Almost resolvable odd cycle decompositions of $(K_u \times K_g)(\lambda)$

S. DURAIMURUGAN A. MUTHUSAMY

Department of Mathematics Periyar University, Salem Tamil Nadu, India duraipu93@gmail.com appumuthusamy@gmail.com

Abstract

In this paper, we show that almost resolvable k-cycle decompositions of $(K_u \times K_g)(\lambda)$ (where \times represents the tensor product of graphs) exist for all odd $k \geq 15$ with only a few possible exceptions.

1 Introduction

Throughout this paper all the graphs considered are finite. Specifically, if the graph G is simple then, for any $\lambda \geq 1$, we use $G(\lambda)$ (respectively, λG), to represent the multigraphs obtained from G by replacing each edge of G with uniform edge-multiplicity λ (respectively, λ edge-disjoint copies of G). Let C_s , K_s and \bar{K}_s denote the *cycle*, *complete graph* and *complement* of the complete graph on s vertices, respectively. A *complete bipartite graph* with bipartition (U, V) is denoted by $K_{s,s}$, where $U = \{u_0, u_1, \ldots, u_{s-1}\}$ and $V = \{v_0, v_1, \ldots, v_{s-1}\}$. The edge set of $F_i(U, V) \subset K_{s,s}$ is defined as $\{u_j v_{j+i} : 0 \leq j \leq s-1\}$, for $0 \leq i \leq s-1$, where addition in the subscripts is taken modulo s. Clearly $F_i(U, V)$ is a 1-factor of $K_{s,s}$ with distance ifrom U to V. Also $\bigoplus_{i=0}^{s-1} F_i(U, V) = K_{s,s}$, where \oplus denotes the edge-disjoint union of graphs.

For two graphs A and B, their lexicographic product $A \otimes B$ has vertex set $V(A \otimes B) = V(A) \times V(B)$ and edge set $E(A \otimes B) = \{(a_1, b_1)(a_2, b_2) | a_1 a_2 \in E(A) \text{ or } a_1 = a_2 \text{ and } b_1 b_2 \in E(B)\}$. Similarly, the tensor product $A \times B$ of two graphs A and B has vertex set $V(A) \times V(B)$ and edge set $E(A \times B) = \{(a_1, b_1)(a_2, b_2) | a_1 a_2 \in E(A) \text{ and } b_1 b_2 \in E(B)\}$. One can easily observe that $K_u \otimes \overline{K}_g \cong K_{g,g,\dots,g}$, the complete u-partite graph in which each partite set has g vertices. Hereafter we denote a complete u-partite graph, with g vertices in each partite set, as $K_u \otimes \overline{K}_g$. It is clear that $(K_u \otimes \overline{K}_g) - gK_u \cong K_u \times K_g$, where gK_u denotes g disjoint copies of K_u . For more details about product graphs, the reader is referred to [11].

We say that the graph G has an H-decomposition if G can be partitioned into H_1, H_2, \ldots, H_r for some integer $r \ge 1$ and each $H_i \cong H$ where H_1, H_2, \ldots, H_r are

pairwise edge-disjoint subgraphs of G. A C_k -decomposition of H is a partition of H into edge-disjoint cycles of length k, and the existence of such a decomposition is denoted as $C_k|H$. A k-factor (respectively, near k-factor) of H is a k-regular spanning subgraph of H (respectively, $H \setminus \{v\}$, for some $v \in V(H)$). A k-factorization (respectively, near k-factorization) of H is a partition of H into edge-disjoint k-factors (respectively, near k-factors). Note that a 2-factor (respectively, near 2-factor) of H can also be called a C_k -factor of H (respectively, $H \setminus \{v\}$, for some $v \in V(H)$), when the components are cycles of length k. A C_k -factorization of H is a partition of H into edge-disjoint near C_k -factors.

A partial k-factor of $(K_u \otimes \bar{K}_g)(\lambda)$ is a k-factor of $(K_u \otimes \bar{K}_g)(\lambda) \setminus V_i$, for some $i \in \{1, 2, 3, ..., u\}$, where $V_1, V_2, V_3, ..., V_u$ are the partite sets of $(K_u \otimes \bar{K}_g)(\lambda)$. A partial k-factorization (respectively, partial C_k -factorization) of $(K_u \otimes \bar{K}_g)(\lambda)$ is a decomposition of $(K_u \otimes \bar{K}_g)(\lambda)$ into partial k-factors (respectively, partial C_k -factors).

Let K be a set of integers. A resolvable K-cycle decomposition, briefly K-RCD (respectively, almost resolvable K-cycle decomposition, briefly K-ARCD) of $(K_u \otimes \overline{K}_g)(\lambda)$ is a decomposition of $(K_u \otimes \overline{K}_g)(\lambda)$ into 2-factors (respectively, partial 2factors) consisting of cycles of lengths from K. When $K = \{k\}$, we write K-RCD as k-RCD, and K-ARCD as k-ARCD. A (k, λ) -modified cycle frame, briefly (k, λ) -MCF, of $(K_u \otimes \overline{K}_g)(\lambda)$ is a decomposition of $(K_u \otimes \overline{K}_g)(\lambda) - gK_u(\lambda)$ into partial C_k -factors. It is appropriate to mention that a k-ARCD of $(K_u \times K_g)(\lambda)$ is nothing but a (k, λ) -modified cycle frame.

Studies on RCD/ARCD have a direct relationship with various kinds of cycle frames. Cycle frames have been studied by many researchers (e.g. Stinson [18], Cao et al. [6], Niu et al. [17], Chitra et al. [7], Muthusamy et al. [16], Buratti et al. [4]), due to their applicability in many well-known combinatorial problems such as the Oberwolfach problem, the Hamilton-Waterloo problem, etc. The above facts motivated us to do some work on RCD/ARCD in the present paper.

Cao et al. [6] proved that there exists a 3-ARCD of $(K_u \times K_g)(\lambda)$. Duraimurugan et al. [8] proved that there exists a k-ARCD of $(K_u \times K_g)(\lambda)$ for all even $k \ge 6$ with a few possible exceptions. In this paper we prove that, for all odd $k \ge 15$, $u \ge 4$ and $g \ge 3$, there exists a k-ARCD of $(K_u \times K_g)(\lambda)$ if and only if $\lambda(g-1) \equiv 0 \pmod{2}$ and $g(u-1) \equiv 0 \pmod{k}$, except possibly for $(\lambda, u, g) \in \{(2m, u, kx), (2m, 5, g) \mid x \equiv 2 \pmod{4} \text{ and } m \ge 1\}$, and $(\lambda, u) \in \{(2m+1, \{16, 2r+1, 4(2s+1), 4t+2, kx+1\}) \mid x \in \{2t+1, 4, 6\}, m, t \ge 0$, for even r, s and odd $s < 15\}$.

For all odd $k \geq 3$, the necessary conditions for the existence of a k-ARCD of $(K_u \times K_g)(\lambda)$ are shown in the following theorem.

Theorem 1.1. For all odd integers $k \geq 3$, if $(K_u \times K_q)(\lambda)$ has a k-ARCD, then

- (i) $u \ge 4$ and $g \ge 3$,
- (ii) $g(u-1) \equiv 0 \pmod{k}$,
- (*iii*) $\lambda(g-1) \equiv 0 \pmod{2}$.

Proof. Since $k \geq 3$ is an odd integer, it is clear from the definition of a k-ARCD that

 $u \ge 4$ and $g \ge 3$. As the existence of k-ARCD gives the edge disjoint union of partial C_k -factors of $(K_u \times K_g)(\lambda)$, the number of vertices in $(K_u \times K_g)(\lambda) \setminus V_i$, for some $i \in \{1, 2, \ldots, u\}$, where V_1, V_2, \ldots, V_u are the partite sets of $(K_u \times K_g)(\lambda)$, must be divisible by k; so $g(u-1) \equiv 0 \pmod{k}$. Since each partial C_k -factor of $(K_u \times K_g)(\lambda)$ consists of g(u-1) edges, the number of partial C_k -factors in $(K_u \times K_g)(\lambda)$ is

$$\lambda \frac{\frac{u(u-1)}{2}g^2 - \frac{u(u-1)}{2}g}{(u-1)g} = \lambda \frac{u(g-1)}{2}.$$

Hence there are precisely $\frac{\lambda(g-1)}{2}$ partial C_k -factors corresponding to each missing particle set $V_i, i \in \{1, 2, \dots, u\}$.

2 Preliminaries

To prove our results we need the following:

Theorem 2.1. [2] For any odd integer $t \ge 3$, if $u \equiv t \pmod{2t}$, then $C_t || K_u$.

Theorem 2.2. [9] For any odd $m \geq 3$, there exists a near C_m -factorization of $K_{2m+1}(2)$.

Theorem 2.3. [2] Let k and t be odd integers such that $3 \le k \le t$. Then $C_t || C_k \otimes \overline{K}_t$.

Theorem 2.4. [17] There exists a near $\{C_3, C_5\}$ -factorization of $K_u(2)$ for $u \ge 4$ and $u \ne 5, 8$.

Theorem 2.5. [13] For $m \neq 2$, odd integers $k \geq 5$ and $r \geq 3$, we have $C_k || C_k \times K_m$, $C_k || K_k \times C_5$ and $C_r || K_r \times C_3$.

Theorem 2.6. [9] For any odd $m \ge 3$ and for any s > 0, there exists a near C_m -factorization of $K_{ms+1}(2)$.

Theorem 2.7. [12] The graph $C_m \otimes \overline{K}_n$ has a Hamilton decomposition.

Theorem 2.8. [15] If $C_k || G$ and n | m, then $C_{kn} || G \times K_m$, where $m \not\equiv 2 \pmod{4}$, when k is odd.

Theorem 2.9. [4] Let g be an even integer and let $k \ge 15$ be a divisor of g. Then there exists a k-ARCD of $K_u \otimes \bar{K}_g$ for any $u \ge 4$.

Theorem 2.10. [4] There exists an r-ARCD of $K_{s+1} \otimes \overline{K}_4$, $s \in \{r, 2r\}$, for all odd $r \geq 15$.

Theorem 2.11. [10] $K_{t,t,t}$ has a C_t -factorization

3 Basic Constructions

Theorem 3.1. ([1] Walecki's Construction.) There exists a Hamilton cycle decomposition of K_k for all $k \geq 3$.

Proof. We break this theorem into two cases.

Case (i): $k = 2t + 1, t \ge 1$. Let $V(K_{2t+1}) = \{y_0, y_1, \dots, y_{2t}\}$ and $H = (y_0y_1y_2y_{2t}y_3y_{2t-1}y_4y_{2m-2}\dots y_{t+3}y_ty_{t+2}y_{t+1})$ be the Hamilton cycle. Let σ be the permutation $(y_0)(y_1y_2y_3\cdots y_{2t-1}y_{2t})$. Then $H_0 = H, H_1 = \sigma(H), H_2 = \sigma^2(H), \dots, H_{t-1} = \sigma^{t-1}(H)$ is a Hamilton cycle decomposition of K_{2t+1} .

Case (ii): $k = 2t, t \ge 2$.

By using a similar procedure to the previous case, we can get t-1 edge disjoint Hamilton cycles $H_0 = H$, $H_1 = \sigma(H)$, $H_2 = \sigma^2(H)$, ..., $H_{t-2} = \sigma^{t-2}(H)$. The remaining edges y_0y_t , $y_{t-1}y_{t+1}$, $y_{t-2}y_{t+2}$, ..., y_1y_{2t-1} form a 1-factor of K_k .

Lemma 3.1. There exists a C_{ks} -factorization of $C_k \times C_s$, for all odd integers $s, k \ge 3$.

Proof. Let $V(C_k) = \{y_0, y_1, \dots, y_{k-1}\}$. Then $V(C_k \times C_s) = \bigcup_{i \in \mathbb{Z}_k} Y_i$, where $Y_i = \{y_i^j \mid j \in \mathbb{Z}_s\}$. Let

(i)
$$C^{1} = \bigcup_{i=0}^{\frac{k-1}{2}} F_{1}(Y_{2i}, Y_{2i+1}) \oplus \bigcup_{i=0}^{\frac{k-3}{2}} F_{s-1}(Y_{2i+1}, Y_{2i+2})$$
 and
(ii) $C^{2} = \bigcup_{i=0}^{\frac{k-1}{2}} F_{s-1}(Y_{2i}, Y_{2i+1}) \oplus \bigcup_{i=0}^{\frac{k-3}{2}} F_{1}(Y_{2i+1}, Y_{2i+2}),$

where the subscripts of Y are taken modulo k. One can check that both \mathcal{C}^1 and \mathcal{C}^2 are C_{ks} -factors of $C_k \times C_s$.

Lemma 3.2. There exists a C_3 -factorization of $C_3 \times K_{2t+1}$, for all $t \ge 1$.

Proof. Let $V(C_3) = \{y_0, y_1, y_2\}$ and $V(C_3 \times K_{2t+1}) = \bigcup_{i \in \mathbb{Z}_3} Y_i$, where $Y_i = \{y_i^j \mid j \in \mathbb{Z}_{2t+1}\}$. Let $G_i = F_i(Y_0, Y_1) \oplus F_i(Y_1, Y_2) \oplus F_{2(t-i)+1}(Y_2, Y_0)$, $1 \leq i \leq 2t$, where the subscripts of F are taken modulo (2t+1). One can check that each G_i , $1 \leq i \leq 2t$, is a C_3 -factor of $C_3 \times K_{2t+1}$ and $\bigcup_{i=1}^{2t} G_i$ gives a C_3 -factorization of $C_3 \times K_{2t+1}$. \Box

Lemma 3.3. There exists a C_k -factorization of $C_s \times K_k$, for all odd integers s, k with $k \ge s \ge 3$.

Proof. We break this lemma into two cases.

Case (i): s = k

Let $V(C_k) = \{y_0, y_1, \dots, y_{k-1}\}$ and $V(C_k \times K_k) = \bigcup_{i \in \mathbb{Z}_k} Y_i$, where $Y_i = \{y_i^j \mid j \in \mathbb{Z}_k\}$. Let $G_j = \bigcup_{i \in \mathbb{Z}_k} F_j(Y_i, Y_{i+1}), 1 \leq j \leq k-1$, where the subscripts of Y are taken modulo k. One can check that each $G_j, 1 \leq j \leq k-1$, is a C_k -factor of $C_k \times K_k$ and $\bigcup_{i=1}^{k-1} G_j$ gives a C_k -factorization of $C_k \times K_k$. Case (ii): s < kWe can write

$$C_{s} \times K_{k} \cong C_{s} \times \{C_{k}^{1} \oplus C_{k}^{2} \oplus \dots \oplus C_{k}^{\frac{k-1}{2}}\}, \text{ by Theorem 3.1}$$
$$\cong \oplus_{i=1}^{\frac{k-1}{2}} (C_{s} \times C_{k}^{i})$$
$$\cong \oplus_{i=1}^{\frac{k-1}{2}} (C_{k}^{i} \times C_{s}). \tag{1}$$

Now we consider $C_k^i \times C_s \cong C_k \times C_s$ and find its C_k -factors as follows:

Let $V(C_k) = \{y_0, y_1, ..., y_{k-1}\}$ and $V(C_k \times C_s) = \bigcup_{i \in \mathbb{Z}_k} Y_i$, where $Y_i = \{y_i^j \mid j \in \mathbb{Z}_s\}$. Let

(1)
$$C^{1} = \bigcup_{i=0}^{\frac{k+s}{2}-1} F_{1}(Y_{i}, Y_{i+1}) \oplus \bigcup_{i=0}^{\frac{k-s}{2}-1} F_{s-1}(Y_{\frac{k+s}{2}+i}, Y_{\frac{k+s}{2}+i+1})$$
 and
(2) $C^{2} = \bigcup_{i=0}^{\frac{k+s}{2}-1} F_{s-1}(Y_{i}, Y_{i+1}) \oplus \bigcup_{i=0}^{\frac{k-s}{2}-1} F_{1}(Y_{\frac{k+s}{2}+i}, Y_{\frac{k+s}{2}+i+1}),$

where the subscripts of Y are taken modulo k. One can check that both \mathcal{C}^1 and \mathcal{C}^2 are C_k -factors of $C_k \times C_s$ and together give a C_k -factorization of $C_k^i \times C_s$. Thus each $C_s \times C_k^i$ has two C_k -factors and hence together they give a C_k -factorization of $C_s \times K_k$.

Lemma 3.4. There exists a C_k -factorization of $C_k \times K_s$, for all odd integers $s, k \ge 3$.

Proof. Let $V(C_k) = \{y_0, y_1, \ldots, y_{k-1}\}$. Then $V(C_k \times K_s) = \bigcup_{i \in \mathbb{Z}_k} Y_i$, where $Y_i = \{y_i^j \mid j \in \mathbb{Z}_s\}$. **Case (i):** k = s and s < k. The proof follows from Lemma 3.3. **Case (ii):** s > k. Let

$$(1) \quad G_{i} = \bigcup_{j=0}^{\frac{k-3}{2}} F_{i}(Y_{2j}, Y_{2j+1}) \oplus \bigcup_{j=0}^{\frac{k-5}{2}} F_{s-i}(Y_{2j+1}, Y_{2j+2}) \oplus F_{i}(Y_{k-2}, Y_{k-1}) \oplus F_{s-2i}(Y_{k-1}, Y_{0})$$

and
$$(2) \quad H_{i} = \bigcup_{j=0}^{\frac{k-3}{2}} F_{s-i}(Y_{2j}, Y_{2j+1}) \oplus \bigcup_{j=0}^{\frac{k-5}{2}} F_{i}(Y_{2j+1}, Y_{2j+2}) \oplus F_{s-i}(Y_{k-2}, Y_{k-1}) \oplus F_{2i}(Y_{k-1}, Y_{0}),$$

where $1 \le i \le \frac{s-1}{2}$. One can check that both G_i and H_i , $1 \le i \le \frac{s-1}{2}$, are C_k -factors of $C_k \times K_s$. Thus $\bigcup_{i=1}^{\frac{s-1}{2}} (G_i \oplus H_i)$ together gives a C_k -factorization of $C_k \times K_s$. \Box

Lemma 3.5. There exists a partial C_5 -factorization of $K_7 \times K_5$.

301

Proof. To prove this lemma we consider the near C_3 -factorization of $K_7(2)$, which exists by Theorem 2.2. Hence we write

$$K_7(2) \times K_5 \cong (G_0 \oplus G_1 \oplus \dots \oplus G_6) \times K_5 \text{ by Theorem 2.2}$$
$$\cong \oplus_{i \in \mathbb{Z}_7} (G_i \times K_5),$$

where each $G_i \cong \{(x_{6+i} \ x_{5+i} \ x_{3+i}), (x_{1+i} \ x_{2+i} \ x_{4+i})\}, i \in \mathbb{Z}_7$, (where the subscripts of x are taken modulo 7) is a near C_3 -factor of $K_7(2)$.

Now we write

$$G_i \times K_5 \cong (C_3 \oplus C_3) \times K_5$$

$$\cong (C_3 \times K_5) \oplus (C_3 \times K_5)$$

$$\cong C_3 \times (C_5 \oplus C_5) \oplus C_3 \times (C_5 \oplus C_5) \text{ by Theorem 3.1}$$

$$\cong (C_3 \times C_5) \oplus (C_3 \times C_5) \oplus (C_3 \times C_5) \oplus (C_3 \times C_5).$$

From the proof of case (ii) of Lemma 3.3, each $C_3 \times C_5$ ($\cong C_5 \times C_3$) has two C_5 -factors, namely \mathbb{C}^1 and \mathbb{C}^2 , and hence each $G_i \times K_5$ has a C_5 -factorization. Now the collection of all the \mathbb{C}^1 from the C_5 -factorization of each $G_i \times K_5$, $i \in \mathbb{Z}_7$, together gives two partial C_5 -factorization of $K_7 \times K_5$; see Figures 1–4. Also, the collection of all the \mathbb{C}^2 from the C_5 -factorization of each $G_i \times K_5$, $i \in \mathbb{Z}_7$, together two partial C_5 -factorization of each $G_i \times K_5$, $i \in \mathbb{Z}_7$, together gives another two partial C_5 -factors of $K_7 \times K_5$; see Figures 1–4.

Finally, the collection of either C^1 (or C^2) gives the required partial C_5 -factorization of $K_7 \times K_5$; see Figure 5.

Theorem 3.2. There exists a partial C_k -factorization of $K_4 \times K_k$ for all odd $k \ge 3$.

Proof. Let $V(K_4) = \{x_0, x_1, x_2, x_3\}$. The near C_3 -factor $G_i = (x_{1+i}x_{2+i}x_{3+i})$, with missing vertex $x_i, 0 \le i \le 3$, where the subscripts of x are taken modulo 4, generate the near C_3 -factorization of $K_4(2)$. Now we can write

$$\begin{aligned}
K_4(2) \times K_k &\cong \{\mathcal{C}_3^0 \oplus \dots \oplus \mathcal{C}_3^3\} \times K_k \\
&\cong (\mathcal{C}_3^0 \times K_k) \oplus \dots \oplus (\mathcal{C}_3^3 \times K_k) \\
&\cong \oplus_{i \in \mathbb{Z}_3} (\mathcal{C}_3^i \times K_k),
\end{aligned}$$
(2)

where each \mathcal{C}_3^i is a near C_3 -factor of $K_4(2)$. Now we consider $\mathcal{C}_3^i \times K_k \cong C_3 \times K_k$ and find its C_3 -factors as follows:

Case (i): k = 3

By the proof of case (i) of Lemma 3.3, the collection of all C_3 -factors of $C_3 \times K_3$ generated by G_1 (respectively, G_2) together give the required partial C_3 -factorization of $K_4 \times K_3$.

Case (ii) k > 3

Using (1) of Lemma 3.3, we have $\mathcal{C}_3^i \times K_k \cong \bigoplus_{j=1}^{\frac{k-1}{2}} (C_k^j \times C_3)$, $i \in \mathbb{Z}_3$. By the proof of case (ii) of Lemma 3.3, each $C_k^j \times C_3$ has two C_k -factors, namely \mathcal{C}^1 and \mathcal{C}^2 . Now the collection of all the \mathcal{C}^1 from $\mathcal{C}_3^i \times K_k$, i = 0, 2, and the collection of all the \mathcal{C}^2 from $\mathcal{C}_3^i \times K_k$, i = 1, 3 together give a partial C_k -factorization of $K_4 \times K_k$. In a similar manner, we can also have another partial C_k -factorization of $K_4 \times K_k$ by taking all the \mathcal{C}^1 from $\mathcal{C}_3^i \times K_k$, i = 1, 3, and \mathcal{C}^2 from $\mathcal{C}_3^i \times K_k$, i = 0, 2. One of the above gives the required partial C_k -factorization of $K_4 \times K_k$.

Theorem 3.3. There exists a partial C_3 -factorization of $K_4 \times K_k$ for all odd $k \ge 3$.

Proof. Using (2) of Theorem 3.2, we have $K_4(2) \times K_k \cong \bigoplus_{i \in \mathbb{Z}_3} (\mathbb{C}_3^i \times K_k)$, where each \mathbb{C}_3^i , $0 \le i \le 3$, is a near C_3 -factor of $K_4(2)$. Hence we write $\mathbb{C}_3^i \times K_k \cong C_3 \times K_k$ and by the proof of Lemma 3.2, the collection of all C_3 -factors of $C_3 \times K_k$ generated by G_i , $1 \le i \le \frac{k-1}{2}$ (respectively, G_i , $\frac{k+1}{2} \le i \le k-1$) together give a required partial C_3 -factorization of $K_4 \times K_k$.

Theorem 3.4. There exists a partial C_k -factorization of $K_{2s+1} \times K_k$, for all odd integers s, k with $k \ge s \ge 3$.

Proof. By Theorem 2.2, $K_{2s+1}(2)$ has a near C_s -factorization. Now we write

$$K_{2s+1}(2) \times K_k \cong \{ \mathcal{C}_s^0 \oplus \mathcal{C}_s^1 \oplus \dots \oplus \mathcal{C}_s^{2s} \} \times K_k, \text{ by Theorem 2.2} \\ \cong (\mathcal{C}_s^0 \times K_k) \oplus \dots \oplus (\mathcal{C}_s^{2s} \times K_k) \\ \cong \oplus_{i \in \mathbb{Z}_{2s+1}} (\mathcal{C}_s^i \times K_k), \qquad (3)$$

where each \mathcal{C}_s^i , $0 \leq i \leq 2s$, is a near C_s -factor of $K_{2s+1}(2)$, and each near C_s -factor contains two cycles of length s.

Hence we write $\mathfrak{C}_s^i \times K_k \cong 2(C_s \times K_k)$ and find its C_k -factors as follows:

Case (i): s = k

By the proof of case (i) of Lemma 3.3, the collection of all C_k -factors of $\mathcal{C}_k^i \times K_k$ generated by G_l , $1 \leq l \leq \frac{k-1}{2}$ (respectively, G_l , $\frac{k+1}{2} \leq l \leq k-1$) together give a required partial C_k -factorization of $K_{2k+1} \times K_k$.

Case (ii): s < k

By the proof of case (ii) of Lemma 3.3, the collection of all \mathcal{C}^1 (respectively, \mathcal{C}^2) from $\mathcal{C}_s^i \times K_k$ together give a required partial C_k -factorization of $K_{2s+1} \times K_k$.

Theorem 3.5. There exists a partial C_k -factorization of $K_{2k+1} \times K_s$, for all odd integers $s, k \geq 3$.

Proof. Using (3) of Theorem 3.3, we have $K_{2k+1}(2) \times K_s \cong \bigoplus_{i \in \mathbb{Z}_{2k+1}} (\mathfrak{C}_k^i \times K_s)$, where each \mathfrak{C}_k^i , $0 \leq i \leq 2k$, is a near C_k -factor of $K_{2k+1}(2)$, and each near C_k -factor contains two cycles of length k.

Now we consider $\mathfrak{C}_k^i \times K_s \cong 2(C_k \times K_s)$, and find its C_k -factors as follows:

Case (i): k = s and s < k.

The proof follows from Theorem 3.4.

Case (ii): s > k.

By the proof of case (ii) of Lemma 3.4, the collection of all C_k -factors of $\mathcal{C}_k^i \times K_s$ generated by G_l (respectively, H_l), $1 \leq l \leq \frac{s-1}{2}$, together give a required partial C_k -factorization of $K_{2k+1} \times K_s$.

Theorem 3.6. There exists a partial C_{ks} -factorization of $K_{2k+1} \times K_s$, for all odd integers $s, k \geq 3$.

Proof. Using (3) of Theorem 3.3, we have $K_{2k+1}(2) \times K_s \cong \bigoplus_{i \in \mathbb{Z}_{2k+1}} (\mathfrak{C}_k^i \times K_s)$, where each \mathfrak{C}_k^i , $0 \leq i \leq 2k$, is a near C_k -factor of $K_{2k+1}(2)$, and each near C_k -factor contains two cycles of length k.

Now we consider $\mathcal{C}_k^i \times K_s \cong 2(C_k \times K_s)$, and find its C_{ks} -factors as follows:

By using (1) of Lemma 3.3, we can write $C_k \times K_s \cong \bigoplus_{j=1}^{\frac{s-1}{2}} (C_k \times C_s^j)$. By the proof of Lemma 3.1, each $C_k \times C_s^j$ ($\cong C_k \times C_s$) has two C_{ks} -factors, namely \mathcal{C}^1 and \mathcal{C}^2 . Now the collection of all the \mathcal{C}^1 from $\mathcal{C}_k^i \times C_s$ together gives a required partial C_{ks} -factorization of $K_{2k+1} \times K_s$. Similarly, the collection of all the \mathcal{C}^2 from $\mathcal{C}_k^i \times C_s$ together also gives another partial C_{ks} -factorization of $K_{2k+1} \times K_s$.

Construction 1. If there exists a near 2-factorization of $K_u(2)$ (a near 2-factor F can contain different cycle lengths with V(F) = u - 1, and the set of cycle lengths is denoted by J), a C_t -factorization of $C_t \times K_x$, a C_k -factorization of $C_t \otimes \bar{K}_k$ and a C_k -factorization of $C_t \times K_k$ for any $t \in J$, then there exists a partial C_k -factorization of $(K_u \times K_{kx})(2)$.

4 k-ARCD of $(K_u \times K_g)(\lambda)$

In this section we investigate the existence of a k-ARCD of the tensor product of complete graphs with edge multiplicity λ .

Theorem 4.1. For all odd $k \ge 5$, $u \ge 4$ and $g \equiv 0 \pmod{k}$, there exists a k-ARCD of $(K_u \times K_g)(2)$, except possibly when $(u, g) \in \{(u, kx), (5, g) \mid x \equiv 2 \pmod{4}\}$.

Proof. Let g = kx, where $x \ge 1$.

By Theorems 2.4 and 2.6, let $\mathcal{F} = \{F_0, F_2, \ldots, F_{u-1}\}$ be the near 2-factorization of $K_u(2)$ (each near 2-factor F_i , $0 \leq i \leq u-1$, may contain different cycle lengths with $V(F_i) = u - 1$, and the set of all of cycle lengths is denoted by $J = \{3, 5, 7\}$). A C_t -factorization of $C_t \times K_x$ and a C_k -factorization $C_t \otimes \bar{K}_k$, for any $t \in J$, can be obtained by Theorems 2.8 and 2.3, respectively. Furthermore, $C_t \times K_k$ has a C_k -factorization by Theorem 2.5 and Lemma 3.3. Then by using construction 1, we get a required partial C_k -factorization of $(K_u \times K_g)(2)$. Therefore a k-ARCD of $(K_u \times K_g)(2)$ exists.

Theorem 4.2. For all odd integers s, k with $3 \le s \le k$, u = 2s + 1 and $g \equiv k \pmod{2k}$, there exists a k-ARCD of $K_u \times K_q$.

Proof. Let $g = k(2t+1), t \ge 1$. We can write

$$\begin{array}{lcl}
K_u \times K_g &\cong & K_{2s+1} \times K_{k(2t+1)} \\
&\cong & \{(K_{2s+1} \times K_{2t+1}) \otimes \bar{K}_k\} \oplus (2t+1)(K_{2s+1} \times K_k).
\end{array} \tag{4}$$

The right-hand side of (4) can be obtained by making 2t + 1 holes of type $K_{2s+1} \times K_k$ and identifying each k-subset of $K_{k(2t+1)}$ (in the resulting graph) into a single vertex, with two of them being adjacent if the corresponding k-subsets form a $K_{k,k}$

in $K_{2s+1} \times K_{k(2t+1)}$. The resulting graph is isomorphic to $K_{2s+1} \times K_{2t+1}$. Expand the identified vertices into k-subsets and two k-subsets, to form a $K_{k,k}$ whenever their corresponding vertices are adjacent in $K_{2s+1} \times K_{2t+1}$. Thus the resulting expanded graph will be isomorphic to the first graph of (4).

Now we construct the partial C_k -factors of the right-hand side of (4) as follows:

Consider
$$(K_{2s+1} \times K_{2t+1}) \otimes \bar{K}_k \cong \{\mathcal{C}^0_s \oplus \cdots \oplus \mathcal{C}^{2s}_s\} \otimes \bar{K}_k$$
, by Theorem 3.5
 $\cong (\mathcal{C}^0_s \otimes \bar{K}_k) \oplus \cdots \oplus (\mathcal{C}^{2s}_s \otimes \bar{K}_k)$
 $\cong \oplus_{i \in \mathbb{Z}_{2s+1}} (\mathcal{C}^i_s \otimes \bar{K}_k).$

Note that each \mathcal{C}_s^i , $0 \leq i \leq 2s$, contains t partial C_s -factors of $K_{2s+1} \times K_{2t+1}$, and each partial C_s -factor contains 2(2t+1) cycles of length s. Hence we write $\mathcal{C}_s^i \otimes \bar{K}_k \cong$ $t\{2(2t+1)(C_s \otimes \bar{K}_k)\}$ and by Theorem 2.3, each $C_s \otimes \bar{K}_k$ has $k \ C_k$ -factors. Thus we have obtained kt partial C_k -factors of $(K_{2s+1} \times K_{2t+1}) \otimes \bar{K}_k$ corresponding to each $\mathcal{C}_s^i \otimes \bar{K}_k$. When i varies, we get (2s+1)kt partial C_k -factors of $(K_{2s+1} \times K_{2t+1}) \otimes \bar{K}_k$.

Furthermore, by Theorem 3.4, the second graph $(2t + 1)(K_{2s+1} \times K_k)$ has $(2s+1)\frac{k-1}{2}$ partial C_k -factors. Finally, the partial C_k -factors of the two graphs of the right-hand side of (4) obtained above together give a required partial C_k -factorization of $K_{2s+1} \times K_{k(2t+1)} \cong K_u \times K_g$.

Theorem 4.3. For all odd integers r, k with $15 \le r \le k$, u = 4(s+1), $s \in \{r, 2r\}$ and $g \equiv k \pmod{2k}$, there exists a k-ARCD of $K_u \times K_g$.

Proof. Let $g = k(2t+1), t \ge 1$. We can write

$$\begin{aligned}
K_u \times K_g &\cong K_{4(s+1)} \times K_g \\
&\cong \{(K_{s+1} \otimes \bar{K}_4) \oplus (s+1)K_4\} \times K_g \\
&\cong \{(K_{s+1} \otimes \bar{K}_4) \times K_g\} \oplus (s+1)(K_4 \times K_g).
\end{aligned}$$
(5)

Now we construct the partial C_k -factors of the right-hand side of (5) as follows:

Consider
$$(K_{s+1} \otimes \bar{K}_4) \times K_g \cong \{ \mathfrak{C}_r^0 \oplus \cdots \oplus \mathfrak{C}_r^s \} \times K_g, \text{ by Theorem 2.10}$$

 $\cong (\mathfrak{C}_r^0 \times K_g) \oplus \cdots \oplus (\mathfrak{C}_r^s \times K_g)$
 $\cong \oplus_{i \in \mathbb{Z}_{s+1}} (\mathfrak{C}_r^i \times K_g).$
We know that $\mathfrak{C}_r^i \times K_g \cong \mathfrak{C}_r^i \times K_{k(2t+1)}, i \in \mathbb{Z}_{s+1}$
 $\cong 2\{\frac{4s}{r}(C_r \times K_{k(2t+1)})\},$

where each \mathcal{C}_r^i , $0 \leq i \leq s$, contains two partial C_r -factors of $K_{s+1} \otimes \overline{K}_4$, in which each partial C_r -factor contains 4s/r cycles of length r.

We write
$$C_r \times K_{k(2t+1)} \cong C_r \times \{K_{2t+1} \otimes \overline{K}_k \oplus (2t+1)K_k\}$$

$$\cong \{(C_r \times K_{2t+1}) \otimes \overline{K}_k\} \oplus (2t+1)(C_r \times K_k). (6)$$

By applying a similar procedure to (4) we get the right-hand side of (6). By Theorems 2.5 and 2.3, $(C_r \times K_{2t+1}) \otimes \overline{K}_k$ has $\frac{4tk}{2} C_k$ -factors of $C_r \times K_{k(2t+1)}$. By Theorem 3.3, $(2t+1)(C_r \times K_k)$ has (k-1) C_k -factors of $C_r \times K_{k(2t+1)}$. Put together we get $\frac{2(g-1)}{2}$ C_k -factors of $C_r \times K_{k(2t+1)}$. Thus we have obtained $\frac{4(g-1)}{2}$ partial C_k factors of $(K_{s+1} \otimes \bar{K}_4) \times K_g$ corresponding to each missing partite set of size 4g which makes a hole $K_4 \times K_g$ of $K_u \times K_g$. Note that corresponding to each partite set of $(K_{s+1} \otimes \bar{K}_4) \times K_g$ we have a hole $K_4 \times K_g$ of $K_u \times K_g$ in (5). To complete the proof, it is enough to find the partial C_k -factors of the hole $K_4 \times K_g$ corresponding to the missing partite set, and this put together to get the required partial C_k -factors of $K_u \times K_g$.

Now consider the second graph of (5), that is,

$$\begin{aligned}
K_4 \times K_g &\cong K_4 \times K_{k(2t+1)} \\
&\cong K_4 \times \{K_{2t+1} \otimes \bar{K}_k \oplus (2t+1)K_k\} \\
&\cong \{(K_4 \times K_{2t+1}) \otimes \bar{K}_k\} \oplus (2t+1)(K_4 \times K_k).
\end{aligned} \tag{7}$$

By applying a similar procedure to (4) we get the right-hand side of (7).

Now we construct the partial C_k -factors of the right-hand side of (7) as follows:

By Theorem 3.3, $K_4 \times K_{2t+1}$ has $\frac{4(2t)}{2}$ partial C_3 -factors, and by Theorem 2.11, each $C_3 \otimes \bar{K}_k \ (\cong K_{k,k,k})$ has $k \ C_k$ -factors. Thus we have obtained $\frac{4(2tk)}{2}$ partial C_k factors of $K_4 \times K_g$, corresponding to the first graph $(K_4 \times K_{2t+1}) \otimes \bar{K}_k$. Furthermore, by Theorem 3.2, $(2t+1)(K_4 \times K_k)$ has $\frac{4(k-1)}{2}$ partial C_k -factors of $K_4 \times K_g$. Put together, we have $\frac{4(g-1)}{2}$ partial C_k -factors of $K_4 \times K_g$. Finally, the combination of the $\frac{4(g-1)}{2}$ partial C_k -factors of the first graph of the right-hand side of (5) corresponds to one missing partite set of size 4g and the $\frac{4(g-1)}{2}$ partial C_k -factors of the hole $K_4 \times K_g$, which correspond to that missing partite set, together gives $\frac{4(g-1)}{2}$ partial C_k -factors of $K_u \times K_g$. Repeat the process s+1 times (as there are s+1 holes) to get $4(s+1)\frac{g-1}{2}$ partial C_k -factors of $K_u \times K_g$. Thus a k-ARCD of $K_u \times K_g$ exists. \Box

Theorem 4.4. For all odd $k \ge 5$, $u \equiv 1 \pmod{k}$ and $g \ge 3$, there exists a k-ARCD of $(K_u \times K_g)(2)$.

Proof. Let u = kx + 1, $x \ge 1$. We can write

$$(K_u \times K_g)(2) \cong K_u(2) \times K_g$$

$$\cong (\mathfrak{C}^0_k \oplus \mathfrak{C}^1_k \oplus \cdots \oplus \mathfrak{C}^{u-1}_k) \times K_g, \text{ by Theorem 2.6}$$

$$\cong (\mathfrak{C}^0_k \times K_g) \oplus (\mathfrak{C}^1_k \times K_g) \oplus \cdots \oplus (\mathfrak{C}^{u-1}_k \times K_g)$$

$$\cong \oplus_{i \in \mathbb{Z}_u} (\mathfrak{C}^i_k \times K_g),$$

where each \mathcal{C}_k^i , $0 \leq i \leq u-1$ is a near C_k -factor of $K_u(2)$, and each near C_k -factor contains x cycles of length k. Hence we write $\mathcal{C}_k^i \times K_g \cong x(C_k \times K_g)$. By Theorem 2.5, each $C_k \times K_g$ has g-1 C_k -factors. The collection of all C_k -factors from $\mathcal{C}_k^i \times K_g$ together gives some partial C_k -factors of $(K_u \times K_g)(2)$. Thus, in total, we get u(g-1)partial C_k -factors of $(K_u \times K_g)(2)$. Therefore a k-ARCD of $(K_u \times K_g)(2)$ exists. \Box

Theorem 4.5. For all u = 2k+1, with odd integers $k, g \ge 3$, there exists a k-ARCD of $K_u \times K_q$.

Proof. The proof follows from Theorem 3.5.

Theorem 4.6. For all u = 2kx + 1, with odd integers k and g with $k \ge 5$, $g \ge 3$, and for $x \ge 4$, there exists a k-ARCD of $K_u \times K_g$.

Proof. Given that u = 2kx + 1 and $g \ge 3$ is odd, where $x \ge 4$, we can write

$$K_{2kx+1} \times K_g \cong \{ (K_x \otimes \bar{K}_{2k}) \oplus x K_{2k+1} \} \times K_g$$
(8)

$$\cong \{ (K_x \otimes \bar{K}_{2k}) \times K_q \} \oplus x(K_{2k+1} \times K_q).$$
(9)

The right-hand side of (8) can be obtained by making x holes of type K_{2k} in K_{2kx+1} and adjoining the omitted vertex, say ∞ , to each hole K_{2k} to get x copies of K_{2k+1} .

Now we construct the partial C_k -factors of the right-hand side of (9) as follows. Consider

$$(K_x \otimes \bar{K}_{2k}) \times K_g \cong \{ \mathcal{C}_k^0 \oplus \dots \oplus \mathcal{C}_k^{x-1} \} \times K_g, \text{ by Theorem 2.9}$$
(10)
$$\cong (\mathcal{C}_k^0 \times K_g) \oplus \dots \oplus (\mathcal{C}_k^{x-1} \times K_g),$$

where each C_k^i , $0 \le i \le x - 1$, contains $\frac{2k}{2}$ partial C_k -factors of $(K_x \otimes \bar{K}_{2k})$, and each partial C_k -factor contains 2(x - 1) cycles of length k. Hence we write $C_k^i \times K_g \cong \frac{2k}{2} \{2(x-1)(C_k \times K_g)\}$ and each $C_k \times K_g$ has g-1 C_k -factors by Theorem 2.5. Thus we have obtained $\frac{2k(g-1)}{2}$ partial C_k -factors of $(K_x \otimes \bar{K}_{2k}) \times K_g$ corresponding to each missing partite set of size 2kg which makes a hole $K_{2k+1} \times K_g$ of $K_u \times K_g$. Note that corresponding to each partite set of $(K_x \otimes \bar{K}_{2k}) \times K_g$ we have a hole $K_{2k+1} \times K_g$ of $K_u \times K_g$ in (9). To complete the proof, it is enough to find the partial C_k -factors of the hole $K_{2k+1} \times K_g$ corresponding to the missing partite set and put together to get the required partial C_k -factors of $K_u \times K_g$.

By Theorem 4.5, $K_{2k+1} \times K_g$ has $\frac{2k(g-1)}{2}$ partial C_k -factors with missing partite sets corresponding to the vertices of K_{2k} and $\frac{g-1}{2}$ partial C_k -factors with missing partite set corresponding to the vertex ∞ . The combination of the $\frac{2k(g-1)}{2}$ partial C_k -factors of $(K_x \otimes \bar{K}_{2k}) \times K_g$ corresponding to one missing partite set of size 2kg together with $\frac{2k(g-1)}{2}$ partial C_k -factors of $K_{2k+1} \times K_g$, which correspond to that missing partite set of $(K_x \otimes \bar{K}_{2k}) \times K_g$, gives $\frac{2k(g-1)}{2}$ partial C_k -factors of $K_{2kx+1} \times K_g$. As there are x holes, repeating the above process x times, we get $\frac{2kx(g-1)}{2}$ partial C_k -factors of $K_{2kx+1} \times K_g$. Further, the collection of all $\frac{g-1}{2}$ partial C_k -factors of each of the x copies of $K_{2k+1} \times K_g$ with missing partite set that corresponds to the vertex ∞ , together gives $\frac{g-1}{2}$ partial C_k -factors of $K_{2kx+1} \times K_g$. Therefore a k-ARCD of $K_u \times K_g$ exists.

Theorem 4.7. Let $k = q_1q_2...q_k \ge 9$ be odd, where $q_1, q_2, ..., q_k \ge 3$ are odd and not necessarily distinct. If $u \equiv 1 \pmod{q_1q_2...q_i}$ and $g = (q_{i+1}q_{i+2}...q_k)y$, $1 \le i \le k-1$, then there exists a k-ARCD of $(K_u \times K_g)(2)$, except possibly when $y \equiv 2 \pmod{4}$.

Proof. Let u = mx + 1, g = ny and k = mn where $m = q_1q_2 \dots q_i$, $n = q_{i+1}q_{i+2} \dots q_k$, and $x, y \ge 1$. We can write

$$(K_u \times K_g)(2) \cong K_{mx+1}(2) \times K_{ny}$$

$$\cong \{\mathcal{C}_m^0 \oplus \mathcal{C}_m^1 \oplus \cdots \oplus \mathcal{C}_m^{mx}\} \times K_{ny}$$

$$\cong (\mathcal{C}_m^0 \times K_{ny}) \oplus \cdots \oplus (\mathcal{C}_m^{mx} \times K_{ny})$$

$$\cong \oplus_{j \in \mathbb{Z}_{mx+1}} (\mathcal{C}_m^j \times K_{ny}),$$

where each \mathcal{C}_m^j , $0 \leq j \leq mx$, is a near C_m -factor of $K_{mx+1}(2)$, and each near C_m -factor contains x cycles of length m. Hence we write $\mathcal{C}_m^j \times K_{ny} \cong x(C_m \times K_{ny})$ and by applying a similar procedure to (4) we get the following:

$$C_m \times K_{ny} \cong C_m \times \{ (K_y \otimes K_n) \oplus yK_n \}$$

$$\cong \{ (C_m \times K_y) \otimes \bar{K}_n \} \oplus y(C_m \times K_n).$$
(11)

By Theorem 2.8, $C_m \times K_y$ has (y-1) C_m -factors, and $C_m \otimes K_n$ has $n \ C_{mn}$ -factors by Theorem 2.7. Thus we have obtained n(y-1) C_{mn} -factors of $C_m \times K_{ny}$ corresponding to the first graph $(C_m \times K_y) \otimes \overline{K}_n$. Furthermore, by Theorem 3.1, $y(C_m \times K_n)$ has n-1 C_{mn} -factors. Finally, the C_{mn} -factors of the two graphs of the right-hand side of (11) together give (ny-1) C_{mn} -factors of $C_m \times K_{ny}$. The collection of all C_{mn} -factors of $\mathcal{C}_m^j \times K_{ny}$ together gives a required partial C_{mn} -factorzation of $(K_u \times K_g)(2)$.

Theorem 4.8. Let $k = q_1q_2...q_k \ge 9$ be odd, where $q_1, q_2, ..., q_k \ge 3$ are odd and not necessarily distinct. If $u = 2(q_1q_2...q_i) + 1$ and $g \equiv (q_{i+1}q_{i+2}...q_k)$ (mod $2q_{i+1}q_{i+2}...q_k$), $1 \le i \le k-1$, then there exists a k-ARCD of $K_u \times K_g$.

Proof. Let u = 2m + 1, g = (2x + 1)n, and k = mn, where $m = q_1q_2 \dots q_i$, $n = q_{i+1}q_{i+2} \dots q_k$, and $x \ge 1$. We can write

$$K_{2m+1} \times K_{(2x+1)n} \cong \{ (K_{2m+1} \times K_{2x+1}) \otimes \bar{K}_n \} \oplus (2x+1) (K_{2m+1} \times K_n).$$
(12)

By applying a similar procedure to (4) we get the right-hand side of (12).

We construct a partial C_{mn} -factorization of the right-hand side of (12) as follows. First we consider

$$(K_{2m+1} \times K_{2x+1}) \otimes \bar{K}_n \cong \{ \mathfrak{C}_m^0 \oplus \cdots \oplus \mathfrak{C}_m^{2m} \} \otimes \bar{K}_n, \text{ by Theorems 3.5} \\ \cong (\mathfrak{C}_m^0 \otimes \bar{K}_n) \oplus \cdots \oplus (\mathfrak{C}_m^{2m} \otimes \bar{K}_n) \\ \cong \oplus_{i \in \mathbb{Z}_{2m+1}} (\mathfrak{C}_m^i \otimes \bar{K}_n),$$

where each \mathcal{C}_m^j , $0 \leq j \leq 2m$, contains x partial C_m -factors of $K_{2m+1} \times K_{2x+1}$, in which each partial C_m -factor contains 2(2x + 1) cycles of length m. Hence we write $\mathcal{C}_m^j \times \bar{K}_n \cong x\{2(2x+1)(C_m \otimes \bar{K}_n)\}$, and by Theorem 2.7, each $C_m \otimes \bar{K}_n$ has $n C_{mn}$ factors. Thus we have obtained xn partial C_{mn} -factors of $(K_{2m+1} \times K_{2x+1}) \otimes \bar{K}_n$ corresponding to one missing partite set of size (2x + 1)n. By taking the union of all partial C_{mn} -factors corresponding to all the missing partite sets together gives (2m + 1)xn partial C_{mn} -factors of $(K_{2m+1} \times K_{2x+1}) \otimes \bar{K}_n$. Furthermore, by Theorem 3.6 we get $\frac{n-1}{2}$ partial C_{mn} -factors of the second graph $(2x+1)(K_{2m+1} \times K_n)$ corresponding to one missing partite set. Taking the union of all the partial C_{mn} -factors together corresponding to all the missing partite sets, we get $(2m+1)\frac{n-1}{2}$ partial C_{mn} -factors of $(2x+1)(K_{2m+1} \times K_n)$. Finally, the partial C_{mn} -factors of the two graphs of the right-hand side of (12) obtained above together gives a required partial C_{mn} -factorization of $K_u \times K_g$.

Theorem 4.9. Let $k = q_1q_2 \dots q_k \ge 45$ be odd, where $q_1, q_2, \dots, q_i \ge 15$, q_{i+1}, q_{i+2} , $\dots, q_k \ge 3$ and q_1, q_2, \dots, q_k are odd and not necessarily distinct. If $u = 2(q_1q_2 \dots q_i)x$ +1, where $x \ge 4$, and $g \equiv (q_{i+1}q_{i+2} \dots q_k) \pmod{2q_{i+1}q_{i+2} \dots q_k}$, $1 \le i \le k-1$, then there exists a k-ARCD of $K_u \times K_g$.

Proof. Let u = 2mx + 1, g = (2y+1)n and $k = mn \ge 45$, where $m = q_1q_2 \dots q_i \ge 15$, $n = q_{i+1}q_{i+2} \dots q_k \ge 3$, and $x \ge 4$, $y \ge 1$. By using (9), we can write

$$K_{2mx+1} \times K_g \cong \{ (K_x \otimes \bar{K}_{2m}) \oplus x K_{2m+1} \} \times K_g$$
(13)

$$\cong \{ (K_x \otimes \bar{K}_{2m}) \times K_g \} \oplus x (K_{2m+1} \times K_g).$$
(14)

Now, we construct the partial C_{mn} -factors of the right-hand side of (14) as follows. First we consider

$$(K_x \otimes \bar{K}_{2m}) \times K_g \cong \{ \mathfrak{C}_m^0 \oplus \cdots \oplus \mathfrak{C}_m^{x-1} \} \times K_g, \text{ by Theorem 2.9} \cong (\mathfrak{C}_m^0 \times K_g) \oplus \cdots \oplus (\mathfrak{C}_m^{x-1} \times K_g) \cong \oplus_{l \in \mathbb{Z}_x} (\mathfrak{C}_m^l \times K_g)$$

$$(15)$$

where each \mathcal{C}_m^l , $0 \leq l \leq x-1$, contains $\frac{2m}{2}$ partial C_k -factors of $K_x \otimes \bar{K}_{2m}$, and each partial C_k -factor contains 2(x-1) cycles of length k. Hence we write $\mathcal{C}_m^i \times K_g \cong \frac{2m}{2} \{2(x-1)(C_m \times K_{(2y+1)n})\}.$

$$C_m \times K_{(2y+1)n} \cong C_m \times \{\mathbb{C}_n^1 \oplus \dots \oplus \mathbb{C}_n^{\frac{g-1}{2}}\}, \text{ by Theorem 2.1}$$
$$\cong (C_m \times \mathbb{C}_n^1) \oplus \dots \oplus (C_m \times \mathbb{C}_n^{\frac{g-1}{2}})$$
$$C_m \times \mathbb{C}_n^j \cong (2y+1)(C_m \times C_n),$$

where each \mathbb{C}_n^j , $1 \leq j \leq \frac{g-1}{2}$, is a C_n -factor of $K_{(2y+1)n}$, and each C_n -factor contains (2y+1) cycles of length n. By Theorem 3.1, each $C_m \times C_n$ has two C_{mn} factors. Thus we have obtained $\frac{2m(g-1)}{2}$ partial C_{mn} -factors of $(K_x \otimes \bar{K}_{2m}) \times K_g$ corresponding to one missing partite set of size 2mg which makes a hole $K_{2m+1} \times K_g$ of $K_u \times K_g$. Note that corresponding to each partite set of $(K_x \otimes \bar{K}_{2m}) \times K_g$ we have a hole $K_{2m+1} \times K_g$ of $K_u \times K_g$ in (14). To complete the proof, it is enough to find the partial C_{mn} -factors of the hole $K_{2m+1} \times K_g$ corresponding to the missing partite set and put together to get the required partial C_{mn} -factors of $K_u \times K_g$.

Now we consider

$$K_{2m+1} \times K_g \cong K_{2m+1} \times K_{(2y+1)n}$$
$$\cong \{ (K_{2m+1} \times K_{2y+1}) \otimes \bar{K}_n \} \oplus (2y+1)(K_{2m+1} \times K_n)$$
(16)

By Theorems 3.5 and 2.7, $(K_{2m+1} \times K_{2y+1}) \otimes \bar{K}_n$ has 2m(yn) partial C_{mn} -factors with missing partite sets corresponding to the vertices of K_{2m} and yn partial C_{mn} factors with missing partite sets corresponding to the vertex ∞ . Furthermore, by Theorem 3.6, $(2y+1)(K_{2m+1} \times K_n)$ has $(2m)(\frac{n-1}{2})$ partial C_{mn} -factors with missing partite sets corresponding to the vertices of K_{2m} , and $\frac{n-1}{2}$ partial C_{mn} -factors with missing partite sets corresponding to the vertex ∞ . Adding all the partial C_{mn} factors of the two graphs in the right-hand side of (16), we get $\frac{(2m)(g-1)}{2}$ partial C_{mn} -factors of $K_{2m+1} \times K_g$ with missing partite sets corresponding to the vertices of K_{2m} , and $\frac{g-1}{2}$ partial C_{mn} -factors with missing partite sets corresponding to the vertex ∞ .

Finally, the combination of $\frac{2m(g-1)}{2}$ partial C_{mn} -factors of $(K_x \otimes \bar{K}_{2m}) \times K_g$ corresponding to the one missing partite set of size 2mg, together with the $\frac{2m(g-1)}{2}$ partial C_{mn} -factors of $K_{2m+1} \times K_g$ with missing partite sets corresponding to the vertices of K_{2m} , gives $\frac{2mx(g-1)}{2}$ partial C_{mn} -factors of $K_{2mx+1} \times K_g$. As there are x holes, repeat the process x times, and we get $\frac{2mx(g-1)}{2}$ partial C_{mn} -factors of each of the x copies of $K_{2m+1} \times K_g$ with missing partite set corresponding to the vertex ∞ , together gives $\frac{g-1}{2}$ partial C_{mn} -factors of $K_{2m+1} \times K_g$. Therefore a k-ARCD of $K_u \times K_g$ exists. \Box

Theorem 4.10. For all odd $k \ge 15$, there exists a k-ARCD of $(K_u \times K_g)(\lambda)$ if and only if $u \ge 4$, $g \ge 3$, $\lambda(g-1) \equiv 0 \pmod{2}$, $g(u-1) \equiv 0 \pmod{k}$, except possibly for $(\lambda, u, g) \in \{(2m, u, kx), (2m, 5, g) \mid x \equiv 2 \pmod{4} \text{ and } m \ge 1\}$, and $(\lambda, u) \in \{(2m+1, \{16, 2r+1, 4(2s+1), 4t+2, kx+1\}) \mid x \in \{2t+1, 4, 6\}, m, t \ge 0, \text{ for even } r, s \text{ and odd } s < 15\}.$

Proof. Necessity follows from Theorem 1.1. Sufficiency can be divided into two cases. **Case (i):** When $\lambda = 1$, the values of u and g fall into one of the following cases:

- (a) u = 2s + 1, $g \equiv k \pmod{2k}$, where $s \ge 3$ is odd and $s \le k$;
- (b) $u = 4(s+1), s \in \{r, 2r\}, g \equiv k \pmod{2k}$, where $r, k \ge 15$ are odd integers and $r \le k$;
- (c) u = 2k + 1, and $g \ge 3$ is odd;
- (d) u = 2kx + 1, $x \ge 4$ and $g \ge 3$ is odd.

Case (ii): When $\lambda = 2$, the values of u and g fall into one of the following cases:

- (e) $u \ge 4, u \ne 5$ and $g \equiv 0 \pmod{k}$;
- (f) $u = kx + 1, x \ge 1$ and $g \ge 3$.

The proofs for (a), (b), (c), (d), (e), and (f) follow from Theorems 4.2, 4.3, 4.5, 4.6, 4.1, and 4.4, respectively. If $\lambda > 2$ is even (respectively, odd), then the values for u and g are the same as in cases (i) and (ii) (respectively, case (i)). Hence a k-ARCD of $(K_u \times K_g)(\lambda)$ exists.

Theorem 4.11. Let $k = q_1q_2...q_k \ge 9$ be odd, where $q_1, q_2, ..., q_k \ge 3$ are odd integers and not necessarily distinct. There exists a k-ARCD of $(K_u \times K_g)(\lambda)$ if and only if $u \ge 4$, $g \ge 3$, $\lambda(g-1) \equiv 0 \pmod{2}$, $g(u-1) \equiv 0 \pmod{k}$, except possibly for $(\lambda, u, g, k) \in \{(2m, rx + 1, sy, rs) \mid m \ge 1, y \equiv 2 \pmod{4}\}$ and $(\lambda, u, g, k) \in \{(2m + 1, rx + 1, s(2t+1), rs), (2m + 1, u, g, n) \mid x \in \{4, 6, 2t+1\}, m, t \ge 0, n < 45 \text{ is odd}\}.$

Proof. Necessity follows from Theorem 1.1. We prove the sufficiency as follows:

The values of u, g and λ fall into one of the following cases:

- (a) $u = 2(q_1q_2...q_i) + 1, g \equiv (q_{i+1}q_{i+2}...q_k) \pmod{q_{i+1}q_{i+2}...q_k}, 1 \le i \le k-1,$ when $\lambda = 1;$
- (b) $u = 2(q_1q_2...q_i)x + 1, g \equiv (q_{i+1}q_{i+2}...q_k) \pmod{q_{i+1}q_{i+2}...q_k}, 1 \le i \le k-1$ for any $x \ge 4$ and $k \ge 45$, when $\lambda = 1$;
- (c) $u \equiv 1 \pmod{q_1 q_2 \dots q_i}, g \equiv 0 \pmod{q_{i+1} q_{i+2} \dots q_k}, 1 \le i \le k-1$, when $\lambda = 2$.

The proofs for (a), (b), and (c) follow from Theorems 4.8, 4.9, and 4.7, respectively. If $\lambda > 2$ is even (respectively, odd), the values for u and g are the same as in (a), (b), and (c) (respectively, (a) and (b)). Hence a k-ARCD of $(K_u \times K_g)(\lambda)$ exists. \Box

5 Conclusion

In this paper, we have established the existence of a k-ARCD of $(K_u \times K_g)(\lambda)$, for all odd $k \geq 15$ with a few possible exceptions. Our results also provide a partial solution to the existence of modified cycle frames of complete multipartite multigraphs.

Acknowledgments

The first author thanks the Periyar University for its support through URF grant no.: PU/ AD-3/URF/015723/2020. The second author thanks DST, New Delhi for its support through FIST grant no.: SR/FIST/MSI-115/2016 (Level-I). Further, the authors thank the anonymous referees for their valuable suggestions which improved the paper.

References

- B. Alspach, J. C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, in: *Cycles and Rays* (Eds. G. Hahn et al.), Kluwer Academic Publishers, 1990, pp. 9–18.
- [2] B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser A. 52 (1) (1989), 20–43.

- J. C. Bermond, Hamilton decomposition of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978), 21–28.
- [4] M. Buratti, H. Cao, D. Dai and T. Traetta, A complete solution to the existence of (k, λ) -cycle frames of type g^u , J. Combin. Des. 25 (5) (2016), 197–230.
- [5] J. Burling and K. Heinrich, Near 2-factorizations of 2kn : cycles of even length, Graphs Combin. 5 (1989), 213–221.
- [6] H. Cao, Y. Wu and H. Zhou, Modified frames with block size 3, J. Combin. Des. 16 (5) (2008), 351–363.
- [7] V. Chitra, A. Shanmuga Vadivu, and A. Muthusamy, C_{4p} -frame of complete multipartite multigraphs, *Aequat. Math.* 85 (2013), 563–579.
- [8] S. Duraimurugan, A. Shanmuga Vadivu and A. Muthusamy, Almost resolvable even cycle systems of $(K_u \times K_g)(\lambda)$, (submitted).
- [9] K. Heinrich, C. C. Lindner and C. A. Rodger, Almost resolvable decompositions of $2K_n$ into cycles of odd length, J. Combin. Theory Ser A. 49 (1998), 218–232.
- [10] J. D. Horton, B. K. Roy, P. J. Schellenberg and D. R. Stinson, On decomposing graphs into isomorphic uniform 2-factors, Ann. Discrete Math. 27 (1985), 297–319.
- [11] W. Imrich and S. Klavzar, *Product graphs-structure and recognition*, Wiley Interscience Series in Discrete Mathematics and Optimization, 2000.
- [12] R. Laskar, Decomposition of some composite graphs into hamiltonian cycles, Proc. 5th Hungarian Coll. Kesathely 1976, North Holland (1978), 705–716.
- [13] R. S. Manikandan and P. Paulraja, C_p-decompositions of some regular graphs, Discrete Math. 306 (2006), 429–451.
- [14] R. S. Manikandan and P. Paulraja, C₅-decompositions of the tensor product of complete graphs, Australas. J. Combin. 37 (2007), 285–293.
- [15] A. Muthusamy and P. Paulraja, Factorization of product graphs into cycles of uniform length, *Graphs Combin.* 11 (1995), 69–90.
- [16] A. Muthusamy and A. Shanmuga Vadivu, Cycle frames of complete multipartite multigraphs III, J. Combin. Des. 22 (11) (2014), 473–487.
- [17] M. Niu and H. Cao, More results on cycle frames and almost resolvable cycle systems, Discrete Math. 312 (2012), 3392–3405.
- [18] D. R. Stinson, Frames for Kirkman triple systems, *Discrete Math.* 65 (1987), 289–300.

(Received 9 Dec 2021; revised 22 June 2022, 22 July 2022)