separability index equal to 3 include
E and SL.

Proof. Since S5 and C6 are such that %(S5) = %(C6) = 2 and %2(S5) = %2(C6) =
√

3,
we know already that s(E) ≥ 3. In fact, {S5, C6} is the only pair of elementary
graphs that cannot be separated with the help of Γ2. For showing that Γ3 separates
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E, we simply observe that

Γ3(Kn) = (n− 1, n− 2, n− 3)

Γ3(Sn) =
(√

n− 1,
√
n− 2,

√
n− 3

)
Γ3(Pn) = (2 cos (π/(n+ 1)) , 2 cos (π/n) , 2 cos (π/(n− 1)))

Γ3(Cn) = (2, 2 cos (π/n) , 2 cos (π/(n− 1))) .

Note that %3(S5) =
√

2 is different from %3(C6) = 2 cos (π/5). Consider now the
class SL. All the Smith-like graphs are listed in [1, Theorem 3.1.3 ]. Since S5 and C6

are Smith-like graphs, we know already that s(SL) ≥ 3. Besides {S5, C6}, there are
other pairs of Smith-like graphs that cannot be separated with the help of Γ2. The
complete list of “unseparable” pairs is

{S5, C6}, {Hn, C2n−4}, n ≥ 6,

where Hn is the tree of order n obtained by joining with a path the central vertices
of two copies of S3. Table 7 shows %(G), %2(G), and %3(G), for each Smith-like
graph G. The notation S(n1, n2, n3) stands for the T -shape tree with parameters
n1 ≥ n2 ≥ n3 ≥ 1. For each n ≥ 5, Yn := S(n − 3, 1, 1) is called the snake graph
of order n. Table 7 shows that Γ3(G) 6= Γ3(H) if G and H are distinct Smith-like
graphs. Note that, for all n ≥ 6, the third largest complementarity eigenvalues

%3(Hn) = 2 cos (π/(2n− 6))

%3(C2n−4) = 2 cos (π/(2n− 5))

are different. In conclusion, s(SL) = 3.
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