Decompositions of complete 3-uniform hypergraphs into cycles of some special even lengths

R. Lakshmi* T. Poovaragavan
Department of Mathematics, Annamalai University
Annamalainagar-608 002, India
mathlakshmi@gmail.com poovamath@gmail.com

Abstract

The complete 3-uniform hypergraph $K_{n}^{(3)}$ is a simple 3-uniform hypergraph with vertex set V having order $|V|=n$, and the set of all 3 -subsets of V as its edge set. A t-cycle in this hypergraph is $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{t}, e_{t}, v_{1}$ where $v_{1}, v_{2}, \ldots, v_{t}$ are distinct vertices and $e_{1}, e_{2}, \ldots, e_{t}$ are distinct edges such that $v_{i}, v_{i+1} \in e_{i}$ for $i \in\{1,2, \ldots, t-1\}$ and $v_{t}, v_{1} \in e_{t}$. A decomposition of a hypergraph is a partition of its edge set into edge-disjoint subsets. In this paper, we prove the existence of a t-cycle decomposition of $K_{n}^{(3)}$ for values of $t \equiv 2$ or $4(\bmod 6)$ that satisfy the divisibility condition $t \mid(n-2)$ or $t \mid n$ or $2 t \mid(n-1)$. Using this, we characterize the existence of a decomposition of $K_{n}^{(3)}$ into 2^{ℓ}-cycles, where $\ell \geq 2$ is a positive integer. Consequently, the main result of the paper by Jordan and Newkirk [Australas. J. Combin. 71(2) (2018), 312-323] is a corollary.

1 Introduction

A hypergraph \mathcal{H} consists of a finite nonempty set V of vertices and a set $\mathcal{E}=$ $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges where each $e_{i} \subseteq V$ with $\left|e_{i}\right|>0$ for $i \in\{1,2, \ldots, m\}$. If $\left|e_{i}\right|=h$, then we call e_{i} an h-edge. If every edge of \mathcal{H} is an h-edge for some h, then we say that \mathcal{H} is h-uniform. The complete h-uniform hypergraph $K_{n}^{(h)}$ is the hypergraph with vertex set V, where $|V|=n$, in which every h-subset of V determines an h-edge. It then follows that $K_{n}^{(h)}$ has $\binom{n}{h}$ edges. When $h=2, K_{n}^{(2)}=K_{n}$, the complete graph on n vertices.

A decomposition of a hypergraph \mathcal{H} is a set $\mathcal{F}=\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{k}\right\}$ of subhypergraphs of \mathcal{H} such that $\mathcal{E}\left(\mathcal{F}_{1}\right) \cup \mathcal{E}\left(\mathcal{F}_{2}\right) \cup \cdots \cup \mathcal{E}\left(\mathcal{F}_{k}\right)=\mathcal{E}(\mathcal{H})$ and $\mathcal{E}\left(\mathcal{F}_{i}\right) \cap \mathcal{E}\left(\mathcal{F}_{j}\right)=\emptyset$ for all $i, j \in\{1,2, \ldots, k\}$ with $i \neq j$. We denote this by $\mathcal{H}=\mathcal{F}_{1} \oplus \mathcal{F}_{2} \oplus \cdots \oplus \mathcal{F}_{k}$.

[^0]If $\mathcal{H}=\mathcal{F}_{1} \oplus \mathcal{F}_{2} \oplus \cdots \oplus \mathcal{F}_{k}$ is a decomposition such that $\mathcal{F}_{1} \cong \mathcal{F}_{2} \cong \cdots \cong \mathcal{F}_{k} \cong \mathcal{G}$, where \mathcal{G} is a fixed hypergraph, then \mathcal{F} is called a \mathcal{G}-decomposition of \mathcal{H}.

A cycle of length t in a hypergraph \mathcal{H} is a sequence of the form $v_{1}, e_{1}, v_{2}, e_{2}, \ldots$, v_{t}, e_{t}, v_{1}, where $v_{1}, v_{2}, \ldots, v_{t}$ are distinct vertices and $e_{1}, e_{2}, \ldots, e_{t}$ are distinct edges satisfying $v_{i}, v_{i+1} \in e_{i}$ for $i \in\{1,2, \ldots, t-1\}$ and $v_{t}, v_{1} \in e_{t}$.

Decompositions of $K_{n}^{(3)}$ into Hamilton cycles were considered in [1, 2] and the proof of their existence was given in [10]. Decompositions of $K_{n}^{(h)}$ into Hamilton cycles were considered in [5, 8], a complete solution for $h \geq 4$ and $n \geq 30$ was given in [5], and cyclic decompositions were considered in [8]. In [3], necessary and sufficient conditions were given for a \mathcal{G}-decomposition of $K_{n}^{(3)}$, where \mathcal{G} is any 3 -uniform hypergraph with at most three edges and at most six vertices. In [4], decompositions of $K_{n}^{(3)}$ into 4 -cycles were considered and their existence was established. In [7], decompositions of $K_{n}^{(3)}$ into 6 -cycles were considered and their existence was given. In [6], decompositions of $K_{n}^{(3)}$ into p-cycles were considered and their existence was given, whenever p is prime.

In this paper, we are interested in the following problem.
Problem 1.1. Given a positive integer $n \geq 3$, find all positive integers $\ell \geq 2$, such that there exists a 2^{ℓ}-cycle decomposition of $K_{n}^{(3)}$.

For any positive integer $t \geq 3$, a necessary condition for the existence of a t-cycle decomposition of $K_{n}^{(3)}$ is: t divides the number of edges in $K_{n}^{(3)}$, that is, $t\binom{n}{3}$.

In this paper, we consider values of $t \equiv 2$ or $4(\bmod 6)$ and we prove the existence of a t-cycle decomposition in the following three special cases: (i) $t \mid(n-2)$; (ii) $t \mid n$; (iii) $2 t \mid(n-1)$.

By the assumption on t, we have: $t \not \equiv 0(\bmod 3)$, both n and $n-2$ are even in cases (i) and (ii), and $t \left\lvert\, \frac{n-1}{2}\right.$ in case (iii). Thus, we have $\left.t \left\lvert\, \begin{array}{l}n \\ 3\end{array}\right.\right)$.

The main result of this paper is stated below and is proved in Section 3.
Theorem 1.1. If $t \geq 4$ is an integer with $t \equiv 2$ or $4(\bmod 6)$ and n is congruent to $0(\bmod t), 2(\bmod t)$ or $1(\bmod 2 t)$, then $K_{n}^{(3)}$ has a t-cycle decomposition.

2 Tools

In this section, we prove some results which are required to prove Theorem 1.1.
We will assume the vertex set of $K_{n}^{(3)}$ is $\left\{v_{i}: i \in \mathbb{Z}_{n}\right\}$, where \mathbb{Z}_{n} is the set of integers modulo n. For non-negative integers i and j with $i<j$, we denote the set $\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$ by $\left[v_{i}, v_{j}\right]$, and the set $\{i, i+1, \ldots, j\}$ by $[i, j]$.

For convenience, we will often write the edge $\left\{v_{a}, v_{b}, v_{c}\right\}$ as $v_{a}-v_{b}-v_{c}$ and the t-cycle $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{t}, e_{t}, v_{1}$ as $\left(v_{1}-y_{1}-v_{2}, v_{2}-y_{2}-v_{3}, \ldots, v_{t}-y_{t}-v_{1}\right)$, where $e_{i}=v_{i}-y_{i}-v_{i+1}$ for $i \in\{1,2, \ldots, t-1\}$ and $e_{t}=v_{t}-y_{t}-v_{1}$.

2.1 The hypergraph $Z_{p, q, r}^{(3)}$

Define the 3-uniform hypergraph $Z_{p, q, r}^{(3)}$ of order $p+q+r$ as follows: $V\left(Z_{p, q, r}^{(3)}\right)=\left\{v_{i}\right.$: $\left.i \in \mathbb{Z}_{p+q+r}\right\}$ grouped as $G_{0}=\left[v_{0}, v_{p-1}\right], G_{1}=\left[v_{p}, v_{p+q-1}\right]$ and $G_{2}=\left[v_{p+q}, v_{p+q+r-1}\right]$ and let $\mathcal{E}\left(Z_{p, q, r}^{(3)}\right)$ be the set of all 3-edges $v_{a}-v_{b}-v_{c}$ such that $v_{a} \in G_{0}, v_{b} \in G_{1}$ and $v_{c} \in G_{2}$. Note that $\left|\mathcal{E}\left(Z_{p, q, r}^{(3)}\right)\right|=p q r$. A necessary condition for the existence of a t-cycle decomposition of $Z_{p, q, r}^{(3)}$ is that $t \mid p q r$.
Lemma 2.1. If $t \geq 4$ is an even integer, then $Z_{1, t, t}^{(3)}$ admits a t-cycle decomposition.
To prove this lemma, we need the following theorem.
Theorem 2.1. [9]. Let P_{k+1} be the path of length k, and let $k, m, n \in \mathbb{N}$ with m, n even and $m \geq n$. The complete bipartite graph $K_{m, n}$ has a P_{k+1}-decomposition if and only if $m \geq\left\lceil\frac{k+1}{2}\right\rceil, n \geq\left\lceil\frac{k}{2}\right\rceil$ and $m n \equiv 0(\bmod k)$.
. Proof of Lemma 2.1. Consider the complete bipartite graph $K_{t, t}$ with bipartition $\left(\left[v_{1}, v_{t}\right],\left[v_{t+1}, v_{2 t}\right]\right)$. By Theorem 2.1, we have a decomposition, say \mathscr{F}, of $K_{t, t}$ into paths of length t. For each path $\left(x_{1}, x_{2}, \ldots, x_{t}, x_{t+1}\right)$ of length t in \mathscr{F}, consider the corresponding t-cycle of the form

$$
\left(v_{0}-x_{1}-x_{2}, x_{2}-v_{0}-x_{3}, x_{3}-v_{0}-x_{4}, x_{4}-v_{0}-x_{5}, \ldots, x_{t-1}-v_{0}-x_{t}, x_{t}-x_{t+1}-v_{0}\right)
$$

in $Z_{1, t, t}^{(3)}$. This collection of t-cycles yields a decomposition of $Z_{1, t, t}^{(3)}$ into t-cycles.
Corollary 2.1. If $t \geq 4$ is an even integer and if $p \geq 1$ is an integer, then $Z_{p, t, t}^{(3)}$ decomposes into t-cycles. In particular, if $t \geq 4$ is an even integer, then $Z_{t, t, t}^{(3)}$ decomposes into t-cycles.
Proof. We may think of $Z_{p, t, t}^{(3)}$ as an edge-disjoint union of p copies of $Z_{1, t, t}^{(3)}$. Apply Lemma 2.1 to each one of these p copies.
Lemma 2.2. If $t \geq 4$ is an even integer, then $Z_{1,2 t, 2 t}^{(3)}$ decomposes into t-cycles.
Proof. To see this, we write $Z_{1,2 t, 2 t}^{(3)}$ as an edge-disjoint union of four copies of $Z_{1, t, t}^{(3)}$ with vertex set grouped into

$$
\begin{aligned}
\left(G_{0}, G_{1}, G_{2}\right) & =\left(\left\{v_{0}\right\},\left[v_{1}, v_{t}\right],\left[v_{2 t+1}, v_{3 t}\right]\right), \\
\left(G_{0}, G_{1}, G_{2}\right) & =\left(\left\{v_{0}\right\},\left[v_{1}, v_{t}\right],\left[v_{3 t+1}, v_{4 t}\right),\right. \\
\left(G_{0}, G_{1}, G_{2}\right) & =\left(\left\{v_{0}\right\},\left[v_{t+1}, v_{2 t}\right],\left[v_{2 t+1}, v_{3 t}\right]\right), \\
\left(G_{0}, G_{1}, G_{2}\right) & =\left(\left\{v_{0}\right\},\left[v_{t+1}, v_{2 t}\right],\left[v_{3 t+1}, v_{4 t}\right]\right),
\end{aligned}
$$

for the first, second, third and fourth copy respectively. Now apply Lemma 2.1 to each copy of $Z_{1, t, t}^{(3)}$.
Lemma 2.3. If $t \geq 4$ is an even integer and if $p \geq 1$ is an integer, then $Z_{p, 2 t, 2 t}^{(3)}$ decomposes into t-cycles. In particular, if $t \geq 4$ is an even integer, then $Z_{2 t, 2 t, 2 t}^{(3)}$ decomposes into t-cycles.
Proof. We may think of $Z_{p, 2 t, 2 t}^{(3)}$ as an edge-disjoint union of p copies of $Z_{1,2 t, 2 t}^{(3)}$. Apply Lemma 2.1 to each one of these p copies.

2.2 The hypergraph $K_{m, n}^{(3)}$

Define the 3 -uniform hypergraph $K_{m, n}^{(3)}$ of order $m+n$ as follows. Let $V\left(K_{m, n}^{(3)}\right)=$ $\left\{v_{i}: i \in \mathbb{Z}_{m+n}\right\}$, grouped as $G_{0}=\left[v_{0}, v_{m-1}\right]$ and $G_{1}=\left[v_{m}, v_{m+n-1}\right]$. Let $\mathcal{E}\left(K_{m, n}^{(3)}\right)$ be the set of all 3 -edges $v_{a}-v_{b}-v_{c}$ such that v_{a}, v_{b} and v_{c} are not all from the same set G_{i}, $i \in\{0,1\}$; that is, for each $i \in\{0,1\},\left\{v_{a}, v_{b}, v_{c}\right\} \cap G_{i} \neq \emptyset$. Note that $\left|\mathcal{E}\left(K_{m, n}^{(3)}\right)\right|=$ $\frac{m n(m+n-2)}{2}$. A necessary condition for the existence of a t-cycle decomposition of $K_{m, n}^{(3)}$ is that $2 t \mid m n(m+n-2)$.

Lemma 2.4. If $t \geq 4$ is an even integer, then $K_{1,2 t}^{(3)}$ decomposes into t-cycles.
Proof. Consider the hypergraph $K_{1,2 t}^{(3)}$ (respectively, its spanning subhypergraph $\left.Z_{1, t, t}^{(3)}\right)$ with vertex set $\left[v_{0}, v_{2 t}\right]$ which is grouped into $\left\{v_{0}\right\}$ and $\left[v_{1}, v_{2 t}\right]$ (respectively, $\left\{v_{0}\right\},\left[v_{1}, v_{t}\right]$ and $\left[v_{t+1}, v_{2 t}\right]$. For convenience, relabel the vertices v_{i} and $v_{t+i}, i \in[1, t]$ by x_{i-1} and y_{i-1}, respectively. The subscripts of the vertices x and y are taken modulo t.

Consider the complete bipartite graph $K_{t, t}$ with bipartition $\left(\left[x_{0}, x_{t-1}\right]\right.$, $\left.\left[y_{0}, y_{t-1}\right]\right)$. Let

$$
P^{0}=\left(x_{0}, y_{t-1}, x_{1}, y_{t-2}, x_{2}, y_{t-3}, \ldots, y_{\frac{t}{2}+2}, x_{\frac{t}{2}-2}, y_{\frac{t}{2}+1}, x_{\frac{t}{2}-1}, y_{\frac{t}{2}}, x_{\frac{t}{2}}\right)
$$

(Observe that, if we denote the length of the edge $x_{i} y_{j}$ as $(j-i)(\bmod t)$, then the lengths of the edges of P^{0} in order are: $t-1, t-2, t-3, \ldots, 1,0$.) Let $\mathscr{F}=$ $\left\{P^{0}, P^{1}, P^{2}, \ldots, P^{t-1}\right\}$, where for each $i \in[1, t-1], P^{i}$ is obtained from P^{i-1} by adding 1 and reducing the subscripts modulo t in each of the vertices of P^{i-1}. By the above observation, \mathscr{F} is a decomposition of $K_{t, t}$ into paths of length t.

Using P^{0}, obtain a t-cycle C^{0} in $Z_{1, t, t}^{(3)}$ as shown below:

$$
\begin{aligned}
C^{0}= & \left(v_{0}-x_{0}-y_{t-1}, y_{t-1}-v_{0}-x_{1}, x_{1}-v_{0}-y_{t-2}, y_{t-2}-v_{0}-x_{2}, x_{2}-v_{0}-y_{t-3}, \ldots,\right. \\
& \left.y_{\frac{t}{2}+2}-v_{0}-x_{\frac{t}{2}-2}, x_{\frac{t}{2}-2-} v_{0}-y_{\frac{t}{2}+1}, y_{\frac{t}{2}+1}-v_{0}-x_{\frac{t}{2}-1}, x_{\frac{t}{2}-1}-v_{0}-y_{\frac{t}{2}}, y_{\frac{t}{2}}-x_{\frac{t}{2}-v_{0}}\right) .
\end{aligned}
$$

Similarly, for each $i \in[1, t-1]$, using P^{i}, obtain a t-cycle C^{i} in $Z_{1, t, t}^{(3)}$. As \mathscr{F} is a decomposition of $K_{t, t}$ into paths of length $t,\left\{C^{0}, C^{1}, C^{2}, \ldots, C^{t-1}\right\}$ is a t-cycle decomposition of $Z_{1, t, t}^{(3)}$.

As $Z_{1, t, t}^{(3)}$ is a spanning subhypergraph of $K_{1,2 t}^{(3)}$, to find a t-cycle decomposition of $K_{1,2 t}^{(3)}$, it is enough to find a t-cycle decomposition of $K_{1,2 t}^{(3)} \backslash \mathcal{E}\left(\bigcup_{i=1}^{t-1} C^{i}\right)$.

Consider two disjoint copies of K_{t}, say K_{t}^{\prime} and $K_{t}^{\prime \prime}$, with vertex sets $\left[x_{0}, x_{t-1}\right]$ and [y_{0}, y_{t-1}], respectively. As t is even, each of K_{t}^{\prime} and $K_{t}^{\prime \prime}$ is Hamilton path decomposable. For $i \in\left[1, \frac{t}{2}\right]$, let

$$
\begin{aligned}
P_{i}^{1} & =\left(x_{i-1}, x_{i}, x_{i-2}, x_{i+1}, x_{i-3}, x_{i+2}, \ldots, x_{\frac{t}{2}+1+i}, x_{\frac{t}{2}-2+i}, x_{\frac{t}{2}+i}, x_{\frac{t}{2}-1+i}\right) \\
\text { and } P_{i}^{2} & =\left(y_{i-1}, y_{i}, y_{i-2}, y_{i+1}, y_{i-3}, y_{i+2}, \ldots, y_{\frac{t}{2}+1+i}, y_{\frac{t}{2}-2+i}, y_{\frac{t}{2}+i}, y_{\frac{t}{2}-1+i}\right) .
\end{aligned}
$$

Then, clearly, $\left\{P_{i}^{1}: i \in\left[1, \frac{t}{2}\right]\right\}$ and $\left\{P_{i}^{2}: i \in\left[1, \frac{t}{2}\right]\right\}$ are, respectively, decompositions of K_{t}^{\prime} and $K_{t}^{\prime \prime}$ into paths of length $t-1$.

For each $i \in\left[1, \frac{t}{2}\right]$, let

$$
\begin{gathered}
P_{i}^{\prime}=\left(x_{i-1}-v_{0}-x_{i}, x_{i}-v_{0}-x_{i-2}, x_{i-2}-v_{0}-x_{i+1}, x_{i+1}-v_{0}-x_{i-3}, x_{i-3}-v_{0}-x_{i+2},\right. \\
\left.\ldots, x_{\frac{t}{2}+1+i}-v_{0}-x_{\frac{t}{2}-2+i}, i x_{\frac{t}{2}-2+i}-v_{0}-x_{\frac{t}{2}+i}, x_{\frac{t}{2}+i}-v_{0}-x_{\frac{t}{2}-1+i}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
P_{i}^{\prime \prime}= & \left(y_{i-1}-v_{0}-y_{i}, y_{i}-v_{0}-y_{i-2}, y_{i-2}-v_{0}-y_{i+1}, y_{i+1}-v_{0}-y_{i-3}, y_{i-3}-v_{0}-y_{i+2}\right. \\
& \left.\ldots, y_{\frac{t}{2}+1+i}-v_{0}-y_{\frac{t}{2}-2+i}, y_{\frac{t}{2}-2+i}-v_{0}-y_{\frac{t}{2}+i}, y_{\frac{t}{2}+i}-v_{0}-y_{\frac{t}{2}-1+i}\right),
\end{aligned}
$$

where P_{i}^{\prime} and $P_{i}^{\prime \prime}$ are paths of length $t-1$ in $K_{1,2 t}^{(3)}$ obtained from P_{i}^{1} and P_{i}^{2}, respectively. This results in a decomposition $\left\{P_{i}^{\prime}, P_{i}^{\prime \prime}: i \in\left[1, \frac{t}{2}\right]\right\}$ of $K_{1,2 t}^{(3)} \backslash \mathcal{E}\left(C^{0} \cup C^{1} \cup\right.$ $\cdots \cup C^{t-1}$) into paths of length $t-1$.

Consider P_{1}^{\prime}. By rewriting the last edge $x_{\frac{t}{2}+1}-v_{0}-x_{\frac{t}{2}}$ of P_{1}^{\prime} as $x_{\frac{t}{2}+1}-x_{\frac{t}{2}}-v_{0}$ and adding, at the end, the first edge $v_{0}-x_{0}-y_{t-1}=v_{0}-y_{t-1}-x_{0}$ of C^{0}, we obtain the t-cycle

$$
\begin{aligned}
C_{1}^{\prime}= & \left(x_{0}-v_{0}-x_{1}, x_{1}-v_{0}-x_{t-1}, x_{t-1}-v_{0}-x_{2}, x_{2}-v_{0}-x_{t-2}, x_{t-2}-v_{0}-x_{3}\right. \\
& \left.\ldots, x_{\frac{t}{2}+2}-v_{0}-x_{\frac{t}{2}-1}, x_{\frac{t}{2}-1}-v_{0}-x_{\frac{t}{2}+1}, x_{\frac{t}{2}+1}-x_{\frac{t}{2}-v_{0}}, v_{0}-y_{t-1}-x_{0}\right) .
\end{aligned}
$$

Now consider P_{i}^{\prime}, for $i \neq 1$. By rewriting the last edge $x_{\frac{t}{2}+i} i^{-} v_{0}-x_{\frac{t}{2}-1+i}$ of P_{i}^{\prime} as $x_{\frac{t}{2}+i}{ }^{-}$ $x_{\frac{t}{2}-1+i}-v_{0}$ and adding, at the end, the $(2 i-1)^{\text {st }}$ edge $x_{i-1}-v_{0}-y_{t-i}=v_{0}-y_{t-i}-x_{i-1}$ of C^{0}, we obtain the t-cycle

$$
\begin{aligned}
C_{i}^{\prime}= & \left(x_{i-1}-v_{0}-x_{i}, x_{i}-v_{0}-x_{i-2}, x_{i-2}-v_{0}-x_{i+1}, x_{i+1}-v_{0}-x_{i-3}, x_{i-3}-v_{0}-x_{i+2},\right. \\
& \left.\ldots, x_{\frac{t}{2}+1+i}-v_{0}-x_{\frac{t}{2}-2+i}, x_{\frac{t}{2}-2+i}-v_{0}-x_{\frac{t}{2}+i}, x_{\frac{t}{2}+i}-x_{\frac{t}{2}-1+i}-v_{0}, v_{0}-y_{t-i}-x_{i-1}\right) .
\end{aligned}
$$

Similarly, by rewriting the first edge $y_{0}-v_{0}-y_{1}$ of $P_{1}^{\prime \prime}$ as $v_{0}-y_{0}-y_{1}$ and adding, at the

$$
\begin{aligned}
C_{1}^{\prime \prime}= & \left(v_{0}-y_{0}-y_{1}, y_{1}-v_{0}-y_{t-1}, y_{t-1}-v_{0}-y_{2}, y_{2}-v_{0}-y_{t-2}, y_{t-2}-v_{0}-y_{3},\right. \\
& \left.\ldots, y_{\frac{t}{2}+2}-v_{0}-y_{\frac{t}{2}-1}, y_{\frac{t}{2}-1}-v_{0}-y_{\frac{t}{2}+1}, y_{\frac{t}{2}+1}-v_{0}-y_{\frac{t}{2}}, y_{\frac{t}{2}}-x_{\frac{t}{2}-v_{0}}\right) ;
\end{aligned}
$$

and, for $i \neq 1$, by rewriting the first edge $y_{i-1}-v_{0}-y_{i}$ of $P_{i}^{\prime \prime}$ as $v_{0}-y_{i-1}-y_{i}$ and adding, at the end, the $(t-2 i+2)^{\text {nd }}$ edge, i.e., the $2\left(\frac{t}{2}-i+1\right)^{\text {st }}$ edge, $y_{t-\left(\frac{t}{2}-1+i\right)^{-} v_{0^{-}}}$ $x_{\frac{t}{2}-i+1}=y_{\frac{t}{2}-1+i}-v_{0}-x_{\frac{t}{2}-i+1}=y_{\frac{t}{2}-1+i}-x_{\frac{t}{2}-i+1}-v_{0}$ of C^{0}, we obtain the t-cycle

$$
\begin{aligned}
C_{i}^{\prime \prime}= & \left(v_{0}-y_{i-1}-y_{i}, y_{i}-v_{0}-y_{i-2}, y_{i-2}-v_{0}-y_{i+1}, y_{i+1}-v_{0}-y_{i-3}, y_{i-3}-v_{0}-y_{i+2}\right. \\
& \left.\ldots, y_{\frac{t}{2}+1+i}-v_{0}-y_{\frac{t}{2}-2+i}, y_{\frac{t}{2}-2+i}-v_{0}-y_{\frac{t}{2}+i}, y_{\frac{t}{2}+i}-v_{0}-y_{\frac{t}{2}-1+i}, y_{\frac{t}{2}-1+i}-x_{\frac{t}{2}-i+1}-v_{0}\right) .
\end{aligned}
$$

The collection of these t-cycles $\left\{C_{i}^{\prime}: i \in\left[1, \frac{t}{2}\right]\right\} \cup\left\{C_{i}^{\prime \prime}: i \in\left[1, \frac{t}{2}\right]\right\}$ yields a decomposition of $K_{1,2 t}^{(3)} \backslash \mathcal{E}\left(C^{1} \cup C^{2} \cup \cdots \cup C^{t-1}\right)$.

Lemma 2.5. If $t \geq 4$ is an even integer, then $K_{2, t}^{(3)}$ decomposes into t-cycles.
Proof. Consider $K_{2, t}^{(3)}$ where its vertex set is grouped into $\left\{v_{0}, v_{1}\right\}$ and $\left[v_{2}, v_{t+1}\right]$. For convenience, relabel the vertex $v_{i}, i \in[2, t+1]$, by u_{i-2}, where the subscripts of u are taken modulo t. The complete graph K_{t} with vertex set $\left[u_{0}, u_{t-1}\right.$] is Hamilton path decomposable, because t is even. Let $\left\{P_{j}: j \in\left[0, \frac{t}{2}-1\right]\right\}$ be the Hamilton path decomposition of K_{t}, where

$$
P_{j}=\left(u_{j}, u_{1+j}, u_{t-1+j}, u_{2+j}, u_{t-2+j}, u_{3+j}, \ldots, u_{\frac{t}{2}+2+j}, u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+j}\right)
$$

For each $j \in\left[0, \frac{t}{2}-1\right]$, using P_{j}, obtain the paths

$$
\begin{aligned}
P_{j}^{0}= & \left(u_{j}-v_{0}-u_{1+j}, u_{1+j}-v_{0}-u_{t-1+j}, u_{t-1+j}-v_{0}-u_{2+j}, u_{2+j}-v_{0}-u_{t-2+j}, u_{t-2+j}-v_{0}-u_{3+j},\right. \\
& \left.\ldots, u_{\frac{t}{2}+2+j}-v_{0}-u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}-1+j}-v_{0}-u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+1+j}-v_{0}-u_{\frac{t}{2}+j}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
P_{j}^{1}= & \left(u_{j}-v_{1}-u_{1+j}, u_{1+j}-v_{1}-u_{t-1+j}, u_{t-1+j}-v_{1}-u_{2+j}, u_{2+j}-v_{1}-u_{t-2+j},\right. \\
& \left.u_{t-2+j}-v_{1}-u_{3+j}, \ldots, u_{\frac{t}{2}+2+j}-v_{1}-u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}-1+j}-v_{1}-u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+1+j}-v_{1}-u_{\frac{t}{2}+j}\right)
\end{aligned}
$$

of length $t-1$ in $K_{2, t}^{(3)}$. This results in the decomposition $\left\{P_{j}^{0}: j \in\left[0, \frac{t}{2}-1\right]\right\} \cup\left\{P_{j}^{1}\right.$: $\left.j \in\left[0, \frac{t}{2}-1\right]\right\}$ of $K_{2, t}^{(3)} \backslash\left\{v_{0}-v_{1}-u_{j}: j \in[0, t-1]\right\}$ into paths of length $t-1$.

Consider P_{j}^{0}. By rewriting the last edge $u_{\frac{t}{2}+1+j}-v_{0}-u_{\frac{t}{2}+j}$ of P_{j}^{0} as $u_{\frac{t}{2}+1+j}-u_{\frac{t}{2}+j}-v_{0}$ and adding, at the end, the edge $v_{0}-v_{1}-u_{j}$, we obtain the t-cycle

$$
\begin{aligned}
C_{j}^{0}= & \left(u_{j}-v_{0}-u_{1+j}, u_{1+j}-v_{0}-u_{t-1+j}, u_{t-1+j}-v_{0}-u_{2+j}, u_{2+j}-v_{0}-u_{t-2+j}, u_{t-2+j}-v_{0}-u_{3+j}, \ldots,\right. \\
& \left.u_{\frac{t}{2}+2+j}-v_{0}-u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}-1+j} i-v_{0}-u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+1+j}-u_{\frac{t}{2}+j}-v_{0}, v_{0}-v_{1}-u_{j}\right) .
\end{aligned}
$$

Next consider P_{j}^{1}. By rewriting the first edge $u_{j}-v_{1}-u_{1+j}$ of P_{j}^{1} as $v_{1}-u_{j}-u_{1+j}$ and adding, at the end, the edge $v_{0}-v_{1}-u_{\frac{t}{2}+j}=u_{\frac{t}{2}+j}-v_{0}-v_{1}$, we obtain the t-cycle

$$
\begin{aligned}
C_{j}^{1}= & \left(v_{1}-u_{j}-u_{1+j}, u_{1+j}-v_{1}-u_{t-1+j}, u_{t-1+j}-v_{1}-u_{2+j}, u_{2+j}-v_{1}-u_{t-2+j}, u_{t-2+j}-v_{1}-u_{3+j},\right. \\
& \left.\ldots, u_{\frac{t}{2}+2+j}-v_{1}-u_{\frac{t}{2}-1+j}, u_{\frac{t}{2}-1+j}-v_{1}-u_{\frac{t}{2}+1+j}, u_{\frac{t}{2}+1+j}-v_{1}-u_{\frac{t}{2}+j}, u_{\frac{t}{2}+j}-v_{0}-v_{1}\right) .
\end{aligned}
$$

The collection of these t-cycles $\left\{C_{j}^{0}: j \in\left[0, \frac{t}{2}-1\right]\right\} \cup\left\{C_{j}^{1}: j \in\left[0, \frac{t}{2}-1\right]\right\}$ yields a decomposition of $K_{2, t}^{(3)}$.

Lemma 2.6. If $t \geq 4$ is an even integer, then $K_{t, t}^{(3)}$ decomposes into t-cycles.
Proof. Consider $K_{t, t}^{(3)}$ with its vertex set grouped into $\left[v_{0}, v_{t-1}\right]$ and $\left[v_{t}, v_{2 t-1}\right]$. Let K_{t}^{\prime} and $K_{t}^{\prime \prime}$ be two disjoint copies of K_{t} with vertex sets $\left[v_{0}, v_{t-1}\right]$ and $\left[v_{t}, v_{2 t-1}\right]$, respectively. As t is even, each of K_{t}^{\prime} and $K_{t}^{\prime \prime}$ can be decomposed into i $\frac{t}{2}-1$ Hamilton cycles and a 1-factor. Denote by $H_{1}^{\prime} \oplus H_{2}^{\prime} \oplus \cdots \oplus H_{\frac{t}{2}-1}^{\prime} \oplus F^{\prime}$ and $H_{1}^{\prime \prime} \oplus$ $H_{2}^{\prime \prime} \oplus \cdots \oplus H_{\frac{t}{2}-1}^{\prime \prime} \oplus F^{\prime \prime}$, decompositions of K_{t}^{\prime} and $K_{t}^{\prime \prime}$, respectively, where, for each $i \in\left[1, \frac{t}{2}-1\right], H_{i}^{\prime}$ and $H_{i}^{\prime \prime}$ are Hamilton cycles and F^{\prime} and $F^{\prime \prime}$ are 1-factors.

Consider $H_{i}^{\prime}, i \in\left[1, \frac{t}{2}-1\right]$. If $H_{i}^{\prime}=\left(v_{i_{0}}, v_{i_{1}}, \ldots, v_{i_{t-1}}, v_{i_{0}}\right)$, where $i_{0}, i_{1}, \ldots, i_{t-1}$ is a permutation of $0,1, \ldots, t-1$, then for each $r \in[t, 2 t-1]$, obtain the t-cycle $\left(v_{i_{0}}-v_{r}-v_{i_{1}}, v_{i_{1}}-v_{r}-v_{i_{2}}, v_{i_{2}-v_{r}-v_{i_{3}}}, \ldots, v_{i_{t-2}-v_{r}-v_{i_{t-1}}}, v_{i_{t-1}}-v_{r}-v_{i_{0}}\right)$ in $K_{t, t}^{(3)}$.

Similarly, for each $j \in\left[1, \frac{t}{2}-1\right]$ and $s \in[0, t-1]$, using the Hamilton cycle $H_{j}^{\prime \prime}$ and the vertex v_{s}, obtain a t-cycle in $K_{t, t}^{(3)}$ as follows: if $H_{j}^{\prime \prime}=\left(v_{j_{0}}, v_{j_{1}}, \ldots, v_{j_{t-1}}, v_{j_{0}}\right)$, where $j_{0}, j_{1}, \ldots, j_{t-1}$ is a permutation of $t, t+1, \ldots, 2 t-1$, then the t-cycle is:

$$
\left(v_{j_{0}}-v_{s}-v_{j_{1}}, v_{j_{1}}-v_{s}-v_{j_{2}}, i v_{j_{2}-}-v_{s}-v_{j_{3}}, \ldots, v_{j_{t-2}-}-v_{s}-v_{j_{t-1}}, v_{j_{t-1}-}-v_{s}-v_{j_{0}}\right) .
$$

This produces $2\left(\frac{t}{2}-1\right) t$ edge disjoint t-cycles in $K_{t, t}^{(3)}$.
If necessary, after relabeling the vertices, let $F^{\prime}=\left\{v_{0} v_{1}, v_{2} v_{3}, \ldots, v_{t-2} v_{t-1}\right\}$ and $F^{\prime \prime}=\left\{v_{t} v_{t+1}, v_{t+2} v_{t+3}, \ldots, v_{2 t-2} v_{2 t-1}\right\}$. For convenience, relabel the vertex $v_{t+i}, i \in$ [$0, t-1$], by u_{i}, where subscripts of u are taken modulo t. In this notation, $F^{\prime \prime}=$ $\left\{u_{0} u_{1}, u_{2} u_{3}, \ldots, u_{t-2} u_{t-1}\right\}$.

To complete the proof, we have to find t edge disjoint t-cycles from the set

$$
\begin{aligned}
& \left\{v_{0}-v_{1}-u_{r}, v_{2}-v_{3}-u_{r}, \ldots, v_{t-2}-v_{t-1}-u_{r}: r \in[0, t-1]\right\} \\
& \quad \cup\left\{u_{0}-u_{1}-v_{s}, u_{2}-u_{3}-v_{s}, \ldots, u_{t-2}-u_{t-1}-v_{s}: s \in[0, t-1]\right\}
\end{aligned}
$$

of edges.
For each $i \in\left[0, \frac{t}{2}-1\right]$, let

$$
\begin{aligned}
C_{i}^{\prime}= & \left(v_{0}-v_{1}-u_{2 i}, u_{2 i}-u_{2 i+1}-v_{2},\right. \\
& v_{2}-v_{3}-u_{2 i+2}, u_{2 i+2}-u_{2 i+3}-v_{4}, \\
& v_{4}-v_{5}-u_{2 i+4}, u_{2 i+4}-u_{2 i+5}-v_{6}, \\
& \cdots, \\
& v_{t-4}-v_{t-3}-u_{2 i-4}, u_{2 i-4}-u_{2 i-3}-v_{t-2}, \\
& \left.v_{t-2}-v_{t-1}-u_{2 i-2}, u_{2 i-2}-u_{2 i-1}-v_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
C_{i}^{\prime \prime}= & \left(v_{1}-v_{0}-u_{2 i+1}, u_{2 i+1}-u_{2 i}-v_{t-1},\right. \\
& v_{t-1}-v_{t-2}-u_{2 i-1}, u_{2 i-1}-u_{2 i-2}-v_{t-3}, \\
& v_{t-3}-v_{t-4}-u_{2 i-3}, u_{2 i-3}-u_{2 i-4}-v_{t-5}, \\
& \ldots, \\
& v_{5}-v_{4}-u_{2 i+5}, u_{2 i+5^{-}}-u_{2 i+4}-v_{3}, \\
& \left.v_{3}-v_{2}-u_{2 i+3}, u_{2 i+3}-u_{2 i+2}-v_{1}\right) .
\end{aligned}
$$

Clearly, $\left\{C_{i}^{\prime}, C_{i}^{\prime \prime}: i \in\left[0, \frac{t}{2}-1\right]\right\}$ is the required collection of t edge-disjoint t-cycles, which completes the proof.
Lemma 2.7. If $t \geq 4$ is an even integer, then $K_{2 t, 2 t}^{(3)}$ decomposes into t-cycles.

Proof. Consider $K_{2 t, 2 t}^{(3)}$ with its vertex set grouped into [$v_{0}, v_{2 t-1}$] and [$v_{2 t}, v_{4 t-1}$]. Write $K_{2 t, 2 t}^{(3)}$ as an edge-disjoint union of eight subhypergraphs, out of which four are copies of $K_{t, t}^{(3)}$ with vertex sets grouped into
(i) $\left[v_{0}, v_{t-1}\right]$ and $\left[v_{2 t}, v_{3 t-1}\right]$,
(ii) $\left[v_{0}, v_{t-1}\right]$ and $\left[v_{3 t}, v_{4 t-1}\right]$,
(iii) $\left[v_{t}, v_{2 t-1}\right]$ and $\left[v_{2 t}, v_{3 t-1}\right]$, and
(iv) $\left[v_{t}, v_{2 t-1}\right]$ and $\left[v_{3 t}, v_{4 t-1}\right]$;
and the remaining four are copies of $Z_{t, t, t}^{(3)}$ with vertex sets grouped into
(i) $\left[v_{0}, v_{t-1}\right],\left[v_{t}, v_{2 t-1}\right]$ and $\left[v_{2 t}, v_{3 t-1}\right]$,
(ii) $\left[v_{0}, v_{t-1}\right],\left[v_{t}, v_{2 t-1}\right]$ and $\left[v_{3 t}, v_{4 t-1}\right]$,
(iii) $\left[v_{0}, v_{t-1}\right],\left[v_{2 t}, v_{3 t-1}\right]$ and $\left[v_{3 t}, v_{4 t-1}\right]$, and
(iv) $\left[v_{t}, v_{2 t-1}\right],\left[v_{2 t}, v_{3 t-1}\right]$ and $\left[v_{3 t}, v_{4 t-1}\right]$.

Since the hypergraphs $K_{t, t}^{(3)}$ and $Z_{t, t, t}^{(3)}$ are decomposable into t-cycles by Lemma 2.6 and Corollary 2.1, respectively, we have the required decomposition.

2.3 Decompositions of $K_{2 t+1}^{(3)}$ and $K_{t+2}^{(3)}$

A Hamilton cycle of a hypergraph \mathcal{H} on n vertices is a cycle of length n.
Theorem 2.2. $[1,2,10]$ If $n \equiv 1,2,4$ or $5(\bmod 6)$, then $K_{n}^{(3)}$ decomposes into Hamilton cycles.

Lemma 2.8. If $t \geq 4$ and $t \equiv 2$ or $4(\bmod 6)$, then $K_{2 t}^{(3)}$ decomposes into t-cycles.
Proof. By Theorem 2.2 and Lemma 2.6, $K_{t}^{(3)}$ and $K_{t, t}^{(3)}$ are, respectively, t-cycle decomposable, and hence so is $K_{2 t}^{(3)}=2 K_{t}^{(3)} \oplus K_{t, t}^{(3)}$.

Lemma 2.9. If $t \geq 4$ and $t \equiv 2$ or $4(\bmod 6)$, then $K_{2 t+1}^{(3)}$ decomposes into t-cycles.
Proof. By Lemmas 2.8 and 2.4, $K_{2 t}^{(3)}$ and $K_{1,2 t}^{(3)}$ are, respectively, t-cycle decomposable, and hence so is $K_{2 t+1}^{(3)}=K_{2 t}^{(3)} \oplus K_{1,2 t}^{(3)}$.

Lemma 2.10. If $t \geq 4$ and $t \equiv 2$ or $4(\bmod 6)$, then $K_{t+2}^{(3)}$ decomposes into t-cycles.
Proof. By Theorem 2.2 and Lemma 2.5, $K_{t}^{(3)}$ and $K_{2, t}^{(3)}$ are, respectively, t-cycle decomposable, and hence so is $K_{t+2}^{(3)}=K_{t}^{(3)} \oplus K_{2, t}^{(3)}$.

3 Proof of Theorem 1.1.

To prove Theorem 1.1, we consider three cases:
Case 1. $n \equiv 0(\bmod t)$.
Then $n=k t$ for some positive integer k. We may think of $K_{k t}^{(3)}$ as an edge-disjoint union of k copies of $K_{t}^{(3)}, \frac{k(k-1)}{2}$ copies of $K_{t, t}^{(3)}$ and $\frac{k(k-1)(k-2)}{6}$ copies of $Z_{t, t, t}^{(3)}$. That is,
$K_{k t}^{(3)}=\underbrace{K_{t}^{(3)} \oplus K_{t}^{(3)} \oplus \cdots \oplus K_{t}^{(3)}}_{k \text { times }} \oplus \underbrace{K_{t, t}^{(3)} \oplus K_{t, t}^{(3)} \oplus \cdots \oplus K_{t, t}^{(3)}}_{\frac{k(k-1)}{2} \text { times }} \oplus \underbrace{Z_{t, t, t}^{(3)} \oplus Z_{t, t, t}^{(3)} \oplus \cdots \oplus Z_{t, t, t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \text { times }}$.
As each of the hypergraphs $K_{t}^{(3)}, K_{t, t}^{(3)}$ and $Z_{t, t, t}^{(3)}$ is decomposable into t-cycles by Theorem 2.2, Lemma 2.6 and Corollary 2.1, respectively, we have the required decomposition.

Case 2. $n \equiv 2(\bmod t)$.
Then $n=k t+2$ for some positive integer k. We may think of $K_{k t+2}^{(3)}$ as an edge-disjoint union of k copies of $K_{t+2}^{(3)}, \frac{k(k-1)}{2}$ copies of $K_{t, t}^{(3)}, \frac{k(k-1)(k-2)}{6}$ copies of $Z_{t, t, t}^{(3)}$ and $k(k-1)$ copies of $Z_{1, t, t}^{(3)}$. That is, $K_{k t+2}^{(3)}=\underbrace{K_{t+2}^{(3)} \oplus K_{t+2}^{(3)} \oplus \cdots \oplus K_{t+2}^{(3)}}_{k \text { times }} \oplus$ $\underbrace{K_{t, t}^{(3)} \oplus K_{t, t}^{(3)} \oplus \cdots \oplus K_{t, t}^{(3)}}_{\frac{k(k-1)}{2} \text { times }} \oplus \underbrace{Z_{t, t, t}^{(3)} \oplus Z_{t, t, t}^{(3)} \oplus \cdots \oplus Z_{t, t, t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \text { times }} \oplus \underbrace{Z_{1, t, t}^{(3)} \oplus Z_{1, t, t}^{(3)} \oplus \cdots \oplus Z_{1, t, t}^{(3)}}_{\frac{k(k-1)}{2} \text { times }} \oplus$
$\underbrace{Z_{1, t, t}^{(3)} \oplus Z_{1, t, t}^{(3)} \oplus \cdots \oplus Z_{1, t, t}^{(3)}}_{\frac{k(k-1)}{2} \text { times }}$. As each of the hypergraphs $K_{t+2}^{(3)}, K_{t, t}^{(3)}, Z_{t, t, t}^{(3)}$ and $Z_{1, t, t}^{(3)}$ is
decomposable into t-cycles by Lemma 2.10, Lemma 2.6, Corollary 2.1 and Lemma 2.1, respectively, we have the required decomposition.

Case 3. $n \equiv 1(\bmod 2 t)$.
Then $n=2 k t+1$ for some positive integer k. We may think of $K_{2 k t+1}^{(3)}$ as an edgedisjoint union of k copies of $K_{2 t+1}^{(3)}, \frac{k(k-1)}{2}$ copies of $K_{2 t, 2 t}^{(3)}, \frac{k(k-1)(k-2)}{6}$ copies of $Z_{2 t, 2 t, 2 t}^{(3)}$ and $\frac{k(k-1)}{2}$ copies of $Z_{1,2 t, 2 t}^{(3)}$. That is,

$$
\begin{aligned}
K_{2 k t+1}^{(3)}= & \underbrace{K_{2 t+1}^{(3)} \oplus K_{2 t+1}^{(3)} \oplus \cdots \oplus K_{2 t+1}^{(3)}}_{k \text { times }} \oplus \underbrace{K_{2 t, 2 t}^{(3)} \oplus K_{2 t, 2 t}^{(3)} \oplus \cdots \oplus K_{2 t, 2 t}^{(3)}}_{\frac{k(k-1)}{2} \text { times }} \\
& \oplus \underbrace{Z_{2 t, 2 t, 2 t}^{(3)} \oplus Z_{2 t, 2 t, 2 t}^{(3)} \oplus \cdots \oplus Z_{2 t, 2 t, 2 t}^{(3)}}_{\frac{k(k-1)(k-2)}{6} \text { times }} \oplus \underbrace{Z_{1,2 t, 2 t}^{(3)} \oplus Z_{1,2 t, 2 t}^{(3)} \oplus \cdots \oplus Z_{1,2 t, 2 t}^{(3)}}_{\frac{k(k-1)}{2} \text { times }}
\end{aligned}
$$

As each of the hypergraphs $K_{2 t+1}^{(3)}, K_{2 t, 2 t}^{(3)}, Z_{2 t, 2 t, 2 t}^{(3)}$ and $Z_{1,2 t, 2 t}^{(3)}$ is decomposable into t-cycles by Lemmas 2.9, 2.7, 2.3 and 2.2, respectively, we have the required decomposition.

Among even t, consider those t of the form 2^{ℓ}, where $\ell \geq 2$. Observe that $2^{\ell} \left\lvert\,\binom{ n}{3}\right.$ if and only if $2^{\ell+1} \mid(n-1)$ or $2^{\ell+1} \mid n(n-2)$. But $2^{\ell+1} \mid n(n-2)$ if and only if $2^{\ell} \mid n$ or $2^{\ell} \mid(n-2)$, and hence $2^{\ell} \left\lvert\,\binom{ n}{3}\right.$ if and only if $2^{\ell} \mid(n-2)$ or $2^{\ell+1} \mid(n-1)$ or $2^{\ell} \mid n$.

From the above necessary condition and Theorem 1.1 with $t=2^{\ell}$, we have the following.

Corollary 3.1. If $n \geq 2^{\ell}$ and $\ell \geq 2$, then $K_{n}^{(3)}$ has a 2^{ℓ}-cycle decomposition if and only if $n \equiv 0\left(\bmod 2^{\ell}\right), 2\left(\bmod 2^{\ell}\right)$ or $1\left(\bmod 2^{\ell+1}\right)$.

Taking $\ell=2$, we have
Corollary 3.2. [4] If $n \geq 4$, then $K_{n}^{(3)}$ has a 4-cycle decomposition if and only if $n \equiv 0(\bmod 4), 2(\bmod 4)$ or $1(\bmod 8)$.

Acknowledgements

We would like to thank the reviewers for their valuable suggestions which improved the presentation of the article.

References

[1] J. C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978), 21-28.
[2] J. C. Bermond, A. Germa, M. C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, in Problèmes combinatoires et théorie des graphes, (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 39-43; Colloq. Internat. CNRS, 260, CNRS, Paris, 1978.
[3] D. Bryant, S. Herke, B. Maenhaut and W. Wannasit, Decompositions of complete 3 -uniform hypergraphs into small 3 -uniform hypergraphs, Australas. J. Combin. 60(2) (2014), 227-254.
[4] H. Jordon and G. Newkirk, 4-Cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 71(2) (2018), 312-323.
[5] D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A 126 (2014), 128-135.
[6] R. Lakshmi and T. Poovaragavan, Decompositions of complete 3-uniform hypergraphs into cycles of constant prime length, Opuscula Math. 40(4) (2020), 509-516.
[7] R. Lakshmi and T. Poovaragavan, 6-Cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 80(1) (2021), 79-88.
[8] P. Petecki, On cyclic hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math. 325 (2014), 74-76.
[9] M. Truszczyǹski, Note on the decomposition of $\lambda K_{m, n}\left(\lambda K_{m, n}^{*}\right)$ into paths, Discrete Math. 55 (1985), 89-96.
[10] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, i Discrete Math. 132 (1994), 333-348.
(Received 17 Dec 2021; revised 16 Aug 2022)

[^0]: * Also at: Department of Mathematics, Dharumapuram Gnanambigai Government Arts College for Women, Mayiladuthurai-609 001, India.

