Almost resolvable odd cycle decompositions of $\left(K_{u} \times K_{g}\right)(\lambda)$

S. Duraimurugan A. Muthusamy
Department of Mathematics
Periyar University, Salem
Tamil Nadu, India
duraipu93@gmail.com appumuthusamy@gmail.com

Abstract

In this paper, we show that almost resolvable k-cycle decompositions of $\left(K_{u} \times K_{g}\right)(\lambda)$ (where \times represents the tensor product of graphs) exist for all odd $k \geq 15$ with only a few possible exceptions.

1 Introduction

Throughout this paper all the graphs considered are finite. Specifically, if the graph G is simple then, for any $\lambda \geq 1$, we use $G(\lambda)$ (respectively, λG), to represent the multigraphs obtained from G by replacing each edge of G with uniform edge-multiplicity λ (respectively, λ edge-disjoint copies of G). Let C_{s}, K_{s} and \bar{K}_{s} denote the $c y$ cle, complete graph and complement of the complete graph on s vertices, respectively. A complete bipartite graph with bipartition (U, V) is denoted by $K_{s, s}$, where $U=\left\{u_{0}, u_{1}, \ldots, u_{s-1}\right\}$ and $V=\left\{v_{0}, v_{1}, \ldots, v_{s-1}\right\}$. The edge set of $F_{i}(U, V) \subset K_{s, s}$ is defined as $\left\{u_{j} v_{j+i}: 0 \leq j \leq s-1\right\}$, for $0 \leq i \leq s-1$, where addition in the subscripts is taken modulo s. Clearly $F_{i}(U, V)$ is a 1-factor of $K_{s, s}$ with distance i from U to V. Also $\oplus_{i=0}^{s-1} F_{i}(U, V)=K_{s, s}$, where \oplus denotes the edge-disjoint union of graphs.

For two graphs A and B, their lexicographic product $A \otimes B$ has vertex set $V(A \otimes$ $B)=V(A) \times V(B)$ and edge set $E(A \otimes B)=\left\{\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \mid a_{1} a_{2} \in E(A)\right.$ or $a_{1}=$ a_{2} and $\left.b_{1} b_{2} \in E(B)\right\}$. Similarly, the tensor product $A \times B$ of two graphs A and B has vertex set $V(A) \times V(B)$ and edge set $E(A \times B)=\left\{\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \mid a_{1} a_{2} \in\right.$ $E(A)$ and $\left.b_{1} b_{2} \in E(B)\right\}$. One can easily observe that $K_{u} \otimes \bar{K}_{g} \cong K_{g, g, \ldots, g}$, the complete u-partite graph in which each partite set has g vertices. Hereafter we denote a complete u-partite graph, with g vertices in each partite set, as $K_{u} \otimes \bar{K}_{g}$. It is clear that $\left(K_{u} \otimes \bar{K}_{g}\right)-g K_{u} \cong K_{u} \times K_{g}$, where $g K_{u}$ denotes g disjoint copies of K_{u}. For more details about product graphs, the reader is referred to [11.

We say that the graph G has an H-decomposition if G can be partitioned into $H_{1}, H_{2}, \ldots, H_{r}$ for some integer $r \geq 1$ and each $H_{i} \cong H$ where $H_{1}, H_{2}, \ldots, H_{r}$ are
pairwise edge-disjoint subgraphs of G. A C_{k}-decomposition of H is a partition of H into edge-disjoint cycles of length k, and the existence of such a decomposition is denoted as $C_{k} \mid H$. A k-factor (respectively, near k-factor) of H is a k-regular spanning subgraph of H (respectively, $H \backslash\{v\}$, for some $v \in V(H)$). A k-factorization (respectively, near k-factorization) of H is a partition of H into edge-disjoint k-factors (respectively, near k-factors). Note that a 2 -factor (respectively, near 2-factor) of H can also be called a C_{k}-factor of H (respectively, $H \backslash\{v\}$, for some $v \in V(H)$), when the components are cycles of length k. A C_{k}-factorization of H is a partition of H into edge-disjoint C_{k}-factors, denoted by $C_{k} \| H$. A near C_{k}-factorization of H is a partition of H into edge-disjoint near C_{k}-factors.

A partial k-factor of $\left(K_{u} \otimes \bar{K}_{g}\right)(\lambda)$ is a k-factor of $\left(K_{u} \otimes \bar{K}_{g}\right)(\lambda) \backslash V_{i}$, for some $i \in\{1,2,3, \ldots, u\}$, where $V_{1}, V_{2}, V_{3}, \ldots, V_{u}$ are the partite sets of $\left(K_{u} \otimes \bar{K}_{g}\right)(\lambda)$. A partial k-factorization (respectively, partial C_{k}-factorization) of $\left(K_{u} \otimes \bar{K}_{g}\right)(\lambda)$ is a decomposition of $\left(K_{u} \otimes \bar{K}_{g}\right)(\lambda)$ into partial k-factors (respectively, partial C_{k}-factors).

Let K be a set of integers. A resolvable K-cycle decomposition, briefly K-RCD (respectively, almost resolvable K-cycle decomposition, briefly K-ARCD) of ($K_{u} \otimes$ $\left.\bar{K}_{g}\right)(\lambda)$ is a decomposition of $\left(K_{u} \otimes \bar{K}_{g}\right)(\lambda)$ into 2-factors (respectively, partial 2factors) consisting of cycles of lengths from K. When $K=\{k\}$, we write K-RCD as k-RCD, and K-ARCD as k-ARCD. A (k, λ)-modified cycle frame, briefly (k, λ) MCF, of $\left(K_{u} \otimes \bar{K}_{g}\right)(\lambda)$ is a decomposition of $\left(K_{u} \otimes \bar{K}_{g}\right)(\lambda)-g K_{u}(\lambda)$ into partial C_{k}-factors. It is appropriate to mention that a k - ARCD of $\left(K_{u} \times K_{g}\right)(\lambda)$ is nothing but a (k, λ)-modified cycle frame.

Studies on RCD/ARCD have a direct relationship with various kinds of cycle frames. Cycle frames have been studied by many researchers (e.g. Stinson [18], Cao et al. [6], Niu et al. [17], Chitra et al. [7], Muthusamy et al. [16], Buratti et al. [4]), due to their applicability in many well-known combinatorial problems such as the Oberwolfach problem, the Hamilton-Waterloo problem, etc. The above facts motivated us to do some work on RCD/ARCD in the present paper.

Cao et al. [6] proved that there exists a 3-ARCD of $\left(K_{u} \times K_{g}\right)(\lambda)$. Duraimurugan et al. [8] proved that there exists a k-ARCD of $\left(K_{u} \times K_{g}\right)(\lambda)$ for all even $k \geq 6$ with a few possible exceptions. In this paper we prove that, for all odd $k \geq 15, u \geq 4$ and $g \geq 3$, there exists a k-ARCD of $\left(K_{u} \times K_{g}\right)(\lambda)$ if and only if $\lambda(g-1) \equiv 0(\bmod 2)$ and $g(u-1) \equiv 0(\bmod k)$, except possibly for $(\lambda, u, g) \in\{(2 m, u, k x),(2 m, 5, g) \mid x \equiv$ $2(\bmod 4)$ and $m \geq 1\}$, and $(\lambda, u) \in\{(2 m+1,\{16,2 r+1,4(2 s+1), 4 t+2, k x+1\}) \mid$ $x \in\{2 t+1,4,6\}, m, t \geq 0$, for even r, s and odd $s<15\}$.

For all odd $k \geq 3$, the necessary conditions for the existence of a k-ARCD of $\left(K_{u} \times K_{g}\right)(\lambda)$ are shown in the following theorem.
Theorem 1.1. For all odd integers $k \geq 3$, if $\left(K_{u} \times K_{g}\right)(\lambda)$ has a $k-A R C D$, then
(i) $u \geq 4$ and $g \geq 3$,
(ii) $g(u-1) \equiv 0(\bmod k)$,
(iii) $\lambda(g-1) \equiv 0(\bmod 2)$.

Proof. Since $k \geq 3$ is an odd integer, it is clear from the definition of a k-ARCD that
$u \geq 4$ and $g \geq 3$. As the existence of k-ARCD gives the edge disjoint union of partial C_{k}-factors of $\left(K_{u} \times K_{g}\right)(\lambda)$, the number of vertices in $\left(K_{u} \times K_{g}\right)(\lambda) \backslash V_{i}$, for some $i \in\{1,2, \ldots, u\}$, where $V_{1}, V_{2}, \ldots, V_{u}$ are the partite sets of $\left(K_{u} \times K_{g}\right)(\lambda)$, must be divisible by k; so $g(u-1) \equiv 0(\bmod k)$. Since each partial C_{k}-factor of $\left(K_{u} \times K_{g}\right)(\lambda)$ consists of $g(u-1)$ edges, the number of partial C_{k}-factors in $\left(K_{u} \times K_{g}\right)(\lambda)$ is

$$
\lambda \frac{\frac{u(u-1)}{2} g^{2}-\frac{u(u-1)}{2} g}{(u-1) g}=\lambda \frac{u(g-1)}{2} .
$$

Hence there are precisely $\frac{\lambda(g-1)}{2}$ partial C_{k}-factors corresponding to each missing partite set $V_{i}, i \in\{1,2, \ldots, u\}$.

2 Preliminaries

To prove our results we need the following:
Theorem 2.1. [2] For any odd integer $t \geq 3$, if $u \equiv t(\bmod 2 t)$, then $C_{t} \| K_{u}$.
Theorem 2.2. [9] For any odd $m \geq 3$, there exists a near C_{m}-factorization of $K_{2 m+1}(2)$.

Theorem 2.3. [2] Let k and t be odd integers such that $3 \leq k \leq t$. Then $C_{t} \| C_{k} \otimes \bar{K}_{t}$.
Theorem 2.4. [17] There exists a near $\left\{C_{3}, C_{5}\right\}$-factorization of $K_{u}(2)$ for $u \geq 4$ and $u \neq 5,8$.

Theorem 2.5. [13] For $m \neq 2$, odd integers $k \geq 5$ and $r \geq 3$, we have $C_{k} \| C_{k} \times K_{m}$, $C_{k} \| K_{k} \times C_{5}$ and $C_{r} \| K_{r} \times C_{3}$.

Theorem 2.6. [9] For any odd $m \geq 3$ and for any $s>0$, there exists a near C_{m}-factorization of $K_{m s+1}(2)$.
Theorem 2.7. [12] The graph $C_{m} \otimes \bar{K}_{n}$ has a Hamilton decomposition.
Theorem 2.8. [15] If $C_{k} \| G$ and $n \mid m$, then $C_{k n} \| G \times K_{m}$, where $m \not \equiv 2(\bmod 4)$, when k is odd.

Theorem 2.9. [4] Let g be an even integer and let $k \geq 15$ be a divisor of g. Then there exists a $k-A R C D$ of $K_{u} \otimes \bar{K}_{g}$ for any $u \geq 4$.

Theorem 2.10. [4] There exists an $r-A R C D$ of $K_{s+1} \otimes \bar{K}_{4}, s \in\{r, 2 r\}$, for all odd $r \geq 15$.

Theorem 2.11. [10] $K_{t, t, t}$ has a C_{t}-factorization

3 Basic Constructions

Theorem 3.1. ([1] Walecki's Construction.) There exists a Hamilton cycle decomposition of K_{k} for all $k \geq 3$.

Proof. We break this theorem into two cases.
Case (i): $k=2 t+1, t \geq 1$.
Let $V\left(K_{2 t+1}\right)=\left\{y_{0}, y_{1}, \ldots, y_{2 t}\right\}$ and $H=\left(y_{0} y_{1} y_{2} y_{2 t} y_{3} y_{2 t-1} y_{4} y_{2 m-2} \ldots y_{t+3} y_{t} y_{t+2} y_{t+1}\right)$ be the Hamilton cycle. Let σ be the permutation $\left(y_{0}\right)\left(y_{1} y_{2} y_{3} \cdots y_{2 t-1} y_{2 t}\right)$. Then $H_{0}=$ $H, H_{1}=\sigma(H), H_{2}=\sigma^{2}(H), \ldots, H_{t-1}=\sigma^{t-1}(H)$ is a Hamilton cycle decomposition of $K_{2 t+1}$.
Case (ii): $k=2 t, t \geq 2$.
By using a similar procedure to the previous case, we can get $t-1$ edge disjoint Hamilton cycles $H_{0}=H, H_{1}=\sigma(H), H_{2}=\sigma^{2}(H), \ldots, H_{t-2}=\sigma^{t-2}(H)$. The remaining edges $y_{0} y_{t}, y_{t-1} y_{t+1}, y_{t-2} y_{t+2}, \ldots, y_{1} y_{2 t-1}$ form a 1 -factor of K_{k}.
Lemma 3.1. There exists a $C_{k s}-$ factorization of $C_{k} \times C_{s}$, for all odd integers $s, k \geq 3$.
Proof. Let $V\left(C_{k}\right)=\left\{y_{0}, y_{1}, \ldots, y_{k-1}\right\}$. Then $V\left(C_{k} \times C_{s}\right)=\bigcup_{i \in \mathbb{Z}_{k}} Y_{i}$, where $Y_{i}=$ $\left\{y_{i}^{j} \mid j \in \mathbb{Z}_{s}\right\}$. Let
(i) $\mathcal{C}^{1}=\bigcup_{i=0}^{\frac{k-1}{2}} F_{1}\left(Y_{2 i}, Y_{2 i+1}\right) \oplus \bigcup_{i=0}^{\frac{k-3}{2}} F_{s-1}\left(Y_{2 i+1}, Y_{2 i+2}\right)$ and
(ii) $\mathcal{C}^{2}=\bigcup_{i=0}^{\frac{k-1}{2}} F_{s-1}\left(Y_{2 i}, Y_{2 i+1}\right) \oplus \bigcup_{i=0}^{\frac{k-3}{2}} F_{1}\left(Y_{2 i+1}, Y_{2 i+2}\right)$,
where the subscripts of Y are taken modulo k. One can check that both \mathcal{C}^{1} and \mathcal{C}^{2} are $C_{k s}$-factors of $C_{k} \times C_{s}$.

Lemma 3.2. There exists a C_{3}-factorization of $C_{3} \times K_{2 t+1}$, for all $t \geq 1$.
Proof. Let $V\left(C_{3}\right)=\left\{y_{0}, y_{1}, y_{2}\right\}$ and $V\left(C_{3} \times K_{2 t+1}\right)=\cup_{i \in \mathbb{Z}_{3}} Y_{i}$, where $Y_{i}=\left\{y_{i}^{j} \mid j \in\right.$ $\left.\mathbb{Z}_{2 t+1}\right\}$. Let $G_{i}=F_{i}\left(Y_{0}, Y_{1}\right) \oplus F_{i}\left(Y_{1}, Y_{2}\right) \oplus F_{2(t-i)+1}\left(Y_{2}, Y_{0}\right), 1 \leq i \leq 2 t$, where the subscripts of F are taken modulo $(2 t+1)$. One can check that each $G_{i}, 1 \leq i \leq 2 t$, is a C_{3}-factor of $C_{3} \times K_{2 t+1}$ and $\bigcup_{i=1}^{2 t} G_{i}$ gives a C_{3}-factorization of $C_{3} \times K_{2 t+1}$.

Lemma 3.3. There exists a C_{k}-factorization of $C_{s} \times K_{k}$, for all odd integers s, k with $k \geq s \geq 3$.

Proof. We break this lemma into two cases.
Case (i): $s=k$
Let $V\left(C_{k}\right)=\left\{y_{0}, y_{1}, \ldots, y_{k-1}\right\}$ and $V\left(C_{k} \times K_{k}\right)=\cup_{i \in \mathbb{Z}_{k}} Y_{i}$, where $Y_{i}=\left\{y_{i}^{j} \mid j \in \mathbb{Z}_{k}\right\}$. Let $G_{j}=\bigcup_{i \in \mathbb{Z}_{k}} F_{j}\left(Y_{i}, Y_{i+1}\right), 1 \leq j \leq k-1$, where the subscripts of Y are taken modulo k. One can check that each $G_{j}, 1 \leq j \leq k-1$, is a C_{k}-factor of $C_{k} \times K_{k}$ and $\bigcup_{j=1}^{k-1} G_{j}$ gives a C_{k}-factorization of $C_{k} \times K_{k}$.

Case (ii): $s<k$
We can write

$$
\begin{align*}
C_{s} \times K_{k} & \cong C_{s} \times\left\{C_{k}^{1} \oplus C_{k}^{2} \oplus \cdots \oplus C_{k}^{\frac{k-1}{2}}\right\}, \text { by Theorem 3.1 } \\
& \cong \oplus_{i=1}^{\frac{k-1}{2}}\left(C_{s} \times C_{k}^{i}\right) \\
& \cong \oplus_{i=1}^{\frac{k-1}{2}}\left(C_{k}^{i} \times C_{s}\right) . \tag{1}
\end{align*}
$$

Now we consider $C_{k}^{i} \times C_{s} \cong C_{k} \times C_{s}$ and find its C_{k}-factors as follows:
Let $V\left(C_{k}\right)=\left\{y_{0}, y_{1}, \ldots, y_{k-1}\right\}$ and $V\left(C_{k} \times C_{s}\right)=\bigcup_{i \in \mathbb{Z}_{k}} Y_{i}$, where $Y_{i}=\left\{y_{i}^{j} \mid j \in\right.$ $\left.\mathbb{Z}_{s}\right\}$. Let
(1) $\mathcal{C}^{1}=\bigcup_{i=0}^{\frac{k+s}{2}-1} F_{1}\left(Y_{i}, Y_{i+1}\right) \oplus \bigcup_{i=0}^{\frac{k-s}{2}-1} F_{s-1}\left(Y_{\frac{k+s}{2}+i}, Y_{\frac{k+s}{2}+i+1}\right)$ and
(2) $\mathcal{C}^{2}=\bigcup_{i=0}^{\frac{k+s}{2}-1} F_{s-1}\left(Y_{i}, Y_{i+1}\right) \oplus \bigcup_{i=0}^{\frac{k-s}{2}-1} F_{1}\left(Y_{\frac{k+s}{2}+i}, Y_{\frac{k+s}{2}+i+1}\right)$,
where the subscripts of Y are taken modulo k. One can check that both \mathcal{C}^{1} and \mathcal{C}^{2} are C_{k}-factors of $C_{k} \times C_{s}$ and together give a C_{k}-factorization of $C_{k}^{i} \times C_{s}$. Thus each $C_{s} \times C_{k}^{i}$ has two C_{k}-factors and hence together they give a C_{k}-factorization of $C_{s} \times K_{k}$.

Lemma 3.4. There exists a C_{k}-factorization of $C_{k} \times K_{s}$, for all odd integers $s, k \geq 3$.
Proof. Let $V\left(C_{k}\right)=\left\{y_{0}, y_{1}, \ldots, y_{k-1}\right\}$. Then $V\left(C_{k} \times K_{s}\right)=\bigcup_{i \in \mathbb{Z}_{k}} Y_{i}$, where $Y_{i}=$ $\left\{y_{i}^{j} \mid j \in \mathbb{Z}_{s}\right\}$.
Case (i): $k=s$ and $s<k$.
The proof follows from Lemma 3.3,
Case (ii): $s>k$.
Let
(1) $G_{i}=\bigcup_{j=0}^{\frac{k-3}{2}} F_{i}\left(Y_{2 j}, Y_{2 j+1}\right) \oplus \bigcup_{j=0}^{\frac{k-5}{2}} F_{s-i}\left(Y_{2 j+1}, Y_{2 j+2}\right) \oplus F_{i}\left(Y_{k-2}, Y_{k-1}\right) \oplus F_{s-2 i}\left(Y_{k-1}, Y_{0}\right)$ and
(2) $H_{i}=\bigcup_{j=0}^{\frac{k-3}{2}} F_{s-i}\left(Y_{2 j}, Y_{2 j+1}\right) \oplus \bigcup_{j=0}^{\frac{k-5}{2}} F_{i}\left(Y_{2 j+1}, Y_{2 j+2}\right) \oplus F_{s-i}\left(Y_{k-2}, Y_{k-1}\right) \oplus F_{2 i}\left(Y_{k-1}, Y_{0}\right)$, where $1 \leq i \leq \frac{s-1}{2}$. One can check that both G_{i} and $H_{i}, 1 \leq i \leq \frac{s-1}{2}$, are C_{k}-factors of $C_{k} \times K_{s}$. Thus $\bigcup_{i=1}^{\frac{s-1}{2}}\left(G_{i} \oplus H_{i}\right)$ together gives a C_{k}-factorization of $C_{k} \times K_{s}$.

Lemma 3.5. There exists a partial C_{5}-factorization of $K_{7} \times K_{5}$.

Proof. To prove this lemma we consider the near C_{3}-factorization of $K_{7}(2)$, which exists by Theorem [2.2. Hence we write

$$
\begin{aligned}
K_{7}(2) \times K_{5} & \cong\left(G_{0} \oplus G_{1} \oplus \cdots \oplus G_{6}\right) \times K_{5} \quad \text { by Theorem } 2.2 \\
& \cong \oplus_{i \in \mathbb{Z}_{7}}\left(G_{i} \times K_{5}\right),
\end{aligned}
$$

where each $G_{i} \cong\left\{\left(x_{6+i} x_{5+i} x_{3+i}\right),\left(x_{1+i} x_{2+i} x_{4+i}\right)\right\}, i \in \mathbb{Z}_{7}$, (where the subscripts of x are taken modulo 7) is a near C_{3}-factor of $K_{7}(2)$.

Now we write

$$
\begin{aligned}
G_{i} \times K_{5} & \cong\left(C_{3} \oplus C_{3}\right) \times K_{5} \\
& \cong\left(C_{3} \times K_{5}\right) \oplus\left(C_{3} \times K_{5}\right) \\
& \cong C_{3} \times\left(C_{5} \oplus C_{5}\right) \oplus C_{3} \times\left(C_{5} \oplus C_{5}\right) \text { by Theorem } 3.1 \\
& \cong\left(C_{3} \times C_{5}\right) \oplus\left(C_{3} \times C_{5}\right) \oplus\left(C_{3} \times C_{5}\right) \oplus\left(C_{3} \times C_{5}\right) .
\end{aligned}
$$

From the proof of case (ii) of Lemma 3.3, each $C_{3} \times C_{5}\left(\cong C_{5} \times C_{3}\right)$ has two C_{5} factors, namely \mathcal{C}^{1} and \mathcal{C}^{2}, and hence each $G_{i} \times K_{5}$ has a C_{5}-factorization. Now the collection of all the \mathcal{C}^{1} from the C_{5}-factorization of each $G_{i} \times K_{5}, i \in \mathbb{Z}_{7}$, together gives two partial C_{5}-factors of $K_{7} \times K_{5}$; see Figures 1-4. Also, the collection of all the \mathcal{C}^{2} from the C_{5}-factorization of each $G_{i} \times K_{5}, i \in \mathbb{Z}_{7}$, together gives another two partial C_{5}-factors of $K_{7} \times K_{5}$; see Figures 1-4.

Finally, the collection of either \mathcal{C}^{1} (or \mathcal{C}^{2}) gives the required partial C_{5}-factorization of $K_{7} \times K_{5}$; see Figure 5 .

Fig. 1.

Fig. 2.

Fig.3.

Fig.4.
— denotes the edge set of \mathcal{C}^{1}

Fig.5.
\ldots denotes the edge set of \mathcal{C}^{2}

Theorem 3.2. There exists a partial C_{k}-factorization of $K_{4} \times K_{k}$ for all odd $k \geq 3$.
Proof. Let $V\left(K_{4}\right)=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$. The near C_{3}-factor $G_{i}=\left(x_{1+i} x_{2+i} x_{3+i}\right)$, with missing vertex $x_{i}, 0 \leq i \leq 3$, where the subscripts of x are taken modulo 4 , generate the near C_{3}-factorization of $K_{4}(2)$. Now we can write

$$
\begin{align*}
K_{4}(2) \times K_{k} & \cong\left\{\mathfrak{C}_{3}^{0} \oplus \cdots \oplus \mathfrak{C}_{3}^{3}\right\} \times K_{k} \\
& \cong\left(\mathcal{C}_{3}^{0} \times K_{k}\right) \oplus \cdots \oplus\left(\mathcal{C}_{3}^{3} \times K_{k}\right) \\
& \cong \oplus_{i \in \mathbb{Z}_{3}}\left(\mathfrak{C}_{3}^{i} \times K_{k}\right), \tag{2}
\end{align*}
$$

where each \mathcal{C}_{3}^{i} is a near C_{3}-factor of $K_{4}(2)$. Now we consider $\mathcal{C}_{3}^{i} \times K_{k} \cong C_{3} \times K_{k}$ and find its C_{3}-factors as follows:
Case (i): $k=3$
By the proof of case (i) of Lemma [3.3, the collection of all C_{3}-factors of $C_{3} \times K_{3}$ generated by G_{1} (respectively, G_{2}) together give the required partial C_{3}-factorization of $K_{4} \times K_{3}$.
Case (ii) $k>3$
Using (1) of Lemma 3.3, we have $\mathcal{C}_{3}^{i} \times K_{k} \cong \oplus_{j=1}^{\frac{k-1}{2}}\left(C_{k}^{j} \times C_{3}\right), i \in \mathbb{Z}_{3}$. By the proof of case (ii) of Lemma 3.3, each $C_{k}^{j} \times C_{3}$ has two C_{k}-factors, namely \mathcal{C}^{1} and \mathcal{C}^{2}. Now the collection of all the \mathcal{C}^{1} from $\mathcal{C}_{3}^{i} \times K_{k}, i=0,2$, and the collection of all the \mathcal{C}^{2} from $\mathcal{C}_{3}^{i} \times K_{k}, i=1,3$ together give a partial C_{k}-factorization of $K_{4} \times K_{k}$. In a similar manner, we can also have another partial C_{k}-factorization of $K_{4} \times K_{k}$ by taking all the \mathcal{C}^{1} from $\mathfrak{C}_{3}^{i} \times K_{k}, i=1,3$, and \mathfrak{C}^{2} from $\mathfrak{C}_{3}^{i} \times K_{k}, i=0,2$. One of the above gives the required partial C_{k}-factorization of $K_{4} \times K_{k}$.

Theorem 3.3. There exists a partial C_{3}-factorization of $K_{4} \times K_{k}$ for all odd $k \geq 3$.
Proof. Using (22) of Theorem 3.2, we have $K_{4}(2) \times K_{k} \cong \oplus_{i \in \mathbb{Z}_{3}}\left(\mathrm{C}_{3}^{i} \times K_{k}\right)$, where each $\mathrm{C}_{3}^{i}, 0 \leq i \leq 3$, is a near C_{3}-factor of $K_{4}(2)$. Hence we write $\mathfrak{C}_{3}^{i} \times K_{k} \cong C_{3} \times K_{k}$ and by the proof of Lemma 3.2, the collection of all C_{3}-factors of $C_{3} \times K_{k}$ generated by $G_{i}, 1 \leq i \leq \frac{k-1}{2}$ (respectively, $G_{i}, \frac{k+1}{2} \leq i \leq k-1$) together give a required partial C_{3}-factorization of $K_{4} \times K_{k}$.

Theorem 3.4. There exists a partial C_{k}-factorization of $K_{2 s+1} \times K_{k}$, for all odd integers s, k with $k \geq s \geq 3$.

Proof. By Theorem 2.2, $K_{2 s+1}(2)$ has a near C_{s}-factorization. Now we write

$$
\begin{align*}
K_{2 s+1}(2) \times K_{k} & \cong\left\{\mathfrak{C}_{s}^{0} \oplus \mathfrak{C}_{s}^{1} \oplus \cdots \oplus \mathfrak{C}_{s}^{2 s}\right\} \times K_{k}, \quad \text { by Theorem 2.2 } \\
& \cong\left(\mathfrak{C}_{s}^{0} \times K_{k}\right) \oplus \cdots \oplus\left(\mathfrak{C}_{s}^{2 s} \times K_{k}\right) \\
& \cong \oplus_{i \in \mathbb{Z}_{2 s+1}}\left(\mathfrak{C}_{s}^{i} \times K_{k}\right), \tag{3}
\end{align*}
$$

where each $\mathrm{C}_{s}^{i}, 0 \leq i \leq 2 s$, is a near C_{s}-factor of $K_{2 s+1}(2)$, and each near C_{s}-factor contains two cycles of length s.

Hence we write $\mathfrak{C}_{s}^{i} \times K_{k} \cong 2\left(C_{s} \times K_{k}\right)$ and find its C_{k}-factors as follows:
Case (i): $s=k$
By the proof of case (i) of Lemma 3.3, the collection of all C_{k}-factors of $\mathfrak{C}_{k}^{i} \times K_{k}$ generated by $G_{l}, 1 \leq l \leq \frac{k-1}{2}$ (respectively, $G_{l}, \frac{k+1}{2} \leq l \leq k-1$) together give a required partial C_{k}-factorization of $K_{2 k+1} \times K_{k}$.
Case (ii): $s<k$
By the proof of case (ii) of Lemma 3.3, the collection of all \mathfrak{C}^{1} (respectively, \mathfrak{C}^{2}) from $\mathcal{C}_{s}^{i} \times K_{k}$ together give a required partial C_{k}-factorization of $K_{2 s+1} \times K_{k}$.

Theorem 3.5. There exists a partial C_{k}-factorization of $K_{2 k+1} \times K_{s}$, for all odd integers $s, k \geq 3$.

Proof. Using (3) of Theorem 3.3, we have $K_{2 k+1}(2) \times K_{s} \cong \oplus_{i \in \mathbb{Z}_{2 k+1}}\left(\mathrm{C}_{k}^{i} \times K_{s}\right)$, where each $\mathrm{C}_{k}^{i}, 0 \leq i \leq 2 k$, is a near C_{k}-factor of $K_{2 k+1}(2)$, and each near C_{k}-factor contains two cycles of length k.

Now we consider $\mathcal{C}_{k}^{i} \times K_{s} \cong 2\left(C_{k} \times K_{s}\right)$, and find its C_{k}-factors as follows:
Case (i): $k=s$ and $s<k$.
The proof follows from Theorem 3.4.
Case (ii): $s>k$.
By the proof of case (ii) of Lemma 3.4 the collection of all C_{k}-factors of $\mathfrak{C}_{k}^{i} \times K_{s}$ generated by G_{l} (respectively, H_{l}), $1 \leq l \leq \frac{s-1}{2}$, together give a required partial C_{k}-factorization of $K_{2 k+1} \times K_{s}$.

Theorem 3.6. There exists a partial $C_{k s}$-factorization of $K_{2 k+1} \times K_{s}$, for all odd integers $s, k \geq 3$.

Proof. Using (3) of Theorem 3.3, we have $K_{2 k+1}(2) \times K_{s} \cong \oplus_{i \in \mathbb{Z}_{2 k+1}}\left(\mathrm{C}_{k}^{i} \times K_{s}\right)$, where each $\mathfrak{C}_{k}^{i}, 0 \leq i \leq 2 k$, is a near C_{k}-factor of $K_{2 k+1}(2)$, and each near C_{k}-factor contains two cycles of length k.

Now we consider $\mathcal{C}_{k}^{i} \times K_{s} \cong 2\left(C_{k} \times K_{s}\right)$, and find its $C_{k s}$-factors as follows:
By using (11) of Lemma 3.3, we can write $C_{k} \times K_{s} \cong \oplus_{j=1}^{\frac{s-1}{2}}\left(C_{k} \times C_{s}^{j}\right)$. By the proof of Lemma 3.1, each $C_{k} \times C_{s}^{j}\left(\cong C_{k} \times C_{s}\right)$ has two $C_{k s}$-factors, namely ${ }^{1}$ and \mathcal{C}^{2}. Now the collection of all the \mathcal{C}^{1} from $\mathfrak{C}_{k}^{i} \times C_{s}$ together gives a required partial $C_{k s}$-factorization of $K_{2 k+1} \times K_{s}$. Similarly, the collection of all the \mathcal{C}^{2} from $\mathfrak{C}_{k}^{i} \times C_{s}$ together also gives another partial $C_{k s}$-factorization of $K_{2 k+1} \times K_{s}$.

Construction 1. If there exists a near 2-factorization of $K_{u}(2)$ (a near 2-factor F can contain different cycle lengths with $V(F)=u-1$, and the set of cycle lengths is denoted by J), a C_{t}-factorization of $C_{t} \times K_{x}, a C_{k}$-factorization of $C_{t} \otimes K_{k}$ and a C_{k}-factorization of $C_{t} \times K_{k}$ for any $t \in J$, then there exists a partial C_{k}-factorization of $\left(K_{u} \times K_{k x}\right)(2)$.

$4 k$-ARCD of $\left(K_{u} \times K_{g}\right)(\lambda)$

In this section we investigate the existence of a k-ARCD of the tensor product of complete graphs with edge multiplicity λ.

Theorem 4.1. For all odd $k \geq 5, u \geq 4$ and $g \equiv 0(\bmod k)$, there exists a $k-A R C D$ of $\left(K_{u} \times K_{g}\right)(2)$, except possibly when $(u, g) \in\{(u, k x),(5, g) \mid x \equiv 2(\bmod 4)\}$.

Proof. Let $g=k x$, where $x \geq 1$.
By Theorems 2.4 and 2.6, let $\mathcal{F}=\left\{F_{0}, F_{2}, \ldots, F_{u-1}\right\}$ be the near 2-factorization of $K_{u}(2)$ (each near 2-factor $F_{i}, 0 \leq i \leq u-1$, may contain different cycle lengths with $V\left(F_{i}\right)=u-1$, and the set of all of cycle lengths is denoted by $J=\{3,5,7\}$). A C_{t}-factorization of $C_{t} \times K_{x}$ and a C_{k}-factorization $C_{t} \otimes \bar{K}_{k}$, for any $t \in J$, can be obtained by Theorems 2.8 and 2.3, respectively. Furthermore, $C_{t} \times K_{k}$ has a C_{k}-factorization by Theorem [2.5 and Lemma 3.3. Then by using construction 1 , we get a required partial C_{k}-factorization of $\left(K_{u} \times K_{g}\right)(2)$. Therefore a k-ARCD of $\left(K_{u} \times K_{g}\right)(2)$ exists.

Theorem 4.2. For all odd integers s, k with $3 \leq s \leq k, u=2 s+1$ and $g \equiv$ $k(\bmod 2 k)$, there exists a $k-A R C D$ of $K_{u} \times K_{g}$.

Proof. Let $g=k(2 t+1), t \geq 1$. We can write

$$
\begin{align*}
K_{u} \times K_{g} & \cong K_{2 s+1} \times K_{k(2 t+1)} \\
& \cong\left\{\left(K_{2 s+1} \times K_{2 t+1}\right) \otimes \bar{K}_{k}\right\} \oplus(2 t+1)\left(K_{2 s+1} \times K_{k}\right) . \tag{4}
\end{align*}
$$

The right-hand side of (4) can be obtained by making $2 t+1$ holes of type $K_{2 s+1} \times$ K_{k} and identifying each k-subset of $K_{k(2 t+1)}$ (in the resulting graph) into a single vertex, with two of them being adjacent if the corresponding k-subsets form a $K_{k, k}$
in $K_{2 s+1} \times K_{k(2 t+1)}$. The resulting graph is isomorphic to $K_{2 s+1} \times K_{2 t+1}$. Expand the identified vertices into k-subsets and two k-subsets, to form a $K_{k, k}$ whenever their corresponding vertices are adjacent in $K_{2 s+1} \times K_{2 t+1}$. Thus the resulting expanded graph will be isomorphic to the first graph of (4).

Now we construct the partial C_{k}-factors of the right-hand side of (4) as follows:

$$
\text { Consider } \quad \begin{aligned}
\left(K_{2 s+1} \times K_{2 t+1}\right) \otimes \bar{K}_{k} & \cong\left\{\mathfrak{C}_{s}^{0} \oplus \cdots \oplus \mathfrak{C}_{s}^{2 s}\right\} \otimes \bar{K}_{k}, \text { by Theorem } 3.5 \\
& \cong\left(\mathcal{C}_{s}^{0} \otimes \bar{K}_{k}\right) \oplus \cdots \oplus\left(\mathcal{C}_{s}^{s s} \otimes \bar{K}_{k}\right) \\
& \cong \oplus_{i \in \mathbb{Z}_{2 s+1}}\left(\mathfrak{C}_{s}^{i} \otimes \bar{K}_{k}\right) .
\end{aligned}
$$

Note that each $\mathfrak{C}_{s}^{i}, 0 \leq i \leq 2 s$, contains t partial C_{s}-factors of $K_{2 s+1} \times K_{2 t+1}$, and each partial C_{s}-factor contains $2(2 t+1)$ cycles of length s. Hence we write $\mathcal{C}_{s}^{i} \otimes \bar{K}_{k} \cong$ $t\left\{2(2 t+1)\left(C_{s} \otimes \bar{K}_{k}\right)\right\}$ and by Theorem 2.3, each $C_{s} \otimes \bar{K}_{k}$ has $k C_{k}$-factors. Thus we have obtained $k t$ partial C_{k}-factors of $\left(K_{2 s+1} \times K_{2 t+1}\right) \otimes \bar{K}_{k}$ corresponding to each $\mathcal{C}_{s}^{i} \otimes \bar{K}_{k}$. When i varies, we get $(2 s+1) k t$ partial C_{k}-factors of $\left(K_{2 s+1} \times K_{2 t+1}\right) \otimes \bar{K}_{k}$.

Furthermore, by Theorem [3.4, the second graph $(2 t+1)\left(K_{2 s+1} \times K_{k}\right)$ has $(2 s+1) \frac{k-1}{2}$ partial C_{k}-factors. Finally, the partial C_{k}-factors of the two graphs of the right-hand side of (44) obtained above together give a required partial C_{k}-factorization of $K_{2 s+1} \times K_{k(2 t+1)} \cong K_{u} \times K_{g}$.
Theorem 4.3. For all odd integers r, k with $15 \leq r \leq k, u=4(s+1)$, $s \in\{r, 2 r\}$ and $g \equiv k(\bmod 2 k)$, there exists a $k-A R C D$ of $K_{u} \times K_{g}$.

Proof. Let $g=k(2 t+1), t \geq 1$. We can write

$$
\begin{align*}
K_{u} \times K_{g} & \cong K_{4(s+1)} \times K_{g} \\
& \cong\left\{\left(K_{s+1} \otimes \bar{K}_{4}\right) \oplus(s+1) K_{4}\right\} \times K_{g} \\
& \cong\left\{\left(K_{s+1} \otimes \bar{K}_{4}\right) \times K_{g}\right\} \oplus(s+1)\left(K_{4} \times K_{g}\right) \tag{5}
\end{align*}
$$

Now we construct the partial C_{k}-factors of the right-hand side of (5) as follows:
Consider $\quad\left(K_{s+1} \otimes \bar{K}_{4}\right) \times K_{g} \cong\left\{\mathfrak{C}_{r}^{0} \oplus \cdots \oplus \mathcal{C}_{r}^{s}\right\} \times K_{g}$, by Theorem 2.10

$$
\cong\left(\mathcal{C}_{r}^{0} \times K_{g}\right) \oplus \cdots \oplus\left(\mathfrak{C}_{r}^{s} \times K_{g}\right)
$$

$$
\cong \oplus_{i \in \mathbb{Z}_{s+1}}\left(\mathcal{C}_{r}^{i} \times K_{g}\right)
$$

We know that

$$
\begin{aligned}
\mathcal{C}_{r}^{i} \times K_{g} & \cong \mathcal{C}_{r}^{i} \times K_{k(2 t+1)}, i \in \mathbb{Z}_{s+1} \\
& \cong 2\left\{\frac{4 s}{r}\left(C_{r} \times K_{k(2 t+1)}\right)\right\}
\end{aligned}
$$

where each $\mathfrak{C}_{r}^{i}, 0 \leq i \leq s$, contains two partial C_{r}-factors of $K_{s+1} \otimes \bar{K}_{4}$, in which each partial C_{r}-factor contains $4 s / r$ cycles of length r.

$$
\text { We write } \quad \begin{align*}
C_{r} \times K_{k(2 t+1)} & \cong C_{r} \times\left\{K_{2 t+1} \otimes \bar{K}_{k} \oplus(2 t+1) K_{k}\right\} \\
& \cong\left\{\left(C_{r} \times K_{2 t+1}\right) \otimes \bar{K}_{k}\right\} \oplus(2 t+1)\left(C_{r} \times K_{k}\right) . \tag{6}
\end{align*}
$$

By applying a similar procedure to (4) we get the right-hand side of (6) . By Theorems 2.5 and [2.3, $\left(C_{r} \times K_{2 t+1}\right) \otimes \bar{K}_{k}$ has $\frac{4 t k}{2} C_{k}$-factors of $C_{r} \times K_{k(2 t+1)}$. By

Theorem 3.3, $(2 t+1)\left(C_{r} \times K_{k}\right)$ has $(k-1) C_{k}$-factors of $C_{r} \times K_{k(2 t+1)}$. Put together we get $\frac{2(g-1)}{2} C_{k}$-factors of $C_{r} \times K_{k(2 t+1)}$. Thus we have obtained $\frac{4(g-1)}{2}$ partial $C_{k^{-}}$ factors of $\left(K_{s+1} \otimes \bar{K}_{4}\right) \times K_{g}$ corresponding to each missing partite set of size $4 g$ which makes a hole $K_{4} \times K_{g}$ of $K_{u} \times K_{g}$. Note that corresponding to each partite set of $\left(K_{s+1} \otimes \bar{K}_{4}\right) \times K_{g}$ we have a hole $K_{4} \times K_{g}$ of $K_{u} \times K_{g}$ in (5). To complete the proof, it is enough to find the partial C_{k}-factors of the hole $K_{4} \times K_{g}$ corresponding to the missing partite set, and this put together to get the required partial C_{k}-factors of $K_{u} \times K_{g}$.

Now consider the second graph of (5), that is,

$$
\begin{align*}
K_{4} \times K_{g} & \cong K_{4} \times K_{k(2 t+1)} \\
& \cong K_{4} \times\left\{K_{2 t+1} \otimes \bar{K}_{k} \oplus(2 t+1) K_{k}\right\} \\
& \cong\left\{\left(K_{4} \times K_{2 t+1}\right) \otimes \bar{K}_{k}\right\} \oplus(2 t+1)\left(K_{4} \times K_{k}\right) \tag{7}
\end{align*}
$$

By applying a similar procedure to (4) we get the right-hand side of (7).
Now we construct the partial C_{k}-factors of the right-hand side of (7) as follows:
By Theorem 3.3, $K_{4} \times K_{2 t+1}$ has $\frac{4(2 t)}{2}$ partial C_{3}-factors, and by Theorem 2.11, each $C_{3} \otimes \bar{K}_{k}\left(\cong K_{k, k, k}\right)$ has $k C_{k^{-}}$-factors. Thus we have obtained $\frac{4(2 t k)}{2}$ partial $C_{k^{-}}$ factors of $K_{4} \times K_{g}$, corresponding to the first graph $\left(K_{4} \times K_{2 t+1}\right) \otimes \bar{K}_{k}$. Furthermore, by Theorem 3.2, $(2 t+1)\left(K_{4} \times K_{k}\right)$ has $\frac{4(k-1)}{2}$ partial C_{k}-factors of $K_{4} \times K_{g}$. Put together, we have $\frac{4(g-1)}{2}$ partial C_{k}-factors of $K_{4} \times K_{g}$. Finally, the combination of the $\frac{4(g-1)}{2}$ partial C_{k}-factors of the first graph of the right-hand side of (5) corresponds to one missing partite set of size $4 g$ and the $\frac{4(g-1)}{2}$ partial C_{k}-factors of the hole $K_{4} \times K_{g}$, which correspond to that missing partite set, together gives $\frac{4(g-1)}{2}$ partial C_{k}-factors of $K_{u} \times K_{g}$. Repeat the process $s+1$ times (as there are $s+1$ holes) to get $4(s+1) \frac{g-1}{2}$ partial C_{k}-factors of $K_{u} \times K_{g}$. Thus a k-ARCD of $K_{u} \times K_{g}$ exists.
Theorem 4.4. For all odd $k \geq 5, u \equiv 1(\bmod k)$ and $g \geq 3$, there exists a $k-A R C D$ of $\left(K_{u} \times K_{g}\right)(2)$.

Proof. Let $u=k x+1, x \geq 1$. We can write

$$
\begin{aligned}
\left(K_{u} \times K_{g}\right)(2) & \cong K_{u}(2) \times K_{g} \\
& \cong\left(\mathfrak{C}_{k}^{0} \oplus \mathfrak{C}_{k}^{1} \oplus \cdots \oplus \mathfrak{C}_{k}^{u-1}\right) \times K_{g}, \text { by Theorem [2.6 } \\
& \cong\left(\mathfrak{C}_{k}^{0} \times K_{g}\right) \oplus\left(\mathfrak{C}_{k}^{1} \times K_{g}\right) \oplus \cdots \oplus\left(\mathfrak{C}_{k}^{u-1} \times K_{g}\right) \\
& \cong \oplus_{i \in \mathbb{Z}_{u}}\left(\mathcal{C}_{k}^{i} \times K_{g}\right),
\end{aligned}
$$

where each $\mathfrak{C}_{k}^{i}, 0 \leq i \leq u-1$ is a near C_{k}-factor of $K_{u}(2)$, and each near C_{k}-factor contains x cycles of length k. Hence we write $\mathfrak{C}_{k}^{i} \times K_{g} \cong x\left(C_{k} \times K_{g}\right)$. By Theorem [2.5, each $C_{k} \times K_{g}$ has $g-1 C_{k}$-factors. The collection of all C_{k}-factors from $\mathfrak{C}_{k}^{i} \times K_{g}$ together gives some partial C_{k}-factors of $\left(K_{u} \times K_{g}\right)(2)$. Thus, in total, we get $u(g-1)$ partial C_{k}-factors of $\left(K_{u} \times K_{g}\right)(2)$. Therefore a k-ARCD of $\left(K_{u} \times K_{g}\right)(2)$ exists.
Theorem 4.5. For all $u=2 k+1$, with odd integers $k, g \geq 3$, there exists a $k-A R C D$ of $K_{u} \times K_{g}$.

Proof. The proof follows from Theorem 3.5.
Theorem 4.6. For all $u=2 k x+1$, with odd integers k and g with $k \geq 5, g \geq 3$, and for $x \geq 4$, there exists a $k-A R C D$ of $K_{u} \times K_{g}$.

Proof. Given that $u=2 k x+1$ and $g \geq 3$ is odd, where $x \geq 4$, we can write

$$
\begin{align*}
K_{2 k x+1} \times K_{g} & \cong\left\{\left(K_{x} \otimes \bar{K}_{2 k}\right) \oplus x K_{2 k+1}\right\} \times K_{g} \tag{8}\\
& \cong\left\{\left(K_{x} \otimes \bar{K}_{2 k}\right) \times K_{g}\right\} \oplus x\left(K_{2 k+1} \times K_{g}\right) . \tag{9}
\end{align*}
$$

The right-hand side of (8) can be obtained by making x holes of type $K_{2 k}$ in $K_{2 k x+1}$ and adjoining the omitted vertex, say ∞, to each hole $K_{2 k}$ to get x copies of $K_{2 k+1}$.

Now we construct the partial C_{k}-factors of the right-hand side of (9) as follows. Consider

$$
\begin{align*}
\left(K_{x} \otimes \bar{K}_{2 k}\right) \times K_{g} & \cong\left\{\mathcal{C}_{k}^{0} \oplus \cdots \oplus \mathfrak{C}_{k}^{x-1}\right\} \times K_{g}, \quad \text { by Theorem } 2.9 \tag{10}\\
& \cong\left(\mathcal{C}_{k}^{0} \times K_{g}\right) \oplus \cdots \oplus\left(\mathcal{C}_{k}^{x-1} \times K_{g}\right),
\end{align*}
$$

where each $\mathcal{C}_{k}^{i}, 0 \leq i \leq x-1$, contains $\frac{2 k}{2}$ partial C_{k}-factors of ($K_{x} \otimes \bar{K}_{2 k}$), and each partial C_{k}-factor contains $2(x-1)$ cycles of length k. Hence we write $\mathcal{C}_{k}^{i} \times K_{g} \cong$ $\frac{2 k}{2}\left\{2(x-1)\left(C_{k} \times K_{g}\right)\right\}$ and each $C_{k} \times K_{g}$ has $g-1 C_{k}$-factors by Theorem 2.5. Thus we have obtained $\frac{2 k(g-1)}{2}$ partial C_{k}-factors of $\left(K_{x} \otimes \bar{K}_{2 k}\right) \times K_{g}$ corresponding to each missing partite set of size $2 k g$ which makes a hole $K_{2 k+1} \times K_{g}$ of $K_{u} \times K_{g}$. Note that corresponding to each partite set of $\left(K_{x} \otimes \bar{K}_{2 k}\right) \times K_{g}$ we have a hole $K_{2 k+1} \times K_{g}$ of $K_{u} \times K_{g}$ in (9). To complete the proof, it is enough to find the partial C_{k}-factors of the hole $K_{2 k+1} \times K_{g}$ corresponding to the missing partite set and put together to get the required partial C_{k}-factors of $K_{u} \times K_{g}$.

By Theorem 4.5, $K_{2 k+1} \times K_{g}$ has $\frac{2 k(g-1)}{2}$ partial C_{k}-factors with missing partite sets corresponding to the vertices of $K_{2 k}$ and $\frac{g-1}{2}$ partial C_{k}-factors with missing partite set corresponding to the vertex ∞. The combination of the $\frac{2 k(g-1)}{2}$ partial C_{k}-factors of $\left(K_{x} \otimes \bar{K}_{2 k}\right) \times K_{g}$ corresponding to one missing partite set of size $2 k g$ together with $\frac{2 k(g-1)}{2}$ partial C_{k}-factors of $K_{2 k+1} \times K_{g}$, which correspond to that missing partite set of $\left(K_{x} \otimes \bar{K}_{2 k}\right) \times K_{g}$, gives $\frac{2 k(g-1)}{2}$ partial C_{k}-factors of $K_{2 k x+1} \times K_{g}$. As there are x holes, repeating the above process x times, we get $\frac{2 k x(g-1)}{2}$ partial C_{k}-factors of $K_{2 k x+1} \times K_{g}$. Further, the collection of all $\frac{g-1}{2}$ partial C_{k}-factors of each of the x copies of $K_{2 k+1} \times K_{g}$ with missing partite set that corresponds to the vertex ∞, together gives $\frac{g-1}{2}$ partial C_{k}-factors of $K_{2 k x+1} \times K_{g}$. Therefore a k-ARCD of $K_{u} \times K_{g}$ exists.

Theorem 4.7. Let $k=q_{1} q_{2} \ldots q_{k} \geq 9$ be odd, where $q_{1}, q_{2}, \ldots, q_{k} \geq 3$ are odd and not necessarily distinct. If $u \equiv 1\left(\bmod q_{1} q_{2} \ldots q_{i}\right)$ and $g=\left(q_{i+1} q_{i+2} \ldots q_{k}\right) y$, $1 \leq i \leq k-1$, then there exists a $k-A R C D$ of $\left(K_{u} \times K_{g}\right)(2)$, except possibly when $y \equiv 2(\bmod 4)$.

Proof. Let $u=m x+1, g=n y$ and $k=m n$ where $m=q_{1} q_{2} \ldots q_{i}, n=q_{i+1} q_{i+2} \ldots q_{k}$, and $x, y \geq 1$. We can write

$$
\begin{aligned}
\left(K_{u} \times K_{g}\right)(2) & \cong K_{m x+1}(2) \times K_{n y} \\
& \cong\left\{\mathcal{C}_{m}^{0} \oplus \mathfrak{C}_{m}^{1} \oplus \cdots \oplus \mathfrak{C}_{m}^{m x}\right\} \times K_{n y} \\
& \cong\left(\mathcal{C}_{m}^{0} \times K_{n y}\right) \oplus \cdots \oplus\left(\mathrm{C}_{m}^{m x} \times K_{n y}\right) \\
& \cong \oplus_{j \in \mathbb{Z}_{m x+1}}\left(\mathrm{C}_{m}^{j} \times K_{n y}\right),
\end{aligned}
$$

where each $\mathfrak{C}_{m}^{j}, 0 \leq j \leq m x$, is a near C_{m}-factor of $K_{m x+1}(2)$, and each near $C_{m^{-}}$ factor contains x cycles of length m. Hence we write $\mathcal{C}_{m}^{j} \times K_{n y} \cong x\left(C_{m} \times K_{n y}\right)$ and by applying a similar procedure to (4) we get the following:

$$
\begin{align*}
C_{m} \times K_{n y} & \cong C_{m} \times\left\{\left(K_{y} \otimes \bar{K}_{n}\right) \oplus y K_{n}\right\} \\
& \cong\left\{\left(C_{m} \times K_{y}\right) \otimes \bar{K}_{n}\right\} \oplus y\left(C_{m} \times K_{n}\right) \tag{11}
\end{align*}
$$

By Theorem 2.8, $C_{m} \times K_{y}$ has $(y-1) C_{m}$-factors, and $C_{m} \otimes \bar{K}_{n}$ has $n C_{m n}$-factors by Theorem [2.7. Thus we have obtained $n(y-1) C_{m n}$-factors of $C_{m} \times K_{n y}$ corresponding to the first graph $\left(C_{m} \times K_{y}\right) \otimes \bar{K}_{n}$. Furthermore, by Theorem 3.1, $y\left(C_{m} \times K_{n}\right)$ has $n-1$ $C_{m n}$-factors. Finally, the $C_{m n}$-factors of the two graphs of the right-hand side of (11) together give $(n y-1) C_{m n}$-factors of $C_{m} \times K_{n y}$. The collection of all $C_{m n}$-factors of $\mathcal{C}_{m}^{j} \times K_{n y}$ together gives a required partial $C_{m n}$-factorzation of $\left(K_{u} \times K_{g}\right)(2)$.

Theorem 4.8. Let $k=q_{1} q_{2} \ldots q_{k} \geq 9$ be odd, where $q_{1}, q_{2}, \ldots, q_{k} \geq 3$ are odd and not necessarily distinct. If $u=2\left(q_{1} q_{2} \ldots q_{i}\right)+1$ and $g \equiv\left(q_{i+1} q_{i+2} \ldots q_{k}\right)$ $\left(\bmod 2 q_{i+1} q_{i+2} \ldots q_{k}\right), 1 \leq i \leq k-1$, then there exists a $k-A R C D$ of $K_{u} \times K_{g}$.

Proof. Let $u=2 m+1, g=(2 x+1) n$, and $k=m n$, where $m=q_{1} q_{2} \ldots q_{i}, n=$ $q_{i+1} q_{i+2} \ldots q_{k}$, and $x \geq 1$. We can write

$$
\begin{equation*}
K_{2 m+1} \times K_{(2 x+1) n} \cong\left\{\left(K_{2 m+1} \times K_{2 x+1}\right) \otimes \bar{K}_{n}\right\} \oplus(2 x+1)\left(K_{2 m+1} \times K_{n}\right) \tag{12}
\end{equation*}
$$

By applying a similar procedure to (4) we get the right-hand side of (12).
We construct a partial $C_{m n}$-factorization of the right-hand side of (12) as follows. First we consider

$$
\begin{aligned}
\left(K_{2 m+1} \times K_{2 x+1}\right) \otimes \bar{K}_{n} & \cong\left\{\mathfrak{C}_{m}^{0} \oplus \cdots \oplus \mathcal{C}_{m}^{2 m}\right\} \otimes \bar{K}_{n}, \text { by Theorems 3.5 } \\
& \cong\left(\mathcal{C}_{m}^{0} \otimes \bar{K}_{n}\right) \oplus \cdots \oplus\left(\mathcal{C}_{m}^{2 m} \otimes \bar{K}_{n}\right) \\
& \cong \oplus_{i \in \mathbb{Z}_{2 m+1}}\left(\mathfrak{C}_{m}^{i} \otimes \bar{K}_{n}\right),
\end{aligned}
$$

where each $\mathfrak{C}_{m}^{j}, 0 \leq j \leq 2 m$, contains x partial C_{m}-factors of $K_{2 m+1} \times K_{2 x+1}$, in which each partial C_{m}-factor contains $2(2 x+1)$ cycles of length m. Hence we write $\mathcal{C}_{m}^{j} \times \bar{K}_{n} \cong x\left\{2(2 x+1)\left(C_{m} \otimes \bar{K}_{n}\right)\right\}$, and by Theorem 2.7, each $C_{m} \otimes \bar{K}_{n}$ has $n C_{m n^{-}}$ factors. Thus we have obtained $x n$ partial $C_{m n}$-factors of $\left(K_{2 m+1} \times K_{2 x+1}\right) \otimes \bar{K}_{n}$ corresponding to one missing partite set of size $(2 x+1) n$. By taking the union of all partial $C_{m n}$-factors corresponding to all the missing partite sets together gives $(2 m+1) x n$ partial $C_{m n}$-factors of $\left(K_{2 m+1} \times K_{2 x+1}\right) \otimes \bar{K}_{n}$.

Furthermore, by Theorem 3.6 we get $\frac{n-1}{2}$ partial $C_{m n}$-factors of the second graph $(2 x+1)\left(K_{2 m+1} \times K_{n}\right)$ corresponding to one missing partite set. Taking the union of all the partial $C_{m n}$-factors together corresponding to all the missing partite sets, we get $(2 m+1) \frac{n-1}{2}$ partial $C_{m n}$-factors of $(2 x+1)\left(K_{2 m+1} \times K_{n}\right)$. Finally, the partial $C_{m n}$-factors of the two graphs of the right-hand side of (12) obtained above together gives a required partial $C_{m n}$-factorization of $K_{u} \times K_{g}$.

Theorem 4.9. Let $k=q_{1} q_{2} \ldots q_{k} \geq 45$ be odd, where $q_{1}, q_{2}, \ldots, q_{i} \geq 15, q_{i+1}, q_{i+2}$, $\ldots, q_{k} \geq 3$ and $q_{1}, q_{2}, \ldots, q_{k}$ are odd and not necessarily distinct. If $u=2\left(q_{1} q_{2} \ldots q_{i}\right) x$ +1 , where $x \geq 4$, and $g \equiv\left(q_{i+1} q_{i+2} \ldots q_{k}\right)\left(\bmod 2 q_{i+1} q_{i+2} \ldots q_{k}\right), 1 \leq i \leq k-1$, then there exists a $k-A R C D$ of $K_{u} \times K_{g}$.

Proof. Let $u=2 m x+1, g=(2 y+1) n$ and $k=m n \geq 45$, where $m=q_{1} q_{2} \ldots q_{i} \geq 15$, $n=q_{i+1} q_{i+2} \ldots q_{k} \geq 3$, and $x \geq 4, y \geq 1$. By using (9), we can write

$$
\begin{align*}
K_{2 m x+1} \times K_{g} & \cong\left\{\left(K_{x} \otimes \bar{K}_{2 m}\right) \oplus x K_{2 m+1}\right\} \times K_{g} \tag{13}\\
& \cong\left\{\left(K_{x} \otimes \bar{K}_{2 m}\right) \times K_{g}\right\} \oplus x\left(K_{2 m+1} \times K_{g}\right) \tag{14}
\end{align*}
$$

Now, we construct the partial $C_{m n}$-factors of the right-hand side of (14) as follows. First we consider

$$
\begin{align*}
\left(K_{x} \otimes \bar{K}_{2 m}\right) \times K_{g} & \cong\left\{\mathfrak{C}_{m}^{0} \oplus \cdots \oplus \mathcal{C}_{m}^{x-1}\right\} \times K_{g}, \quad \text { by Theorem [2.9] } \\
& \cong\left(\mathcal{C}_{m}^{0} \times K_{g}\right) \oplus \cdots \oplus\left(\mathcal{C}_{m}^{x-1} \times K_{g}\right) \\
& \cong \oplus_{l \in \mathbb{Z}_{x}}\left(\mathcal{C}_{m}^{l} \times K_{g}\right) \tag{15}
\end{align*}
$$

where each $\mathcal{C}_{m}^{l}, 0 \leq l \leq x-1$, contains $\frac{2 m}{2}$ partial C_{k}-factors of $K_{x} \otimes \bar{K}_{2 m}$, and each partial C_{k}-factor contains $2(x-1)$ cycles of length k. Hence we write $\mathfrak{C}_{m}^{i} \times K_{g} \cong$ $\frac{2 m}{2}\left\{2(x-1)\left(C_{m} \times K_{(2 y+1) n}\right)\right\}$.

$$
\begin{aligned}
C_{m} \times K_{(2 y+1) n} & \cong C_{m} \times\left\{\mathbb{C}_{n}^{1} \oplus \cdots \oplus \mathbb{C}_{n}^{\frac{g-1}{2}}\right\}, \text { by Theorem 2.1] } \\
& \cong\left(C_{m} \times \mathbb{C}_{n}^{1}\right) \oplus \cdots \oplus\left(C_{m} \times \mathbb{C}_{n}^{\frac{g-1}{2}}\right) \\
C_{m} \times \mathbb{C}_{n}^{j} & \cong(2 y+1)\left(C_{m} \times C_{n}\right),
\end{aligned}
$$

where each $\mathbb{C}_{n}^{j}, 1 \leq j \leq \frac{g-1}{2}$, is a C_{n}-factor of $K_{(2 y+1) n}$, and each C_{n}-factor contains $(2 y+1)$ cycles of length n. By Theorem 3.1, each $C_{m} \times C_{n}$ has two $C_{m n}$ factors. Thus we have obtained $\frac{2 m(g-1)}{2}$ partial $C_{m n}$-factors of $\left(K_{x} \otimes \bar{K}_{2 m}\right) \times K_{g}$ corresponding to one missing partite set of size $2 m g$ which makes a hole $K_{2 m+1} \times K_{g}$ of $K_{u} \times K_{g}$. Note that corresponding to each partite set of $\left(K_{x} \otimes \bar{K}_{2 m}\right) \times K_{g}$ we have a hole $K_{2 m+1} \times K_{g}$ of $K_{u} \times K_{g}$ in (14). To complete the proof, it is enough to find the partial $C_{m n}$-factors of the hole $K_{2 m+1} \times K_{g}$ corresponding to the missing partite set and put together to get the required partial $C_{m n}$-factors of $K_{u} \times K_{g}$.

Now we consider

$$
\begin{align*}
K_{2 m+1} \times K_{g} & \cong K_{2 m+1} \times K_{(2 y+1) n} \\
& \cong\left\{\left(K_{2 m+1} \times K_{2 y+1}\right) \otimes \bar{K}_{n}\right\} \oplus(2 y+1)\left(K_{2 m+1} \times K_{n}\right) \tag{16}
\end{align*}
$$

By Theorems 3.5 and 2.7, $\left(K_{2 m+1} \times K_{2 y+1}\right) \otimes \bar{K}_{n}$ has $2 m(y n)$ partial $C_{m n}$-factors with missing partite sets corresponding to the vertices of $K_{2 m}$ and $y n$ partial $C_{m n^{-}}$ factors with missing partite sets corresponding to the vertex ∞. Furthermore, by Theorem 3.6, $(2 y+1)\left(K_{2 m+1} \times K_{n}\right)$ has $(2 m)\left(\frac{n-1}{2}\right)$ partial $C_{m n}$-factors with missing partite sets corresponding to the vertices of $K_{2 m}$, and $\frac{n-1}{2}$ partial $C_{m n}$-factors with missing partite sets corresponding to the vertex ∞. Adding all the partial $C_{m n^{-}}$ factors of the two graphs in the right-hand side of (16), we get $\frac{(2 m)(g-1)}{2}$ partial $C_{m n}$-factors of $K_{2 m+1} \times K_{g}$ with missing partite sets corresponding to the vertices of $K_{2 m}$, and $\frac{g-1}{2}$ partial $C_{m n}$-factors with missing partite sets corresponding to the vertex ∞.

Finally, the combination of $\frac{2 m(g-1)}{2}$ partial $C_{m n}$-factors of $\left(K_{x} \otimes \bar{K}_{2 m}\right) \times K_{g}$ corresponding to the one missing partite set of size $2 m g$, together with the $\frac{2 m(g-1)}{2}$ partial $C_{m n}$-factors of $K_{2 m+1} \times K_{g}$ with missing partite sets corresponding to the vertices of $K_{2 m}$, gives $\frac{2 m x(g-1)}{2}$ partial $C_{m n}$-factors of $K_{2 m x+1} \times K_{g}$. As there are x holes, repeat the process x times, and we get $\frac{2 m x(g-1)}{2}$ partial $C_{m n}$-factors of $K_{u} \times K_{g}$. Furthermore, the collection of all $\frac{g-1}{2}$ partial $C_{m n}$-factors of each of the x copies of $K_{2 m+1} \times K_{g}$ with missing partite set corresponding to the vertex ∞, together gives $\frac{g-1}{2}$ partial $C_{m n}$-factors of $K_{2 m x+1} \times K_{g}$. Therefore a k-ARCD of $K_{u} \times K_{g}$ exists.

Theorem 4.10. For all odd $k \geq 15$, there exists a $k-A R C D$ of $\left(K_{u} \times K_{g}\right)(\lambda)$ if and only if $u \geq 4, g \geq 3, \lambda(g-1) \equiv 0(\bmod 2), g(u-1) \equiv 0(\bmod k)$, except possibly for $(\lambda, u, g) \in\{(2 m, u, k x),(2 m, 5, g) \mid x \equiv 2(\bmod 4)$ and $m \geq 1\}$, and $(\lambda, u) \in\{(2 m+1,\{16,2 r+1,4(2 s+1), 4 t+2, k x+1\}) \mid x \in\{2 t+1,4,6\}, m, t \geq$ 0 , for even r, s and odd $s<15\}$.

Proof. Necessity follows from Theorem 1.1. Sufficiency can be divided into two cases. Case (i): When $\lambda=1$, the values of u and g fall into one of the following cases:
(a) $u=2 s+1, g \equiv k(\bmod 2 k)$, where $s \geq 3$ is odd and $s \leq k$;
(b) $u=4(s+1), s \in\{r, 2 r\}, g \equiv k(\bmod 2 k)$, where $r, k \geq 15$ are odd integers and $r \leq k ;$
(c) $u=2 k+1$, and $g \geq 3$ is odd;
(d) $u=2 k x+1, x \geq 4$ and $g \geq 3$ is odd.

Case (ii): When $\lambda=2$, the values of u and g fall into one of the following cases:
(e) $u \geq 4, u \neq 5$ and $g \equiv 0(\bmod k)$;
(f) $u=k x+1, x \geq 1$ and $g \geq 3$.

The proofs for (a), (b), (c), (d), (e), and (f) follow from Theorems 4.2, 4.3, 4.5, 4.6, 4.1. and 4.4. respectively. If $\lambda>2$ is even (respectively, odd), then the values for u and g are the same as in cases (i) and (ii) (respectively, case (i)). Hence a k-ARCD of $\left(K_{u} \times K_{g}\right)(\lambda)$ exists.

Theorem 4.11. Let $k=q_{1} q_{2} \ldots q_{k} \geq 9$ be odd, where $q_{1}, q_{2}, \ldots, q_{k} \geq 3$ are odd integers and not necessarily distinct. There exists a $k-A R C D$ of $\left(K_{u} \times K_{g}\right)(\lambda)$ if and only if $u \geq 4, g \geq 3, \lambda(g-1) \equiv 0(\bmod 2), g(u-1) \equiv 0(\bmod k)$, except possibly for $(\lambda, u, g, k) \in\{(2 m, r x+1, s y, r s) \mid m \geq 1, y \equiv 2(\bmod 4)\}$ and $(\lambda, u, g, k) \in\{(2 m+$ $1, r x+1, s(2 t+1), r s),(2 m+1, u, g, n) \mid x \in\{4,6,2 t+1\}, m, t \geq 0, n<45$ is odd $\}$.

Proof. Necessity follows from Theorem 1.1. We prove the sufficiency as follows:
The values of u, g and λ fall into one of the following cases:
(a) $u=2\left(q_{1} q_{2} \ldots q_{i}\right)+1, g \equiv\left(q_{i+1} q_{i+2} \ldots q_{k}\right)\left(\bmod q_{i+1} q_{i+2} \ldots q_{k}\right), 1 \leq i \leq k-1$, when $\lambda=1$;
(b) $u=2\left(q_{1} q_{2} \ldots q_{i}\right) x+1, g \equiv\left(q_{i+1} q_{i+2} \ldots q_{k}\right)\left(\bmod q_{i+1} q_{i+2} \ldots q_{k}\right), 1 \leq i \leq k-1$ for any $x \geq 4$ and $k \geq 45$, when $\lambda=1$;
(c) $u \equiv 1\left(\bmod q_{1} q_{2} \ldots q_{i}\right), g \equiv 0\left(\bmod q_{i+1} q_{i+2} \ldots q_{k}\right), 1 \leq i \leq k-1$, when $\lambda=2$.

The proofs for (a), (b), and (c) follow from Theorems 4.8, 4.9, and 4.7, respectively. If $\lambda>2$ is even (respectively, odd), the values for u and g are the same as in (a), (b), and (c) (respectively, (a) and (b)). Hence a k-ARCD of $\left(K_{u} \times K_{g}\right)(\lambda)$ exists.

5 Conclusion

In this paper, we have established the existence of a k - ARCD of $\left(K_{u} \times K_{g}\right)(\lambda)$, for all odd $k \geq 15$ with a few possible exceptions. Our results also provide a partial solution to the existence of modified cycle frames of complete multipartite multigraphs.

Acknowledgments

The first author thanks the Periyar University for its support through URF grant no.: PU/ AD-3/URF/015723/2020. The second author thanks DST, New Delhi for its support through FIST grant no.: SR/FIST/MSI-115/2016 (Level-I). Further, the authors thank the anonymous referees for their valuable suggestions which improved the paper.

References

[1] B. Alspach, J. C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, in: Cycles and Rays (Eds. G. Hahn et al.), Kluwer Academic Publishers, 1990, pp. 9-18.
[2] B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser A. 52 (1) (1989), 20-43.
[3] J.C. Bermond, Hamilton decomposition of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978), 21-28.
[4] M. Buratti, H. Cao, D. Dai and T. Traetta, A complete solution to the existence of (k, λ)-cycle frames of type g^{u}, J. Combin. Des. 25 (5) (2016), 197-230.
[5] J. Burling and K. Heinrich, Near 2-factorizations of 2kn : cycles of even length, Graphs Combin. 5 (1989), 213-221.
[6] H. Cao, Y. Wu and H. Zhou, Modified frames with block size 3, J. Combin. Des. 16 (5) (2008), 351-363.
[7] V. Chitra, A. Shanmuga Vadivu, and A. Muthusamy, $C_{4 p}$-frame of complete multipartite multigraphs, Aequat. Math. 85 (2013), 563-579.
[8] S. Duraimurugan, A, Shanmuga Vadivu and A. Muthusamy, Almost resolvable even cycle systems of $\left(K_{u} \times K_{g}\right)(\lambda)$, (submitted).
[9] K. Heinrich, C.C. Lindner and C. A. Rodger, Almost resolvable decompositions of $2 K_{n}$ into cycles of odd length, J. Combin. Theory Ser A. 49 (1998), 218-232.
[10] J. D. Horton, B. K. Roy, P. J. Schellenberg and D. R. Stinson, On decomposing graphs into isomorphic uniform 2-factors, Ann. Discrete Math. 27 (1985), 297-319.
[11] W. Imrich and S. Klavzar, Product graphs-structure and recognition, Wiley Interscience Series in Discrete Mathematics and Optimization, 2000.
[12] R. Laskar, Decomposition of some composite graphs into hamiltonian cycles, Proc. 5th Hungarian Coll. Kesathely 1976, North Holland (1978), 705-716.
[13] R. S. Manikandan and P. Paulraja, C_{p}-decompositions of some regular graphs, Discrete Math. 306 (2006), 429-451.
[14] R.S. Manikandan and P. Paulraja, C_{5}-decompositions of the tensor product of complete graphs, Australas. J. Combin. 37 (2007), 285-293.
[15] A. Muthusamy and P. Paulraja, Factorization of product graphs into cycles of uniform length, Graphs Combin. 11 (1995), 69-90.
[16] A. Muthusamy and A. Shanmuga Vadivu, Cycle frames of complete multipartite multigraphs III, J. Combin. Des. 22 (11) (2014), 473-487.
[17] M. Niu and H. Cao, More results on cycle frames and almost resolvable cycle systems, Discrete Math. 312 (2012), 3392-3405.
[18] D. R. Stinson, Frames for Kirkman triple systems, Discrete Math. 65 (1987), 289-300.
(Received 9 Dec 2021; revised 22 June 2022, 22 July 2022)

