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Abstract

TxGraffiti is an automated conjecturing program that produces graph
theoretic conjectures in the form of conjectured inequalities. This pro-
gram, written and maintained by the second author since 2017, was in-
spired by the successes of previous automated conjecturing programs in-
cluding Fajtlowicz’s GRAFFITI and DeLaViña’s GRAFFITI.pc. In this
paper we prove and generalize several conjectures generated by TxGraf-
fiti when it was prompted to conjecture on the independence number,
the domination number, and the matching number (and generalizations
of each of these graph invariants). Moreover, in several instances we also
show that the proposed inequalities relating these graph invariants are
sharp.
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1 Introduction

Over the last decade there has been a surge in the use of artificial intelligence and
machine learning across a wide range of disciplines, with many surprising break-
throughs. For example, machine learning clustering algorithms provide effective web
search and deep neural networks allow for self-driving cars. Many of these modern
advances in machine learning and artificial intelligence are modeled on the basis of
designing intelligent machines to solve real world problems. Though applications of
artificial intelligence and machine learning are clearly important, it is worth noting
that the founder of artificial intelligence, Alan Turing, suggested in 1948 that de-
signing machines to do mathematical research would be a good starting point for
this aim [45]. In considering Turing’s suggestion, two fundamental questions arise:
Can computers be designed to prove theorems? Can computers be designed to pose
meaningful conjectures? We provide evidence for the latter question.

The task of programming machines to form mathematical conjectures is referred
to as automated conjecturing, and the first computer program to make conjectures
leading to published mathematical research was Fajtlowicz’s GRAFFITI [23]. This
program, written in the early-1990’s, considers a small collection of mathematical
objects (predominantly simple graphs) and invokes heuristics that by design limit
both the number and the quality of output statements of the program. One notable
result inspired by a conjecture of GRAFFITI and related to graph theory is the result
due to Favaron, Mahéo, and Saclé [27], which states that α(G) ≥ R(G), where α(G)
is the independence number of the graph G and R(G) is the residue of the graph G.

As a successor to GRAFFITI, DeLaViña’s GRAFFITI.pc [22] also invokes heuris-
tics on a collection of graphs in order to produce graph theoretic conjectures. Unlike
GRAFFITI, GRAFFITI.pc maintains and computes data on millions of graphs and
has been particularly successful in generating conjectures related to domination type
graph invariants. GRAFFITI and GRAFFITI.pc are not the only notable automated
conjecturing programs, and we would like to also mention Lenat’s AM [35, 36, 37],
Epstein’s GT [24, 25], Colton’s HR [15, 16, 17], Hansen and Caporossi’s AGX [7, 8, 4],
and Mélot’s Graphedron [39].

In this paper we consider conjectures of the automated conjecturing program
TxGraffiti. This program written in Python (versions 3.6 and higher) by the sec-
ond author in 2017, and subsequent versions written in 2019 and 2020, produces
conjectures on simple connected graphs. Currently, TxGraffiti stores all connected
graphs on 8 or fewer vertices, all connected cubic graphs on up to 16 vertices, and
several other graphs that appear in the literature. For each graph that is stored in
the programs database, TxGraffiti also stores pre-computed numerical and boolean
values stored for the graph in question. For example, a graph’s order, size, dom-
ination number, and independence number are stored, together with properties of
the graph such as claw-free, triangle-free, or planar; among many other numerical
invariants and structural properties. For a video demo of using TxGraffiti, see [18].
For a downloadable version of TxGraffiti, see the the second author’s GitHub repos-
itory [19]. For a Julia version of this program, see the Julia package called Christy.jl,
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available on the second author’s GitHub repository [20].

The conjectures produced by TxGraffiti are in the form of proposed inequalities
relating graph invariants subject to some structural property. We note that Tx-
Graffiti has already produced conjectures that have led to publishable mathematical
results, for example, one conjecture of TxGraffiti inspired the surprising result given
by Caro, Davila, and Pepper in [13], which states δ(G)α(G) ≤ Δ(G)μ(G) for graphs
with minimum degree δ(G), maximum degree Δ(G), and matching number μ(G).
For a notable open conjecture of TxGraffiti, we mention the conjecture which states
Z(G) ≤ α(G) + 1, where G �= K4 is a connected cubic graph and Z(G) is the zero
forcing number of G; a partial solution to this conjecture was given by Davila and
Henning in [21].

In the following sections of this paper we present, generalize, and prove con-
jectures of TxGraffiti when the program was asked to focus on the independence
number, the edge domination number, and the connected domination number. In
doing so, we give further evidence for the usefulness of TxGraffiti and other auto-
mated conjecturing programs in stimulating mathematical research.

Graph Terminology and Notation. Throughout this paper all graphs will be
considered undirected, simple, and finite. We in general follow the graph theory
notation and terminology in [34]. In particular, the order of a graph G with vertex set
V (G) and edge set E(G) is n(G) = |V (G)|, whereas the size of G is m(G) = |E(G)|.
Two vertices v, w ∈ V (G) are neighbors, or adjacent, if vw ∈ E(G). The open
neighborhood of v ∈ V (G), is the set of neighbors of v, denoted NG(v), whereas
the closed neighborhood is NG[v] = NG(v) ∪ {v}. The open neighborhood of S ⊆
V is the set of all neighbors of vertices in S, denoted NG(S), whereas the closed
neighborhood of S is NG[S] = NG(S) ∪ S. The degree of a vertex v ∈ V is denoted
by dG(v) = |NG(v)|. The maximum and minimum degree of G is denoted by Δ(G)
and δ(G), respectively. When the graph in question is clear, we will simply write
n = n(G), m = m(G), Δ = Δ(G), and δ = δ(G) for the order, size, maximum
degree, and minimum degree of G, respectively. For r ≥ 1 an integer, an r-regular
graph is a graph with all vertices of degree r.

For a set of vertices S ⊆ V (G), the subgraph induced by S is denoted by G[S]. If
v ∈ V (G), we denote by G− v the graph obtained from G by deleting v. We denote
the path, cycle, and complete graph on n vertices by Pn, Cn, and Kn, respectively.
A triangle in G is a subgraph of G isomorphic to K3, whereas a diamond in G is
a subgraph of G isomorphic to K4 with one edge removed. A graph G is F -free if
G does not contain F as an induced subgraph. In particular, if G is F -free, where
F = K1,3, then G is claw-free. Claw-free graphs are heavily studied and an excellent
survey of claw-free graphs has been written by Flandrin, Faudree, and Ryjacek [28].

Two edges in a graph G are independent if they are not adjacent in G; that is, if
they have no vertex in common. For a set M of edges of G, we let V (M) denote the
set of vertices of G that are incident with an edge in M . The set M is a matching
in G if the edges in M are pairwise disjoint, that is, |V (M)| = 2|M |. A matching
of maximum cardinality is a maximum matching, and the cardinality of a maximum
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matching of G is the matching number of G, denote by μ(G). If M is a matching of
G, a vertex is M-matched if it is incident with an edge of M ; otherwise, the vertex
is M-unmatched.

A matching M in G is maximal if it is maximal with respect to inclusion, that
is, the set V (G) \ V (M) is independent. The minimum cardinality of a maximal
matching in G is the edge domination number of G, denoted by γe(G). A maximal
matching in G of cardinality γe(G) is a minimum maximal matching. Matchings in
graphs are extensively studied in the literature (see, for example the classic book on
matching by Lovász and Plummer [38], and the excellent survey articles by Plum-
mer [41] and Pulleyblank [43]). Edge domination in graphs is well studied with over
125 papers listed on MathSciNet to date. For a recent paper, we refer the reader
to [6].

The independence number, α(G), of G is the maximum cardinality of an indepen-
dent set of vertices in G. For k ≥ 0 an integer, a set S ⊆ V (G) is a k-independent set
in G if Δ(G[S]) ≤ k. The cardinality of a maximum k-independent set in G is the
k-independence number of G, denoted by αk(G). We note that the 0-independence
number of G is the classic independence number, that is, α(G) = α0(G). The inde-
pendence and k-independence numbers are very well-studied in the literature, and a
survey article is given by Chellali, Favaron, Hansberg, and Volkmann [14]. For more
on k-independence in graphs we refer the reader to [1, 3, 9, 10, 12, 26, 33].

A set S of vertices in a graph G is a dominating set if every vertex not in S is
adjacent to a vertex in S. A dominating set S with the additional property that every
vertex in S is adjacent to some other vertex in S is a total dominating set, abbreviated
TD-set of G. Moreover, a dominating set that is independent is an independent
dominating set. A dominating set S of G such that G[S] is connected is a connected
dominating set. For k ≥ 1, a k-dominating set of G is a dominating set S such that
every vertex outside S has at least k neighbors in S, that is, |NG(v)∩S| ≥ k for every
vertex v ∈ V (G) \S. The domination number γ(G) of G is the minimum cardinality
of a dominating set of G, and a dominating set of G of cardinality γ(G) is called a γ-
set of G. The total domination number, independent domination number, connected
domination number, k-domination number are defined analogously, and denoted by
γt(G), i(G), γc(G) and γk(G), respectively. For recent books on domination and
total domination in graphs, we refer the reader to [31, 32, 34].

For sets X and Y of vertices in a graph G, we denote by [X, Y ] the set of edges
of G with one end in X and the other end in Y . For � ≥ 1 an integer, we use the
standard notation [�] = {1, . . . , �}.

2 Independence versus domination

In this section we prove and generalize several conjectures of TxGraffiti relating
independence and domination in graphs. For similar results relating these two in-
variants, see also [11, 30, 40]. The first TxGraffiti conjecture we consider relates the
independence number to the total domination number.
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Conjecture 2.1 (TxGraffiti, confirmed.) If G is a connected cubic graph, then
α(G) ≤ 3

2
γt(G).

As with many conjectures of TxGraffiti, natural generalizations can be found
with some inspection. This is the case for Conjecture 2.1, and we will prove this
generalization. However, before providing this result, we first define a class of graphs
that were discovered while considering its statement. For r ≥ 2, let Gr be the family
of all r-regular bipartite graphs G for which there exists a partition V (G) = A ∪B,
where A induces an (r−1)-regular graph and B induces a 1-regular graph. A simple
family of graphs in Gr would be the complete bipartite graphsKr,r, with r ≥ 2. To see
this, let G = Kr,r be a complete bipartite graph with r ≥ 2, let B be a set containing
a pair of adjacent vertices in G, and let A = V (G) \B. Since V (G) = A∪B, the set
A induces an (r − 1)-regular subgraph, and the set B induces a 1-regular subgraph,
we have that G ∈ Gr. Next observe that G also satisfies α(G) = r and γt(G) = 2.
Thus, α(G) = r

2
γt(G) = r.

We next consider more interesting examples. The graph G shown in Figure 1(a) is
a 3-regular graph that belongs to the family G3, and the graph G shown in Figure 1(b)
is a 4-regular graph that belongs to the family G4. Further, we note that the graph
G in Figure 1(a) satisfies α(G) = 3

2
γt(G), while the graph G shown in Figure 1(b)

satisfies α(G) = 4
2
γt(G) = 2γt(G).

(a) (b)

Figure 1: Graphs in the families G3 and G4

Suppose that G ∈ Gr for some r ≥ 2. Thus, G is a r-regular bipartite graph that
contains a partition V (G) = A∪B, where A induces an (r−1)-regular subgraph and
B induces a 1-regular graph. Let G have order n, and so n = |A|+ |B|. Since every
vertex in A∪B has a neighbor in B, the set B is a TD-set of G, and so γt(G) ≤ |B|.
Doubling counting edges between A and B, we have (r − 1)|B| = |A| = n − |B|,
and so γt(G) ≤ |B| = n/r. Every graph G of order n without isolated vertices
satisfies γt(G) ≥ n/Δ(G). In our case the graph G is r-regular, and so γt(G) ≥ n/r.
Consequently, γt(G) = n/r. By definition the graph G ∈ Gr is a regular bipartite
graph, implying that α(G) = n/2. As observed earlier, γt(G) = n/r. Consequently,
α(G) = r

2
γt(G). We state this formally as follows.

Observation 2.2 For r ≥ 2, if G ∈ Gr, then α(G) = r
2
γt(G).

For r ≥ 2, the independence number and total domination number of an r-regular
graph are related as follows.
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Theorem 2.3 For r ≥ 2, if G is an r-regular graph, then

α(G) ≤ r

2
γt(G),

with equality if and only if G ∈ Gr.

Proof. For r ≥ 2, let G be an r-regular graph of order n. Let D be a γt-set of
G, and so D is a TD-set of G and |D| = γt(G). Further, let Q = V (G) \D. Since
D is a TD-set of G, each vertex in D is adjacent with at most r − 1 vertices in Q.
Furthermore since D is a dominating set, every vertex in Q has at least one neighbor
in D. Thus, the number of edges between D and Q is at most (r−1)|D| and at least
|Q| = n− |D|, from which we deduce;

γt(G) = |D| ≥ n

r
. (1)

As first observed in 1964 by Rosenfeld [44], the independence number of a regular
graph is at most one-half its order, that is, α(G) ≤ 1

2
n. Hence, by inequality (1), we

have

γt(G) ≥ n

r
≥ 2

r
α(G), (2)

which implies α(G) ≤ r
2
γt(G). This establishes the desired upper bound in the

statement of the theorem.

Suppose, next, that G is an r-regular graph that satisfies α(G) = r
2
γt(G) where

r ≥ 2. This implies that the inequalities in Inequality Chains (1) and (2) are all
equalities. Therefore, γt(G) = |D| = n

r
and α(G) = 1

2
n. Moreover, every vertex in

D is adjacent with exactly r − 1 vertices in Q, and every vertex in Q has exactly
one neighbor in D (for otherwise, we would have strict inequality in Inequality (1)).
Hence, the subgraph G[Q] of G induced by the set Q is an (r − 1)-regular graph,
and the subgraph G[D] of G induced by the set D is a 1-regular graph. Therefore,
|D| = n/r and |Q| = n(r − 1)/r. Since α(G) = 1

2
n, the graph G is a bipartite

graph. Hence, G is an r-regular bipartite graph for which there exists a partition
V (G) = A ∪ B, where A = Q induces an (r − 1)-regular graph and B = D induces
a 1-regular graph. Therefore by definition, we have G ∈ Gr. Conversely, if G ∈ Gr,
then by Observation 2.2, we have α(G) = r

2
γt(G). �

TxGraffiti also produces conjectures on graphs with forbidden subgraphs. We
remark that if TxGraffiti presents to the user a conjecture that requires a forbidden
subgraph, then the proposed inequality must be false for at least one graph with the
forbidden subgraph present. That is, TxGraffiti will only produce an inequality relat-
ing graph invariants for the largest possible family of graphs for which the inequality
is true. For example, the following conjecture states that the independence number
of connected and claw-free graphs is bounded from above by the 2-domination num-
ber, and so, among all connected graphs, TxGraffiti found at least one graph with
K1,3 as an induced subgraph which does not satisfy this relationship.
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Conjecture 2.4 (TxGraffiti, confirmed.) If G is a connected claw-free graph,
then α(G) ≤ γ2(G).

As with Conjecture 2.1, a natural generalization of Conjecture 2.4 was not difficult
to deduce from the original proposed inequality, and we prove this generalization with
the following theorem.

Theorem 2.5 For r ≥ 3 and k ≥ 0, if G is a K1,r-free graph and j = r(k + 1)− 1,
then

αk(G) ≤ γj(G),

and this bound is sharp.

Proof. For integers r ≥ 3 and k ≥ 0, let G be a K1,r-free graph and let j =
r(k+1)− 1. Let I be a maximum k-independent set of G, and let D be a minimum
j-dominating set of G. That is, |I| = αk(G) and |D| = γj(G). Next let A = I \D
and B = D \ I. We note that I = A ∪ (I ∩ D) and D = B ∪ (I ∩ D). If A = ∅,
then I ⊆ D, and so αk(G) = |I| ≤ |D| = γj(G). Hence, we may assume A �= ∅, for
otherwise the desired result, namely αk(G) ≤ γj(G), is immediate.

Suppose that B = ∅. If D ⊂ I and v is an arbitrary vertex in I \D, then v has
at least j neighbors in D. However since j = r(k + 1) − 1 > k, this would imply
that v has strictly greater than k neighbors in D, contradicting the fact that I is a
k-independent set of G. Hence, in this case when B = ∅, we must have D = I, and
so αk(G) = |I| = |D| = γj(G). Hence, we may further assume B �= ∅, for otherwise
the desired result is immediate.

Recall that D = B ∪ (I ∩D) and that A = I \D. Since I is a k-independent set
of G, every vertex in A is adjacent to at most k vertices in I ∩ D. Since D is a j-
dominating set ofG, every vertex in A is adjacent to at least j = r(k+1)−1 vertices in
D, implying that every vertex in A is adjacent to at least r(k+1)−1−k = (r−1)(k+1)
vertices in B. Thus, the number of edges, |[A,B]|, between A and B is bounded with
the following inequality,

|[A,B]| ≥ (r − 1)(k + 1)|A|. (3)

Suppose that some vertex v ∈ B has at least (r − 1)(k + 1) + 1 neighbors in A.
Let Av = N(v)∩A, and let Gv = G[Av] be the subgraph of G induced by the set Av.
Thus, Gv has order |Av| ≥ (r − 1)(k + 1) + 1. We note that the maximum degree
Δ(Gv) in Gv is at most k. Therefore,

α(Gv) ≥ |V (Gv)|
Δ(Gv) + 1

≥ (r − 1)(k + 1) + 1

k + 1
> r − 1,

implying that α(Gv) ≥ r. Let Iv be a maximum independent set in Gv, and so
|Iv| = α(Gv) ≥ r. We note that the graph G[Iv ∪ {v}] = K1,r, contradicting our
supposition that the graph G is K1,r-free. Hence, every vertex in B has at most
(r − 1)(k + 1) neighbors in A, implying that

|[A,B]| ≤ (r − 1)(k + 1)|B|. (4)
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By Inequalities (3) and (4), we have |A| ≤ |B|. Thus,
αk(G) = |I| = |A|+ |I ∩D| ≤ |B|+ |I ∩D| = |D| = γj(G).

This completes the proof of the inequality posed by Theorem 2.5.

To see this bound is sharp, consider the family of graphs constructed after the
next corollary, one of which is illustrated in Figure 2. �

As a special case of Theorem 2.5, when r = 3 and k = 0, we confirm Conjec-
ture 2.4 in the affirmative. This result is stated formally with the following corollary,
where we further establish sharpness with the infinite family of graphs proceeding
its statement.

Corollary 2.6 If G is a connected claw-free graph, then

α(G) ≤ γ2(G),

and this bound is sharp.

To see that the bound in Corollary 2.6 is sharp, let � ≥ 1 and let G� be the graph
constructed as follows. Take � vertex disjoint copies of P2, say P 1

2 , . . . , P
�
2 , and �+ 1

isolated vertices, say v1, v2, . . . , v�+1, and join both vertices of P i
2 to the two vertices

vi and vi+1 for all i ∈ [�]. The resulting graph G� is a claw-free graph. The set
{v1, v2, . . . , v�+1} is both a maximum independent set in G� and a 2-dominating set
of G�. Therefore, by Corollary 2.6, we have �+ 1 ≤ α(G�) ≤ γ2(G�) ≤ �+ 1. Hence,
we have equality throughout this inequality chain, implying that α(G�) = γ2(G�).
See Figure 2 for one such example.

Figure 2: A claw-free graph G with α(G) = γ2(G).

Theorem 2.5 is also sharp for any choice of r ≥ 3 and k ≥ 0. For example, let
r ≥ 3, k ≥ 0, and Gi = Kn, for i ∈ [�], where n ≤ k + 1. Since Δ(Gi) ≤ k, we
have αk(Gi) = n, for each i ∈ [�]. Moreover, since Δ(Gi) ≤ k and j ≥ k + 1, we
also have γj(Gi) = n, for each i ∈ [�]. Next let G = G1 ∪ · · · ∪ G�. Since both the
k-independence number and the j-domination number are additive with respect to
disjoint unions, we observe αk(G) = γj(G) = �n.

For k ≥ 0, the local k-independence number αk,L(G) of a graph G is the maximum
k-independence number among all subgraphs of G induced by the open neighbor-
hoods of the vertices, that is,

αk,L(G) = max
v∈V (G)

{αk(G[N(v)])} .

A second generalization of Conjecture 2.4, using a similar proof strategy, and
involving local k-independence number is presented below. Conjecture 2.4 is the
special case of the theorem below when r = 3 and k = 0.
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Theorem 2.7 For k ≥ 0 and r ≥ k + 2, if G is a connected graph with αk,L(G) ≤
r − 1, then

αk(G) ≤ γr+k−1(G).

Proof. For integers k ≥ 0 and r ≥ k+2, let G be a connected graph with αk,L(G) ≤
r−1. Let I be a maximum k-independent set ofG, and letD be a minimum (r+k−1)-
dominating set of G. That is, |I| = αk(G) and |D| = γr+k−1(G). Let A = I \ D
and B = D \ I. If A = ∅, then I ⊆ D, and so αk(G) = |I| ≤ |D| = γr+k−1(G).
Hence, we may assume that A �= ∅. Suppose that B = ∅. If D ⊂ I and v is an
arbitrary vertex in I \ D, then v has at least r + k − 1 ≥ k + 1 neighbors in D,
contradicting the fact that I is a k-independent set of G. Hence, D = I, and so
αk(G) = |I| = |D| = γr+k−1(G). Hence, we may further assume B �= ∅, for otherwise
the desired result is immediate.

Since I is a k-independent set of G, every vertex in A is adjacent to at most k
vertices in I ∩D. Since D is an (r + k − 1)-dominating set of G, every vertex in A
is therefore adjacent to at least r − 1 vertices in B, and so

|[A,B]| ≥ (r − 1)|A|. (5)

Suppose that some vertex v ∈ B has at least r neighbors in A. Since the local
k-independence number of G is at most r − 1, this implies that the set of neighbors
of v in A induces a subgraph of G with maximum degree strictly greater than k.
However, such a subgraph of G is a subgraph of the graph G[I] which has maximum
degree at most k, a contradiction. Hence, every vertex in B has at most (r − 1)
neighbors in A, implying that

|[A,B]| ≤ (r − 1)|B|. (6)

By Inequalities (5) and (6), we have |A| ≤ |B|. Thus,

αk(G) = |I| = |A|+ |I ∩D| ≤ |B|+ |I ∩D| = |D| = γr+k−1(G).

This completes the proof of Theorem 2.7. �

While both Theorems 2.5 and 2.7 are generalizations of Conjecture 2.4, and
happen to coincide in the case that k = 0, they become different for higher values of
k. In general, Theorem 2.7 has a better bound on αk(G) than Theorem 2.5, at the
cost of a stronger hypothesis. This means that by excluding more subgraphs than
just K1,r, Theorem 2.7 yields a better upper bound than Theorem 2.5. For example,
when k = 3 and r = 5, Theorem 2.5 gives the result that α3(G) ≤ γ19(G), provided
G is K1,5-free. In the same conditions on k and r, Theorem 2.7 gives the result
that α3(G) ≤ γ7(G), provided G has maximum local 3-independence number of at
most 4 (which means that G is K1,5-free, in addition to having many other forbidden
subgraphs).
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3 Edge domination versus matching

In this section we prove and generalize a conjecture of TxGraffiti on the edge domi-
nation number of a graph. Recall that the edge domination number γe(G) of a graph
G is the minimum cardinality of maximal matching in G, and a minimum maximal
matching is a maximal matching in G of cardinality γe(G). The following conjecture
of TxGraffiti inspired this section’s main result.

Conjecture 3.1 (TxGraffiti, confirmed.) If G is a connected cubic graph, then
γe(G) ≥ 3

5
μ(G).

While investigating the bound posed in Conjecture 3.1, we subsequently estab-
lished a more general and stronger lower bound on the edge domination number in
terms of the order, maximum degree, and minimum degree. This result is given
formally by the following theorem.

Theorem 3.2 If G is a graph of order n, minimum degree δ ≥ 1, and maximum
degree Δ, then

γe(G) ≥ δn

2(Δ + δ − 1)
.

Proof. Let G be a graph of order n, minimum degree δ ≥ 1, maximum degree Δ,
and let M be a minimum maximal matching in G. Let A be the set of M-matched
vertices, and so, A = V (M) and |A| = 2|M | = 2γe(G). Let B = V (G) \ A, and so
|B| = n−2γe(G). By the maximality of the matching M , the set B is an independent
set. By double counting the number of edges, |[A,B]|, between A and B we have

δ(n− 2γe(G)) = δ|B| ≤ |[A,B]| ≤ (Δ− 1)|A| = 2(Δ− 1)γe(G),

which implies γe(G) ≥ δn/(2(Δ + δ − 1)). �

If G is a graph of order n, then μ(G) ≤ 1
2
n. This observation together with

Theorem 3.2 imply the following three results.

Corollary 3.3 If G is a graph of order n, minimum degree δ ≥ 1, and maximum
degree Δ, then

γe(G) ≥
(

δ

Δ+ δ − 1

)
μ(G).

Corollary 3.4 For r ≥ 1, if G is an r-regular graph, then γe(G) ≥ (
r

2r−1

)
μ(G).

In the special case when r = 3 in the statement of Corollary 3.4 we have the
following result, which resolves Conjecture 3.1 in the affirmative.

Corollary 3.5 If G is a connected cubic graph, then γe(G) ≥ 3
5
μ(G).
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4 Connected domination versus matching and independence

Next we investigate the connected domination number. Our main results concerning
connected domination were inspired by the following two TxGraffiti conjectures, both
of which we resolve in the affirmative as corollaries to more general results we present
in this section.

Conjecture 4.1 (TxGraffiti, confirmed.) If G is a connected cubic graph, then
γc(G) ≥ μ(G)− 1.

Conjecture 4.2 (TxGraffiti, confirmed.) If G is a connected cubic graph, then
γc(G) ≥ α(G)− 1.

Conjecture 4.2 inspired the following more general theorem focusing on the con-
nected domination number. We remark that the following result first appeared in [2]
as a consequence of an upper bound on the zero forcing number of a graph. The proof
we provide is different in that our proof technique is focused only on the connected
domination number, and also leads to a characterization of equality in the following
bound.

Theorem 4.3 For r ≥ 2, if G is a connected r-regular graph of order n, then

γc(G) ≥ n− 2

r − 1
.

Proof. For r ≥ 2, let G be a connected r-regular graph with order n. If G contains
a dominating vertex, then G = Kr+1. In this case, n = r + 1 and γc(G) = 1 =
n−2
r−1

. Hence, we may assume that G does not contain a dominating vertex, and so,
γc(G) ≥ 2. Let D be a γc-set of G, and so D is a connected dominating set of G
such that |D| = γc(G) ≥ 2. Since the subgraph G[D] induced by D is connected, it
contains a spanning tree T of size |D| − 1. Let A = V (G) \D. Each vertex in A has
at least one neighbor in D. Thus by double counting the number of edges, |[A,D]|,
between A and D, we have by the r-regularity of G that

n− |D| = |A| ≤ |[A,D]|
=

∑
v∈D

dG(v)− 2|E(G[D])|

≤ r|D| − 2|E(T )|
= r|D| − 2(|D| − 1),

or, equivalently, (r − 1)|D| ≥ n− 2, and so γc(G) = |D| ≥ n−2
r−1

. �

For r ≥ 2, we define a tree T to be a (1, r)-tree if every vertex of T has degree
1 or r. Let L(T ) denote the set of all leaves in a tree T , and let �(T ) = |L(T )|, and
so �(T ) is the number of leaves in the tree T . We proceed further with the following
lemma. Again, we remark that the following result first appeared in [2]. As before,
our proof technique is solely focused on the maximum number of leaves.
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Lemma 4.4 For r ≥ 2, if T is a tree of order n and maximum degree Δ(T ) ≤ r,
then

�(T ) ≤ (r − 2)n+ 2

r − 1
,

with equality if and only if T is a (1, r)-tree, or possibly K2 if r = 2.

Proof. If r = 2, then the right-hand side of the proposed inequality is also 2. Next
let T be a tree with Δ(T ) ≤ r = 2. Thus, T is a path, and so, �(T ) ≤ 2, with
equality if and only if n(T ) ≥ 2, or equivalently, the proposed inequality holds if and
only if T is either a (1, r)-tree or K2.

Next suppose r ≥ 3 and let T be a tree of order n, size m, and maximum degree
Δ(T ) ≤ r. Let ni denote the number of vertices of degree i in T for i ∈ [r]. Thus,

r∑
i=1

ni = n and

r∑
i=1

i · ni = 2m = 2(n− 1), (7)

and so
r∑

i=2

(i− 1)ni = n− 2.

Hence,

(r − 1)nr = n− 2−
r−1∑
i=2

(i− 1)ni ≤ n− 2,

and so,

nr ≤ n− 2

r − 1
. (8)

By (7), we have

r∑
i=1

(i− (r − 1))ni = 2(n− 1)− (r − 1)n,

or, equivalently,
r∑

i=1

(r − i− 1)ni = (r − 3)n+ 2. (9)

By Inequality (8) and Equation (9), we have

(r − 2)n1 = (r − 3)n+ 2 + nr +
r−1∑
i=2

(i+ 1− r)ni

≤ (r − 3)n+ 2 +
n− 2

r − 1
+

r−1∑
i=2

(i+ 1− r)ni

≤ (r − 2)2 · n+ 2(r − 2)

r − 1
,
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noting that (i+ 1− r)ni ≤ 0 for all i ∈ {2, . . . , r − 1}. Thus,

�(T ) = n1 ≤ (r − 2)n+ 2

r − 1
. (10)

Further, if we have equality in Inequality (10), then we must have equality
throughout the above inequality chains, implying that ni = 0 for i ∈ {2, . . . , r − 1}.
Hence, if we have equality in Inequality (8), then T is a (1, r)-tree.

Conversely, if T is a (1, r)-tree, then n1 + nr = n and n1 + r · nr = 2m = 2n− 2,
and so

nr =
n− 2

r − 1
,

which implies that

�(T ) = n1 =
(r − 2)n+ 2

r − 1
.

This completes the proof of the lemma. �

As a consequence of Lemma 4.4, we have the following result.

Theorem 4.5 For r ≥ 2, if G is a connected graph of order n and maximum degree
Δ(G) ≤ r, then

γc(G) ≥ n− 2

r − 1
,

with equality if and only if G has a spanning (1, r)-tree.

Proof. First suppose r = 2, and let G be a connected graph with order n and
maximum degree Δ(G) ≤ r. Under these assumptions, G is either the cycle Cn, or
the path Pn. Furthermore, the right-hand side of the proposed inequality is n − 2.
If G = Cn, then γc(G) = n − 2 trivially for every value of n. Moreover, every cycle
has a spanning (1, 2)-tree. If G = Pn, then γc(G) ≥ n − 2 trivially for all values of
n. Moreover, γc(Pn) = n − 2 if and only if n ≥ 3. Since a path Pn has a spanning
(1, 2)-tree if and only if n ≥ 3, we have proven the theorem when r = 2.

Next suppose r ≥ 3. Let G be a connected graph with order n and maximum
degree Δ(G) ≤ r. We note that γc(G) = n − �(T ), where T is a spanning tree of
G with the maximum number of leaves. Since Δ(G) ≤ r, we note that Δ(T ) ≤ r.
Thus, by Lemma 4.4, we have

γc(G) = n− �(T ) ≥ n− (r − 2)n+ 2

r − 1
=

n− 2

r − 1
,

with equality if and only if T is a spanning (1, r)-tree in G. �

We remark that recognizing whether G has a (1, r)-spanning tree is NP-Complete
for r = 2, since this amounts to the Hamiltonian path problem as can be seen in [42].
On the other hand, it is easy to construct such regular graphs with spanning (1, r)-
trees. To see this construction, begin with any (1, r)-tree T , having n vertices and
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n1 = n(r−2)+2
(r−1)

leaves. Next take any (r − 1)-regular graph G on n1 vertices, which
need not be connected, and embed G in the set formed by the leaves of T to obtain
the desired r-regular graph with a spanning (1, r)-tree.

As observed in [44], if G is a regular graph of order n without isolated vertices,
then α(G) ≤ 1

2
n. As observed earlier, if G is a graph of order n, then μ(G) ≤ 1

2
n.

Hence as a consequence of Theorem 4.5, we have a lower bound on the connected
domination number of a connected regular graph in terms of the matching number
and regularity. Furthermore, Caro, Davila, and Pepper [13] recently proved μ(G) ≥
α(G) for all r-regular graphs with r ≥ 2. Thus, we have the following result.

Corollary 4.6 For r ≥ 2, if G is a connected r-regular graph, then

γc(G) ≥ 2μ(G)− 2

r − 1
≥ 2α(G)− 2

r − 1
.

In the special case of Corollary 4.6 when r = 3, we have that if G is a con-
nected cubic graph, then γc(G) ≥ μ(G) − 1 and γc(G) ≥ α(G) − 1. This proves
Conjectures 4.1 and 4.2. We state this result formally as follows.

Corollary 4.7 If G is a connected cubic graph, then the following holds.

(a) γc(G) ≥ μ(G)− 1.
(b) γc(G) ≥ α(G)− 1.
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