Decompositions of complete 3-uniform hypergraphs into cycles of some special even lengths

R. Lakshmi^{*} T. Poovaragavan

Department of Mathematics, Annamalai University Annamalainagar-608 002, India mathlakshmi@gmail.com poovamath@gmail.com

Abstract

The complete 3-uniform hypergraph $K_n^{(3)}$ is a simple 3-uniform hypergraph with vertex set V having order |V| = n, and the set of all 3-subsets of V as its edge set. A t-cycle in this hypergraph is $v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ where v_1, v_2, \ldots, v_t are distinct vertices and e_1, e_2, \ldots, e_t are distinct edges such that $v_i, v_{i+1} \in e_i$ for $i \in \{1, 2, \ldots, t-1\}$ and $v_t, v_1 \in e_t$. A decomposition of a hypergraph is a partition of its edge set into edge-disjoint subsets. In this paper, we prove the existence of a t-cycle decomposition of $K_n^{(3)}$ for values of $t \equiv 2$ or 4 (mod 6) that satisfy the divisibility condition t|(n-2) or t|n or 2t|(n-1). Using this, we characterize the existence of a decomposition of $K_n^{(3)}$ into 2^{ℓ} -cycles, where $\ell \geq 2$ is a positive integer. Consequently, the main result of the paper by Jordan and Newkirk [Australas. J. Combin. 71(2) (2018), 312–323] is a corollary.

1 Introduction

A hypergraph \mathcal{H} consists of a finite nonempty set V of vertices and a set $\mathcal{E} = \{e_1, e_2, \ldots, e_m\}$ of edges where each $e_i \subseteq V$ with $|e_i| > 0$ for $i \in \{1, 2, \ldots, m\}$. If $|e_i| = h$, then we call e_i an *h*-edge. If every edge of \mathcal{H} is an *h*-edge for some h, then we say that \mathcal{H} is *h*-uniform. The complete *h*-uniform hypergraph $K_n^{(h)}$ is the hypergraph with vertex set V, where |V| = n, in which every *h*-subset of V determines an *h*-edge. It then follows that $K_n^{(h)}$ has $\binom{n}{h}$ edges. When h = 2, $K_n^{(2)} = K_n$, the complete graph on n vertices.

A decomposition of a hypergraph \mathcal{H} is a set $\mathcal{F} = \{\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k\}$ of subhypergraphs of \mathcal{H} such that $\mathcal{E}(\mathcal{F}_1) \cup \mathcal{E}(\mathcal{F}_2) \cup \dots \cup \mathcal{E}(\mathcal{F}_k) = \mathcal{E}(\mathcal{H})$ and $\mathcal{E}(\mathcal{F}_i) \cap \mathcal{E}(\mathcal{F}_j) = \emptyset$ for all $i, j \in \{1, 2, \dots, k\}$ with $i \neq j$. We denote this by $\mathcal{H} = \mathcal{F}_1 \oplus \mathcal{F}_2 \oplus \dots \oplus \mathcal{F}_k$.

^{*} Also at: Department of Mathematics, Dharumapuram Gnanambigai Government Arts College for Women, Mayiladuthurai-609 001, India.

If $\mathcal{H} = \mathcal{F}_1 \oplus \mathcal{F}_2 \oplus \cdots \oplus \mathcal{F}_k$ is a decomposition such that $\mathcal{F}_1 \cong \mathcal{F}_2 \cong \cdots \cong \mathcal{F}_k \cong \mathcal{G}$, where \mathcal{G} is a fixed hypergraph, then \mathcal{F} is called a \mathcal{G} -decomposition of \mathcal{H} .

A cycle of length t in a hypergraph \mathcal{H} is a sequence of the form $v_1, e_1, v_2, e_2, \ldots$, v_t, e_t, v_1 , where v_1, v_2, \ldots, v_t are distinct vertices and e_1, e_2, \ldots, e_t are distinct edges satisfying $v_i, v_{i+1} \in e_i$ for $i \in \{1, 2, \ldots, t-1\}$ and $v_t, v_1 \in e_t$.

Decompositions of $K_n^{(3)}$ into Hamilton cycles were considered in [1, 2] and the proof of their existence was given in [10]. Decompositions of $K_n^{(h)}$ into Hamilton cycles were considered in [5, 8], a complete solution for $h \ge 4$ and $n \ge 30$ was given in [5], and cyclic decompositions were considered in [8]. In [3], necessary and sufficient conditions were given for a \mathcal{G} -decomposition of $K_n^{(3)}$, where \mathcal{G} is any 3-uniform hypergraph with at most three edges and at most six vertices. In [4], decompositions of $K_n^{(3)}$ into 4-cycles were considered and their existence was established. In [7], decompositions of $K_n^{(3)}$ into 6-cycles were considered and their existence was given. In [6], decompositions of $K_n^{(3)}$ into *p*-cycles were considered and their existence was given, whenever *p* is prime.

In this paper, we are interested in the following problem.

Problem 1.1. Given a positive integer $n \ge 3$, find all positive integers $\ell \ge 2$, such that there exists a 2^{ℓ} -cycle decomposition of $K_n^{(3)}$.

For any positive integer $t \ge 3$, a necessary condition for the existence of a *t*-cycle decomposition of $K_n^{(3)}$ is: *t* divides the number of edges in $K_n^{(3)}$, that is, $t \mid \binom{n}{3}$.

In this paper, we consider values of $t \equiv 2$ or 4 (mod 6) and we prove the existence of a *t*-cycle decomposition in the following three special cases: (i) t|(n-2); (ii) t|n; (iii) 2t|(n-1).

By the assumption on t, we have: $t \not\equiv 0 \pmod{3}$, both n and n-2 are even in cases (i) and (ii), and $t|\frac{n-1}{2}$ in case (iii). Thus, we have $t|\binom{n}{3}$.

The main result of this paper is stated below and is proved in Section 3.

Theorem 1.1. If $t \ge 4$ is an integer with $t \equiv 2$ or 4 (mod 6) and n is congruent to 0 (mod t), 2 (mod t) or 1 (mod 2t), then $K_n^{(3)}$ has a t-cycle decomposition.

2 Tools

In this section, we prove some results which are required to prove Theorem 1.1.

We will assume the vertex set of $K_n^{(3)}$ is $\{v_i : i \in \mathbb{Z}_n\}$, where \mathbb{Z}_n is the set of integers modulo n. For non-negative integers i and j with i < j, we denote the set $\{v_i, v_{i+1}, \ldots, v_j\}$ by $[v_i, v_j]$, and the set $\{i, i + 1, \ldots, j\}$ by [i, j].

For convenience, we will often write the edge $\{v_a, v_b, v_c\}$ as $v_a - v_b - v_c$ and the *t*-cycle $v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ as $(v_1 - y_1 - v_2, v_2 - y_2 - v_3, \ldots, v_t - y_t - v_1)$, where $e_i = v_i - y_i - v_{i+1}$ for $i \in \{1, 2, \ldots, t-1\}$ and $e_t = v_t - y_t - v_1$.

2.1 The hypergraph $Z_{p,q,r}^{(3)}$

Define the 3-uniform hypergraph $Z_{p,q,r}^{(3)}$ of order p + q + r as follows: $V(Z_{p,q,r}^{(3)}) = \{v_i : i \in \mathbb{Z}_{p+q+r}\}$ grouped as $G_0 = [v_0, v_{p-1}], G_1 = [v_p, v_{p+q-1}]$ and $G_2 = [v_{p+q}, v_{p+q+r-1}]$ and let $\mathcal{E}(Z_{p,q,r}^{(3)})$ be the set of all 3-edges $v_a \cdot v_b \cdot v_c$ such that $v_a \in G_0, v_b \in G_1$ and $v_c \in G_2$. Note that $|\mathcal{E}(Z_{p,q,r}^{(3)})| = pqr$. A necessary condition for the existence of a *t*-cycle decomposition of $Z_{p,q,r}^{(3)}$ is that t|pqr.

Lemma 2.1. If $t \ge 4$ is an even integer, then $Z_{1,t,t}^{(3)}$ admits a t-cycle decomposition.

To prove this lemma, we need the following theorem.

Theorem 2.1. [9]. Let P_{k+1} be the path of length k, and let $k, m, n \in \mathbb{N}$ with m, n even and $m \ge n$. The complete bipartite graph $K_{m,n}$ has a P_{k+1} -decomposition if and only if $m \ge \left\lceil \frac{k+1}{2} \right\rceil$, $n \ge \left\lceil \frac{k}{2} \right\rceil$ and $mn \equiv 0 \pmod{k}$.

. Proof of Lemma 2.1. Consider the complete bipartite graph $K_{t,t}$ with bipartition $([v_1, v_t], [v_{t+1}, v_{2t}])$. By Theorem 2.1, we have a decomposition, say \mathscr{F} , of $K_{t,t}$ into paths of length t. For each path $(x_1, x_2, \ldots, x_t, x_{t+1})$ of length t in \mathscr{F} , consider the corresponding t-cycle of the form

 $(v_0 - x_1 - x_2, x_2 - v_0 - x_3, x_3 - v_0 - x_4, x_4 - v_0 - x_5, \dots, x_{t-1} - v_0 - x_t, x_t - x_{t+1} - v_0)$

in $Z_{1,t,t}^{(3)}$. This collection of t-cycles yields a decomposition of $Z_{1,t,t}^{(3)}$ into t-cycles.

Corollary 2.1. If $t \ge 4$ is an even integer and if $p \ge 1$ is an integer, then $Z_{p,t,t}^{(3)}$ decomposes into t-cycles. In particular, if $t \ge 4$ is an even integer, then $Z_{t,t,t}^{(3)}$ decomposes into t-cycles.

Proof. We may think of $Z_{p,t,t}^{(3)}$ as an edge-disjoint union of p copies of $Z_{1,t,t}^{(3)}$. Apply Lemma 2.1 to each one of these p copies.

Lemma 2.2. If $t \ge 4$ is an even integer, then $Z_{1,2t,2t}^{(3)}$ decomposes into t-cycles.

Proof. To see this, we write $Z_{1,2t,2t}^{(3)}$ as an edge-disjoint union of four copies of $Z_{1,t,t}^{(3)}$ with vertex set grouped into

$$(G_0, G_1, G_2) = (\{v_0\}, [v_1, v_t], [v_{2t+1}, v_{3t}]),$$

$$(G_0, G_1, G_2) = (\{v_0\}, [v_1, v_t], [v_{3t+1}, v_{4t}]),$$

$$(G_0, G_1, G_2) = (\{v_0\}, [v_{t+1}, v_{2t}], [v_{2t+1}, v_{3t}]),$$

$$(G_0, G_1, G_2) = (\{v_0\}, [v_{t+1}, v_{2t}], [v_{3t+1}, v_{4t}]),$$

for the first, second, third and fourth copy respectively. Now apply Lemma 2.1 to each copy of $Z_{1,t,t}^{(3)}$.

Lemma 2.3. If $t \ge 4$ is an even integer and if $p \ge 1$ is an integer, then $Z_{p,2t,2t}^{(3)}$ decomposes into t-cycles. In particular, if $t \ge 4$ is an even integer, then $Z_{2t,2t,2t}^{(3)}$ decomposes into t-cycles.

Proof. We may think of $Z_{p,2t,2t}^{(3)}$ as an edge-disjoint union of p copies of $Z_{1,2t,2t}^{(3)}$. Apply Lemma 2.1 to each one of these p copies.

2.2 The hypergraph $K_{m,n}^{(3)}$

Define the 3-uniform hypergraph $K_{m,n}^{(3)}$ of order m + n as follows. Let $V(K_{m,n}^{(3)}) = \{v_i : i \in \mathbb{Z}_{m+n}\}$, grouped as $G_0 = [v_0, v_{m-1}]$ and $G_1 = [v_m, v_{m+n-1}]$. Let $\mathcal{E}(K_{m,n}^{(3)})$ be the set of all 3-edges $v_a \cdot v_b \cdot v_c$ such that v_a, v_b and v_c are not all from the same set G_i , $i \in \{0, 1\}$; that is, for each $i \in \{0, 1\}$, $\{v_a, v_b, v_c\} \cap G_i \neq \emptyset$. Note that $\left| \mathcal{E}(K_{m,n}^{(3)}) \right| = \frac{mn(m+n-2)}{2}$. A necessary condition for the existence of a *t*-cycle decomposition of $K_{m,n}^{(3)}$ is that 2t|mn(m+n-2).

Lemma 2.4. If $t \ge 4$ is an even integer, then $K_{1,2t}^{(3)}$ decomposes into t-cycles.

Proof. Consider the hypergraph $K_{1,2t}^{(3)}$ (respectively, its spanning subhypergraph $Z_{1,t,t}^{(3)}$) with vertex set $[v_0, v_{2t}]$ which is grouped into $\{v_0\}$ and $[v_1, v_{2t}]$ (respectively, $\{v_0\}, [v_1, v_t]$ and $[v_{t+1}, v_{2t}]$). For convenience, relabel the vertices v_i and v_{t+i} , $i \in [1, t]$ by x_{i-1} and y_{i-1} , respectively. The subscripts of the vertices x and y are taken modulo t.

Consider the complete bipartite graph $K_{t,t}$ with bipartition $([x_0, x_{t-1}], [y_0, y_{t-1}])$. Let

 $P^{0} = (x_{0}, y_{t-1}, x_{1}, y_{t-2}, x_{2}, y_{t-3}, \dots, y_{\frac{t}{2}+2}, x_{\frac{t}{2}-2}, y_{\frac{t}{2}+1}, x_{\frac{t}{2}-1}, y_{\frac{t}{2}}, x_{\frac{t}{2}}).$

(Observe that, if we denote the length of the edge $x_i y_j$ as $(j - i) \pmod{t}$, then the lengths of the edges of P^0 in order are: $t - 1, t - 2, t - 3, \ldots, 1, 0$.) Let $\mathscr{F} = \{P^0, P^1, P^2, \ldots, P^{t-1}\}$, where for each $i \in [1, t - 1]$, P^i is obtained from P^{i-1} by adding 1 and reducing the subscripts modulo t in each of the vertices of P^{i-1} . By the above observation, \mathscr{F} is a decomposition of $K_{t,t}$ into paths of length t.

Using P^0 , obtain a *t*-cycle C^0 in $Z^{(3)}_{1,t,t}$ as shown below:

$$C^{0} = (v_{0} - x_{0} - y_{t-1}, y_{t-1} - v_{0} - x_{1}, x_{1} - v_{0} - y_{t-2}, y_{t-2} - v_{0} - x_{2}, x_{2} - v_{0} - y_{t-3}, \dots, y_{\frac{t}{2}+2} - v_{0} - x_{\frac{t}{2}-2}, x_{\frac{t}{2}-2} - v_{0} - y_{\frac{t}{2}+1}, y_{\frac{t}{2}+1} - v_{0} - x_{\frac{t}{2}-1}, x_{\frac{t}{2}-1} - v_{0} - y_{\frac{t}{2}}, y_{\frac{t}{2}} - x_{\frac{t}{2}} - v_{0}).$$

Similarly, for each $i \in [1, t - 1]$, using P^i , obtain a *t*-cycle C^i in $Z_{1,t,t}^{(3)}$. As \mathscr{F} is a decomposition of $K_{t,t}$ into paths of length t, $\{C^0, C^1, C^2, \ldots, C^{t-1}\}$ is a *t*-cycle decomposition of $Z_{1,t,t}^{(3)}$.

As $Z_{1,t,t}^{(3)}$ is a spanning subhypergraph of $K_{1,2t}^{(3)}$, to find a *t*-cycle decomposition of $K_{1,2t}^{(3)}$, it is enough to find a *t*-cycle decomposition of $K_{1,2t}^{(3)} \setminus \mathcal{E}(\bigcup_{i=1}^{t-1} C^i)$.

Consider two disjoint copies of K_t , say K'_t and K''_t , with vertex sets $[x_0, x_{t-1}]$ and $[y_0, y_{t-1}]$, respectively. As t is even, each of K'_t and K''_t is Hamilton path decomposable. For $i \in [1, \frac{t}{2}]$, let

$$P_i^1 = (x_{i-1}, x_i, x_{i-2}, x_{i+1}, x_{i-3}, x_{i+2}, \dots, x_{\frac{t}{2}+1+i}, x_{\frac{t}{2}-2+i}, x_{\frac{t}{2}+i}, x_{\frac{t}{2}-1+i})$$

and
$$P_i^2 = (y_{i-1}, y_i, y_{i-2}, y_{i+1}, y_{i-3}, y_{i+2}, \dots, y_{\frac{t}{2}+1+i}, y_{\frac{t}{2}-2+i}, y_{\frac{t}{2}+i}, y_{\frac{t}{2}-1+i}).$$

Then, clearly, $\{P_i^1 : i \in [1, \frac{t}{2}]\}$ and $\{P_i^2 : i \in [1, \frac{t}{2}]\}$ are, respectively, decompositions of K'_t and K''_t into paths of length t - 1.

For each $i \in [1, \frac{t}{2}]$, let

$$P'_{i} = (x_{i-1} - v_{0} - x_{i}, x_{i} - v_{0} - x_{i-2}, x_{i-2} - v_{0} - x_{i+1}, x_{i+1} - v_{0} - x_{i-3}, x_{i-3} - v_{0} - x_{i+2}, \\ \dots, x_{\frac{t}{2}+1+i} - v_{0} - x_{\frac{t}{2}-2+i}, i x_{\frac{t}{2}-2+i} - v_{0} - x_{\frac{t}{2}+i}, x_{\frac{t}{2}+i} - v_{0} - x_{\frac{t}{2}-1+i})$$

and

$$P_{i}^{''} = (y_{i-1}-v_{0}-y_{i}, y_{i}-v_{0}-y_{i-2}, y_{i-2}-v_{0}-y_{i+1}, y_{i+1}-v_{0}-y_{i-3}, y_{i-3}-v_{0}-y_{i+2}, \dots, y_{\frac{t}{2}+1+i}-v_{0}-y_{\frac{t}{2}-2+i}, y_{\frac{t}{2}-2+i}-v_{0}-y_{\frac{t}{2}+i}, y_{\frac{t}{2}+i}-v_{0}-y_{\frac{t}{2}-1+i}),$$

where P'_i and P''_i are paths of length t-1 in $K^{(3)}_{1,2t}$ obtained from P^1_i and P^2_i , respectively. This results in a decomposition $\{P'_i, P''_i : i \in [1, \frac{t}{2}]\}$ of $K^{(3)}_{1,2t} \setminus \mathcal{E}(C^0 \cup C^1 \cup \cdots \cup C^{t-1})$ into paths of length t-1.

Consider P'_1 . By rewriting the last edge $x_{\frac{t}{2}+1}-v_0-x_{\frac{t}{2}}$ of P'_1 as $x_{\frac{t}{2}+1}-x_{\frac{t}{2}}-v_0$ and adding, at the end, the first edge $v_0-x_0-y_{t-1}=v_0-y_{t-1}-x_0$ of C^0 , we obtain the *t*-cycle

$$C'_{1} = (x_{0} - v_{0} - x_{1}, x_{1} - v_{0} - x_{t-1}, x_{t-1} - v_{0} - x_{2}, x_{2} - v_{0} - x_{t-2}, x_{t-2} - v_{0} - x_{3}, \dots, x_{\frac{t}{2}+2} - v_{0} - x_{\frac{t}{2}-1}, x_{\frac{t}{2}-1} - v_{0} - x_{\frac{t}{2}+1}, x_{\frac{t}{2}+1} - x_{\frac{t}{2}} - v_{0}, v_{0} - y_{t-1} - x_{0}).$$

Now consider P'_i , for $i \neq 1$. By rewriting the last edge $x_{\frac{t}{2}+i} - v_0 - x_{\frac{t}{2}-1+i}$ of P'_i as $x_{\frac{t}{2}+i} - x_0 - x_{\frac{t}{2}-1+i} - v_0$ and adding, at the end, the $(2i-1)^{\text{st}}$ edge $x_{i-1} - v_0 - y_{t-i} = v_0 - y_{t-i} - x_{i-1}$ of C^0 , we obtain the *t*-cycle

$$C'_{i} = (x_{i-1} - v_{0} - x_{i}, x_{i} - v_{0} - x_{i-2}, x_{i-2} - v_{0} - x_{i+1}, x_{i+1} - v_{0} - x_{i-3}, x_{i-3} - v_{0} - x_{i+2}, \dots, x_{\frac{t}{2}+1+i} - v_{0} - x_{\frac{t}{2}-2+i}, x_{\frac{t}{2}-2+i} - v_{0} - x_{\frac{t}{2}+i}, x_{\frac{t}{2}+i} - x_{\frac{t}{2}-1+i} - v_{0}, v_{0} - y_{t-i} - x_{i-1}).$$

Similarly, by rewriting the first edge $y_0 - v_0 - y_1$ of P''_1 as $v_0 - y_0 - y_1$ and adding, at the end, the t^{th} edge $y_{\frac{t}{2}} - x_{\frac{t}{2}} - v_0$ of C^0 , we obtain the *t*-cycle

$$C_1'' = (v_0 - y_0 - y_1, y_1 - v_0 - y_{t-1}, y_{t-1} - v_0 - y_2, y_2 - v_0 - y_{t-2}, y_{t-2} - v_0 - y_3, \dots, y_{\frac{t}{2}+2} - v_0 - y_{\frac{t}{2}-1}, y_{\frac{t}{2}-1} - v_0 - y_{\frac{t}{2}+1}, y_{\frac{t}{2}+1} - v_0 - y_{\frac{t}{2}}, y_{\frac{t}{2}} - x_{\frac{t}{2}} - v_0);$$

and, for $i \neq 1$, by rewriting the first edge $y_{i-1} - v_0 - y_i$ of P''_i as $v_0 - y_{i-1} - y_i$ and adding, at the end, the $(t - 2i + 2)^{\text{nd}}$ edge, i.e., the $2(\frac{t}{2} - i + 1)^{\text{st}}$ edge, $y_{t-(\frac{t}{2}-1+i)} - v_0 - x_{\frac{t}{2}-i+1} = y_{\frac{t}{2}-1+i} - x_{\frac{t}{2}-i+1} - v_0$ of C^0 , we obtain the *t*-cycle $C''_i = (v_0 - u_{i-1} - u_{i-1} - u_{i-2} - u_{i-2} - u_{i-2} - u_{i-1} - u_{i-1} - u_{i-2} - u$

$$\begin{array}{rcl} & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

The collection of these *t*-cycles $\{C'_i : i \in [1, \frac{t}{2}]\} \cup \{C''_i : i \in [1, \frac{t}{2}]\}$ yields a decomposition of $K^{(3)}_{1,2t} \setminus \mathcal{E}(C^1 \cup C^2 \cup \cdots \cup C^{t-1})$.

Lemma 2.5. If $t \ge 4$ is an even integer, then $K_{2,t}^{(3)}$ decomposes into t-cycles.

Proof. Consider $K_{2,t}^{(3)}$ where its vertex set is grouped into $\{v_0, v_1\}$ and $[v_2, v_{t+1}]$. For convenience, relabel the vertex v_i , $i \in [2, t+1]$, by u_{i-2} , where the subscripts of u are taken modulo t. The complete graph K_t with vertex set $[u_0, u_{t-1}]$ is Hamilton path decomposable, because t is even. Let $\{P_j : j \in [0, \frac{t}{2} - 1]\}$ be the Hamilton path decomposition of K_t , where

$$P_j = (u_j, u_{1+j}, u_{t-1+j}, u_{2+j}, u_{t-2+j}, u_{3+j}, \dots, u_{\frac{t}{2}+2+j}, u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+j}).$$

For each $j \in [0, \frac{t}{2} - 1]$, using P_j , obtain the paths

$$P_{j}^{0} = (u_{j} - v_{0} - u_{1+j}, u_{1+j} - v_{0} - u_{t-1+j}, u_{t-1+j} - v_{0} - u_{2+j}, u_{2+j} - v_{0} - u_{t-2+j}, u_{t-2+j} - v_{0} - u_{3+j}, \dots, u_{\frac{t}{2}+2+j} - v_{0} - u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}-1+j} - v_{0} - u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+1+j} - v_{0} - u_{\frac{t}{2}+j})$$

and

$$P_{j}^{1} = (u_{j} - v_{1} - u_{1+j}, u_{1+j} - v_{1} - u_{t-1+j}, u_{t-1+j} - v_{1} - u_{2+j}, u_{2+j} - v_{1} - u_{t-2+j}, u_{t-2+j} - v_{1} - u_{3+j}, \dots, u_{\frac{t}{2}+2+j} - v_{1} - u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}-1+j} - v_{1} - u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+1+j} - v_{1} - u_{\frac{t}{2}+j})$$

of length t-1 in $K_{2,t}^{(3)}$. This results in the decomposition $\{P_j^0 : j \in [0, \frac{t}{2} - 1]\} \cup \{P_j^1 : j \in [0, \frac{t}{2} - 1]\}$ of $K_{2,t}^{(3)} \setminus \{v_0 - v_1 - u_j : j \in [0, t-1]\}$ into paths of length t-1.

Consider P_j^0 . By rewriting the last edge $u_{\frac{t}{2}+1+j} v_0 u_{\frac{t}{2}+j}$ of P_j^0 as $u_{\frac{t}{2}+1+j} u_{\frac{t}{2}+j} v_0$ and adding, at the end, the edge $v_0 v_1 u_j$, we obtain the *t*-cycle

$$C_{j}^{0} = (u_{j} - v_{0} - u_{1+j}, u_{1+j} - v_{0} - u_{t-1+j}, u_{t-1+j} - v_{0} - u_{2+j}, u_{2+j} - v_{0} - u_{t-2+j}, u_{t-2+j} - v_{0} - u_{3+j}, \dots, u_{\frac{t}{2}+2+j} - v_{0} - u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}-1+j} - v_{0} - u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+1+j} - u_{\frac{t}{2}+j} - v_{0}, v_{0} - v_{1} - u_{j}).$$

Next consider P_j^1 . By rewriting the first edge $u_j \cdot v_1 \cdot u_{1+j}$ of P_j^1 as $v_1 \cdot u_j \cdot u_{1+j}$ and adding, at the edge $v_0 \cdot v_1 \cdot u_{\frac{t}{2}+j} = u_{\frac{t}{2}+j} \cdot v_0 \cdot v_1$, we obtain the *t*-cycle

$$C_{j}^{1} = (v_{1} - u_{j} - u_{1+j}, u_{1+j} - v_{1} - u_{t-1+j}, u_{t-1+j} - v_{1} - u_{2+j}, u_{2+j} - v_{1} - u_{t-2+j}, u_{t-2+j} - v_{1} - u_{3+j}, \dots, u_{\frac{t}{2}+2+j} - v_{1} - u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}-1+j} - v_{1} - u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+1+j} - v_{1} - u_{\frac{t}{2}+j}, u_{\frac{t}{2}+j} - v_{0} - v_{1}).$$

The collection of these t-cycles $\{C_j^0: j \in [0, \frac{t}{2} - 1]\} \cup \{C_j^1: j \in [0, \frac{t}{2} - 1]\}$ yields a decomposition of $K_{2,t}^{(3)}$.

Lemma 2.6. If $t \ge 4$ is an even integer, then $K_{t,t}^{(3)}$ decomposes into t-cycles.

Proof. Consider $K_{t,t}^{(3)}$ with its vertex set grouped into $[v_0, v_{t-1}]$ and $[v_t, v_{2t-1}]$. Let K'_t and K''_t be two disjoint copies of K_t with vertex sets $[v_0, v_{t-1}]$ and $[v_t, v_{2t-1}]$, respectively. As t is even, each of K'_t and K''_t can be decomposed into i $\frac{t}{2} - 1$ Hamilton cycles and a 1-factor. Denote by $H'_1 \oplus H'_2 \oplus \cdots \oplus H'_{\frac{t}{2}-1} \oplus F'$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H'_{\frac{t}{2}-1} \oplus F'$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F'$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F'$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F'$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F''$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F''$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F''$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F''$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F''$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F''$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F''$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F''$ and $H''_1 \oplus H''_2 \oplus \cdots \oplus H''_{\frac{t}{2}-1} \oplus F''$.

Consider H'_i , $i \in [1, \frac{t}{2} - 1]$. If $H'_i = (v_{i_0}, v_{i_1}, \dots, v_{i_{t-1}}, v_{i_0})$, where i_0, i_1, \dots, i_{t-1} is a permutation of $0, 1, \dots, t - 1$, then for each $r \in [t, 2t - 1]$, obtain the *t*-cycle $(v_{i_0} - v_r - v_{i_1}, v_{i_1} - v_r - v_{i_2}, v_{i_2} - v_r - v_{i_3}, \dots, v_{i_{t-2}} - v_r - v_{i_{t-1}}, v_{i_{t-1}} - v_r - v_{i_0})$ in $K_{t,t}^{(3)}$.

Similarly, for each $j \in [1, \frac{t}{2} - 1]$ and $s \in [0, t - 1]$, using the Hamilton cycle H''_j and the vertex v_s , obtain a *t*-cycle in $K_{t,t}^{(3)}$ as follows: if $H''_j = (v_{j_0}, v_{j_1}, \dots, v_{j_{t-1}}, v_{j_0})$, where j_0, j_1, \dots, j_{t-1} is a permutation of $t, t + 1, \dots, 2t - 1$, then the *t*-cycle is:

$$(v_{j_0} - v_s - v_{j_1}, v_{j_1} - v_s - v_{j_2}, i v_{j_2} - v_s - v_{j_3}, \dots, v_{j_{t-2}} - v_s - v_{j_{t-1}}, v_{j_{t-1}} - v_s - v_{j_0})$$

This produces $2(\frac{t}{2}-1)t$ edge disjoint t-cycles in $K_{t,t}^{(3)}$.

If necessary, after relabeling the vertices, let $F' = \{v_0v_1, v_2v_3, \ldots, v_{t-2}v_{t-1}\}$ and $F'' = \{v_tv_{t+1}, v_{t+2}v_{t+3}, \ldots, v_{2t-2}v_{2t-1}\}$. For convenience, relabel the vertex $v_{t+i}, i \in [0, t-1]$, by u_i , where subscripts of u are taken modulo t. In this notation, $F'' = \{u_0u_1, u_2u_3, \ldots, u_{t-2}u_{t-1}\}$.

To complete the proof, we have to find t edge disjoint t-cycles from the set

$$\{ v_0 - v_1 - u_r, v_2 - v_3 - u_r, \dots, v_{t-2} - v_{t-1} - u_r : r \in [0, t-1] \} \\ \cup \{ u_0 - u_1 - v_s, u_2 - u_3 - v_s, \dots, u_{t-2} - u_{t-1} - v_s : s \in [0, t-1] \}$$

of edges.

For each $i \in [0, \frac{t}{2} - 1]$, let

$$C'_{i} = (v_{0} - v_{1} - u_{2i}, u_{2i} - u_{2i+1} - v_{2}, \\v_{2} - v_{3} - u_{2i+2}, u_{2i+2} - u_{2i+3} - v_{4}, \\v_{4} - v_{5} - u_{2i+4}, u_{2i+4} - u_{2i+5} - v_{6}, \\\dots, \\v_{t-4} - v_{t-3} - u_{2i-4}, u_{2i-4} - u_{2i-3} - v_{t-2}, \\v_{t-2} - v_{t-1} - u_{2i-2}, u_{2i-2} - u_{2i-1} - v_{0})$$

and

$$C_{i}^{"} = (v_{1}-v_{0}-u_{2i+1}, u_{2i+1}-u_{2i}-v_{t-1}, u_{2i-1}-v_{2i-2}-v_{t-3}, v_{t-1}-v_{t-2}-u_{2i-3}, u_{2i-1}-u_{2i-2}-v_{t-3}, v_{t-3}-v_{t-4}-u_{2i-3}, u_{2i-3}-u_{2i-4}-v_{t-5}, \dots, v_{5}-v_{4}-u_{2i+5}, u_{2i+5}-u_{2i+4}-v_{3}, v_{3}-v_{2}-u_{2i+3}, u_{2i+3}-u_{2i+2}-v_{1}).$$

Clearly, $\{C'_i, C''_i : i \in [0, \frac{t}{2} - 1]\}$ is the required collection of t edge-disjoint t-cycles, which completes the proof.

Lemma 2.7. If $t \ge 4$ is an even integer, then $K_{2t,2t}^{(3)}$ decomposes into t-cycles.

Proof. Consider $K_{2t,2t}^{(3)}$ with its vertex set grouped into $[v_0, v_{2t-1}]$ and $[v_{2t}, v_{4t-1}]$. Write $K_{2t,2t}^{(3)}$ as an edge-disjoint union of eight subhypergraphs, out of which four are copies of $K_{t,t}^{(3)}$ with vertex sets grouped into

- (i) $[v_0, v_{t-1}]$ and $[v_{2t}, v_{3t-1}]$,
- (ii) $[v_0, v_{t-1}]$ and $[v_{3t}, v_{4t-1}]$,
- (iii) $[v_t, v_{2t-1}]$ and $[v_{2t}, v_{3t-1}]$, and
- (iv) $[v_t, v_{2t-1}]$ and $[v_{3t}, v_{4t-1}]$;

and the remaining four are copies of $Z_{t,t,t}^{(3)}$ with vertex sets grouped into

(i) $[v_0, v_{t-1}], [v_t, v_{2t-1}]$ and $[v_{2t}, v_{3t-1}],$ (ii) $[v_0, v_{t-1}], [v_t, v_{2t-1}]$ and $[v_{3t}, v_{4t-1}],$ (iii) $[v_0, v_{t-1}], [v_{2t}, v_{3t-1}]$ and $[v_{3t}, v_{4t-1}],$ and (iv) $[v_t, v_{2t-1}], [v_{2t}, v_{3t-1}]$ and $[v_{3t}, v_{4t-1}].$

Since the hypergraphs $K_{t,t}^{(3)}$ and $Z_{t,t,t}^{(3)}$ are decomposable into *t*-cycles by Lemma 2.6 and Corollary 2.1, respectively, we have the required decomposition.

2.3 Decompositions of $K_{2t+1}^{(3)}$ and $K_{t+2}^{(3)}$

A Hamilton cycle of a hypergraph \mathcal{H} on n vertices is a cycle of length n.

Theorem 2.2. [1, 2, 10] If $n \equiv 1, 2, 4$ or 5 (mod 6), then $K_n^{(3)}$ decomposes into Hamilton cycles.

Lemma 2.8. If $t \ge 4$ and $t \equiv 2$ or 4 (mod 6), then $K_{2t}^{(3)}$ decomposes into t-cycles.

Proof. By Theorem 2.2 and Lemma 2.6, $K_t^{(3)}$ and $K_{t,t}^{(3)}$ are, respectively, *t*-cycle decomposable, and hence so is $K_{2t}^{(3)} = 2K_t^{(3)} \oplus K_{t,t}^{(3)}$.

Lemma 2.9. If $t \ge 4$ and $t \equiv 2$ or 4 (mod 6), then $K_{2t+1}^{(3)}$ decomposes into t-cycles.

Proof. By Lemmas 2.8 and 2.4, $K_{2t}^{(3)}$ and $K_{1,2t}^{(3)}$ are, respectively, *t*-cycle decomposable, and hence so is $K_{2t+1}^{(3)} = K_{2t}^{(3)} \oplus K_{1,2t}^{(3)}$.

Lemma 2.10. If $t \ge 4$ and $t \equiv 2$ or 4 (mod 6), then $K_{t+2}^{(3)}$ decomposes into t-cycles.

Proof. By Theorem 2.2 and Lemma 2.5, $K_t^{(3)}$ and $K_{2,t}^{(3)}$ are, respectively, *t*-cycle decomposable, and hence so is $K_{t+2}^{(3)} = K_t^{(3)} \oplus K_{2,t}^{(3)}$.

3 Proof of Theorem 1.1.

To prove Theorem 1.1, we consider three cases:

Case 1. $n \equiv 0 \pmod{t}$.

Then n = kt for some positive integer k. We may think of $K_{kt}^{(3)}$ as an edge-disjoint union of k copies of $K_t^{(3)}$, $\frac{k(k-1)}{2}$ copies of $K_{t,t}^{(3)}$ and $\frac{k(k-1)(k-2)}{6}$ copies of $Z_{t,t,t}^{(3)}$. That is, $K_{kt}^{(3)} = \underbrace{K_t^{(3)} \oplus K_t^{(3)} \oplus \cdots \oplus K_t^{(3)}}_{k \ times} \oplus \underbrace{K_{t,t}^{(3)} \oplus K_{t,t}^{(3)} \oplus \cdots \oplus K_{t,t}^{(3)}}_{\frac{k(k-1)}{2} \ times} \oplus \underbrace{Z_{t,t,t}^{(3)} \oplus Z_{t,t,t}^{(3)} \oplus \cdots \oplus Z_{t,t,t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \ times}$

As each of the hypergraphs $K_t^{(3)}$, $K_{t,t}^{(3)}$ and $Z_{t,t,t}^{(3)}$ is decomposable into t-cycles by Theorem 2.2, Lemma 2.6 and Corollary 2.1, respectively, we have the required decomposition.

<u>Case 2</u>. $n \equiv 2 \pmod{t}$.

Then n = kt + 2 for some positive integer k. We may think of $K_{kt+2}^{(3)}$ as an edge-disjoint union of k copies of $K_{t+2}^{(3)}$, $\frac{k(k-1)}{2}$ copies of $K_{t,t}^{(3)}$, $\frac{k(k-1)(k-2)}{6}$ copies of $Z_{t,t,t}^{(3)}$ and k(k-1) copies of $Z_{1,t,t}^{(3)}$. That is, $K_{kt+2}^{(3)} = \underbrace{K_{t+2}^{(3)} \oplus K_{t+2}^{(3)} \oplus \cdots \oplus K_{t+2$

decomposable into *t*-cycles by Lemma 2.10, Lemma 2.6, Corollary 2.1 and Lemma 2.1, respectively, we have the required decomposition.

Case 3.
$$n \equiv 1 \pmod{2t}$$
.

Then n = 2kt + 1 for some positive integer k. We may think of $K_{2kt+1}^{(3)}$ as an edgedisjoint union of k copies of $K_{2t+1}^{(3)}$, $\frac{k(k-1)}{2}$ copies of $K_{2t,2t}^{(3)}$, $\frac{k(k-1)(k-2)}{6}$ copies of $Z_{2t,2t,2t}^{(3)}$ and $\frac{k(k-1)}{2}$ copies of $Z_{1,2t,2t}^{(3)}$. That is,

$$K_{2kt+1}^{(3)} = \underbrace{K_{2t+1}^{(3)} \oplus K_{2t+1}^{(3)} \oplus \cdots \oplus K_{2t+1}^{(3)}}_{k \ times} \oplus \underbrace{K_{2t,2t}^{(3)} \oplus K_{2t,2t}^{(3)} \oplus \cdots \oplus K_{2t,2t}^{(3)}}_{\frac{k(k-1)}{2} \ times} \oplus \underbrace{Z_{2t,2t,2t}^{(3)} \oplus Z_{2t,2t,2t}^{(3)} \oplus \cdots \oplus Z_{2t,2t,2t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \ times} \oplus \underbrace{Z_{1,2t,2t}^{(3)} \oplus Z_{1,2t,2t}^{(3)} \oplus \cdots \oplus Z_{1,2t,2t}^{(3)}}_{\frac{k(k-1)}{2} \ times}.$$

As each of the hypergraphs $K_{2t+1}^{(3)}$, $K_{2t,2t}^{(3)}$, $Z_{2t,2t,2t}^{(3)}$ and $Z_{1,2t,2t}^{(3)}$ is decomposable into *t*-cycles by Lemmas 2.9, 2.7, 2.3 and 2.2, respectively, we have the required decomposition.

Among even t, consider those t of the form 2^{ℓ} , where $\ell \geq 2$. Observe that $2^{\ell} | \binom{n}{3}$ if and only if $2^{\ell+1} | (n-1)$ or $2^{\ell+1} | n(n-2)$. But $2^{\ell+1} | n(n-2)$ if and only if $2^{\ell} | n$ or $2^{\ell} | (n-2)$, and hence $2^{\ell} | \binom{n}{3}$ if and only if $2^{\ell} | (n-2)$ or $2^{\ell+1} | (n-1)$ or $2^{\ell} | n$.

From the above necessary condition and Theorem 1.1 with $t = 2^{\ell}$, we have the following.

Corollary 3.1. If $n \ge 2^{\ell}$ and $\ell \ge 2$, then $K_n^{(3)}$ has a 2^{ℓ} -cycle decomposition if and only if $n \equiv 0 \pmod{2^{\ell}}$, $2 \pmod{2^{\ell}}$ or $1 \pmod{2^{\ell+1}}$.

Taking $\ell = 2$, we have

Corollary 3.2. [4] If $n \ge 4$, then $K_n^{(3)}$ has a 4-cycle decomposition if and only if $n \equiv 0 \pmod{4}$, $2 \pmod{4}$ or $1 \pmod{8}$.

Acknowledgements

We would like to thank the reviewers for their valuable suggestions which improved the presentation of the article.

References

- [1] J. C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, *Ann. Discrete Math.* 3 (1978), 21–28.
- [2] J. C. Bermond, A. Germa, M. C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, in Problèmes combinatoires et théorie des graphes, (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 39–43; Colloq. Internat. CNRS, 260, CNRS, Paris, 1978.
- [3] D. Bryant, S. Herke, B. Maenhaut and W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, Australas. J. Combin. 60(2) (2014), 227–254.
- [4] H. Jordon and G. Newkirk, 4-Cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 71(2) (2018), 312–323.
- [5] D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A 126 (2014), 128–135.
- [6] R. Lakshmi and T. Poovaragavan, Decompositions of complete 3-uniform hypergraphs into cycles of constant prime length, *Opuscula Math.* 40(4) (2020), 509–516.
- [7] R. Lakshmi and T. Poovaragavan, 6-Cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 80(1) (2021), 79–88.

- [8] P. Petecki, On cyclic hamiltonian decompositions of complete k-uniform hypergraphs, *Discrete Math.* 325 (2014), 74–76.
- [9] M. Truszczyński, Note on the decomposition of $\lambda K_{m,n}$ ($\lambda K_{m,n}^*$) into paths, *Discrete Math.* 55 (1985), 89–96.
- [10] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, i Discrete Math. 132 (1994), 333–348.

(Received 17 Dec 2021; revised 16 Aug 2022)