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Abstract

Bulutoglu and Ryan [Australas. J. Combin. 70 (2018), 362–385] developed
the concept of OD-equivalence of 2-symbol orthogonal arrays (OAs) that
captures the symmetries present in the even-strength cases that cannot
be captured by array isomorphism. In this paper, we improve upon the
classification results up to isomorphism of Stufken and Tang [Ann. Stat.
35 (2007), 793–814] by classifying all non-OD-equivalent 2-symbol OAs
of even-strength t with t + 2 columns and index λ. The classification
results up to OD-equivalence that we obtain are significantly simpler
than the classification results up to isomorphism of Stufken and Tang in
the aforementioned paper.

1 Introduction

Throughout the paper let [n] = {1, . . . , n}. We first define the concept of an orthog-
onal array (OA).

Definition 1.1. Let λ ≥ 1, s ≥ 2, k ≥ 1, t ≥ 1 be integers, and t ∈ [k]. A λst × k
array D whose entries are symbols from {l1, . . . , ls} is an orthogonal array of strength
t and index λ, denoted by OA(λst, k, s, t), if each of the st symbol combinations from
{l1, . . . , ls}t appears λ times in every λst × t subarray of D.

Each of the N !k!(s!)k operations that involve permuting rows, columns and the
symbols within each column of an s-symbol N × k array is called an isomorphism
operation. Two arrays D1 and D2 are isomorphic if D2 can be obtained from D1 by
applying a sequence of isomorphism operations. Each isomorphism operation maps
an OA(λst, k, s, t) to an OA(λst, k, s, t).
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Classification of OAs up to isomorphism in general is a challenging problem.
Recently, there has been a renewed interest in classifying OAs [2, 4, 5]. However, these
works make heavy use of computers. On the other hand, Yamamato et al. [8] were the
first to analytically classify all OA(λ2t, k, 2, t) for k = t+1, t+2 up to permutations
of columns. Stufken and Tang [7] strengthened the results in [8] by classifying all
non-isomorphic OA(λ2t, t + 2, 2, t) analytically. Their method of classification used
J-characteristics for 2-symbol arrays.

For an N × k array D = [d1 · · · dk] with symbols from {−1, 1}, Bulutoglu and
Ryan [2] defined the column operation Ri on D by

RiD =
[
d1 � di · · · di−1 � di di di+1 � di · · · dk � di

]
, (1.1)

and proved that each Ri maps an OA(λ2t, k, 2, t) to an OA(λ2t, k, 2, t) if t is even.
Each transformation that involves a column operation Ri and/or an isomorphism
operation is called an OD-equivalence operation [3]. Hence, for even t, each OD-
equivalence operation maps an OA(λ2t, k, 2, t) to an OA(λ2t, k, 2, t).

Two arrays D1 and D2 with symbols from {−1, 1} are OD-equivalent if D2 can be
obtained from D1 by applying a sequence of OD-equivalence operations [2]. Clearly,
if D1 and D2 are isomorphic arrays, then D1 and D2 are OD-equivalent. However,
D1 and D2 may be OD-equivalent without being isomorphic [2].

A set of non-OD-equivalent OA(N, k, 2, t) can be used to generate a set of all
non-isomorphic OA(N, k, 2, t) [2]. In fact, Bulutoglu and Ryan [2] classified all non-
isomorphic OA(160, k, 2, 4) and OA(176, k, 2, 4) for k = 5, 6, . . . , 10 by first classifying
each up to OD-equivalence. Also, it would not have been possible to obtain the classi-
fication results up to isomorphism in Bulutoglu and Ryan [2] without first classifying
up to OD-equivalence. Furthermore, by applying OD-equivalence with the meth-
ods in Geyer et al. [3] we have found 83 non-OD-equivalent OA(192, 9, 2, 4) after 6
months of CPU time on a 2.1 GHz processor. However, this is not a complete clas-
sification of all non-OD-equivalent OA(192, 9, 2, 4). The OA(192, 9, 2, 4) is currently
the smallest OA(N, 9, 2, 4) that has not been completely classified yet. Methods in
Geyer et al. [3] that make heavy use of OD-equivalence bring a partial classification
of non-OD-equivalent OA(192, 9, 2, 4) within computational reach. Hence, classifying
all non-OD-equivalent OA(N, k, 2, t) is useful in solving the classification problem of
OA(N, k, 2, t) up to isomorphism. In this paper, we improve the results of Stufken
and Tang [7] by analytically classifying all non-OD-equivalent OA(λ2t, t + 2, 2, t)
when the strength t is even.

The paper is structured as follows. Section 2 defines J-characteristics of 2-symbol
arrays, and describes how OD-equivalence operations act on J-characteristics of such
arrays. Section 3 presents the main result. Section 4 discusses future research. In
the Appendix, we provide the theorems and lemmas from [7] that we use in Section 3
to establish the main result of the paper.
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2 J-characteristics and OD-equivalence

Throughout this section D will denote an N × k array with symbols from {−1, 1}.
For � ⊆ [k], let

r� = [r�1, . . . , r�k] ,

where

r�j =

{ −1 if j ∈ �,
1 otherwise.

Given an array D, let x� be the number of times r� appears as a row of D. The
frequency vector x of D is defined by

x = [x∅, x1, x2, x12, x3, . . . , x1...k]
� (2.1)

where xi1...ip is used for x{i1,...,ip}.

We now define the J-characteristics.

Definition 2.1. Let D = [dij ] be an array. For � ⊆ [k], let

J�(D) =
N∑
i=1

∏
j∈�

dij .

(For � = ∅, J�(D) := N .)

The J�(D) are called the J-characteristics ofD. Let Ji1...ir(D) denote J{i1,...,ir}(D);
then the J-vector of D is defined by

J = [J∅(D), J1(D), J2(D), J12(D), J3(D), . . . , J1...k(D)]� . (2.2)

We now establish the connection between the frequency vector and J-vector of an
array. A 2k full factorial array, with Yates ordering, is expressed by the 2k×k matrix

F =
[
r�∅ , r

�
1 , r

�
2 , r

�
12, r

�
3 , . . . , r

�
1...k

]�
,

where ri1...ip is the shorthand notation for r{i1,...,ip}. For j ∈ [k], let hj denote the jth
column of F. Then

F = [h1, . . . ,hk] .

The Hadamard product of z and v is

z� v = [z1v1, . . . , znvn]
�

for z,v ∈ {−1, 1}n. For � = {i1, . . . , ip} ⊆ [k], let

h� = hi1 � · · · � hip .
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Let
H = [h∅,h1,h2,h12,h3, . . . ,h1...k] , (2.3)

where hi1...ip is used for for h{i1,...,ip}. Then H is the 2k × 2k Sylvester Hadamard
matrix [6]. For � ⊆ [k], we have

J�(D) =
N∑
i=1

∏
j∈�

dij =
∑
u⊆[k]

∏
j∈�

rujxu =
∑
u⊆[k]

(h�)uxu = h�
� x.

This implies J = H�x. Since HH� = 2kI2k , where I2k is the 2k ×2k identity matrix,
we have the following fundamental result.

Lemma 2.2. Let x,J, and H be as in equations (2.1), (2.2), and (2.3). Then

x = 2−kHJ.

By Lemma 2.2, the J-vector of an array uniquely determines its frequency vector.
The following lemma determines all OA(λ2t, k, 2, t) in terms of their J-characteristics.

Lemma 2.3 (Stufken and Tang [7]). An array D is an OA(λ2t, k, 2, t) if and only
if J�(D) = 0 for all � ⊆ [k] such that |�| ∈ [t].

The following result is from Stufken and Tang [7] and its generalization in Bulu-
toglu and Kaziska [1].

Lemma 2.4. Let D be an OA(λ2t, k, 2, t) with k ≥ t+ 2. Then the following hold.

(i) For any � ⊆ [k], J�(D) = u�2
t for some integer u�.

(ii) For any � ⊆ [k] and index λ, we have u� ≡ λ
(|�|−1

t

)
(mod 2).

For isomorphism operations we have the following lemma from Geyer et al. [3].

Lemma 2.5. Let � ⊆ [k] be such that |�| > 0. Let g be an isomorphism operation
and gD be the array obtained after g is applied to D. Then

J�(gD) = ±J�′(D),

where |�′| = |�|.
The operations Ri act on the J-characteristics as follows, as shown in Geyer et

al. [3].

Lemma 2.6. Let � ⊆ [k] be such that |�| > 0. Let Ri be an OD-equivalence operation
as defined in equation (1.1), i ∈ [k]. Then

J�(RiD) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J�(D) if |�| is even and i /∈ �,

J�\{i}(D) if |�| is even and i ∈ �,

J�∪{i}(D) if |�| is odd and i /∈ �,

J�(D) if |�| is odd and i ∈ �.
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Unlike isomorphism operations, the Ri operations allow J-characteristics indexed
by � to be mapped to J-characteristics indexed by �′ with |�| �= |�′|. The Ri operations
are key to improving the results of Stufken and Tang [7].

Lemmas 2.5 and 2.6 from Geyer et al. [3] characterize the action of OD-equivalence
operations on the J-characteristics.

Lemma 2.7. Let � ⊆ [k] be such that |�| > 0. Let g be an OD-equivalence operation
and gD be the array obtained after g is applied to D. Then

J�(gD) = ±J�′(D)

for some �′ ⊆ [k], where

|�′| =
{ |�| or |�|+ 1 if |�| is odd,

|�| or |�| − 1 otherwise.

By using Lemma 2.7, Bulutoglu and Ryan [2] showed the following.

Theorem 2.8. Let D1 be an OA(λ2t, k, 2, t) with t ≥ 1. Then D2 is OD-equivalent
to D1 if and only if there exists an OD-equivalence operation g such that D2 = gD1

up to permutation of rows. Moreover, if D2 is OD-equivalent to D1, then D2 is an
OA(λ2t, k, 2, 2	t/2
).

By Theorem 2.8, if D is an OA(λ2t, k, 2, t) with even t, then any array OD-
equivalent to D is an OA(λ2t, k, 2, t).

3 Classification of even strength OA(λ2t, t+2, 2, t) up to OD-
equivalence

Let D be an OA(λ2t, t+2, 2, t). Since k = t+2, by Lemma 2.3, we need to consider
only k+1 coordinates of the J-vector of D. Let �j = [k] \ {k+1− j} for j ∈ [k] and
�k+1 = [k].

The following proposition was used to classify all non-isomorphic OA(λ2t, t +
2, 2, t) for even t.

Proposition 3.1 (Stufken and Tang [7]). When k = t + 2 is even, every OD-
equivalence class of OA(λ2t, t + 2, 2, t) contains a unique array D whose J-vector
satisfies either of the following conditions:

J�1(D) ≤ · · · ≤ J�k(D) ≤ −|J�k+1
(D)|, (3.1)

J�1(D) ≤ · · · ≤ J�k−1
(D) ≤ −|J�k(D)|, J�k+1

(D) < −|J�k(D)|. (3.2)

The following is our main lemma.

Lemma 3.2. When k = t+2 is even, every OD-equivalence class of OA(λ2t, t+2, 2, t)
contains a unique array D whose J-vector satisfies

J�1(D) ≤ · · · ≤ J�k(D) ≤ −|J�k+1
(D)|. (3.3)
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Proof. Suppose that D is the array whose J-vector satisfies inequalities (3.2). We
show there exists a unique OD-equivalent array to D whose J-vector satisfies in-
equalities (3.1). Let R1 be as defined in equation (1.1) and let D′ = R1D. By
Theorem 2.8, D′ is an OA(λ2t, t+ 2, 2, t) that is OD-equivalent to D. Furthermore,
by Lemma 2.6

J�k+1
(D′) = J�k(D), J�k(D

′) = J�k+1
(D), and J�j (D

′) = J�j(D)

for j ∈ [k − 1]. Then

J�1(D
′) ≤ · · · ≤ J�k−1

(D′) ≤ −|J�k+1
(D′)|, J�k(D

′) < −|J�k+1
(D′)|.

Hence, after applying an appropriate permutation to the columns of D′, we obtain
an OD-equivalent array D′′ whose J-vector satisfies inequalities (3.1). Then, by
Proposition 3.1, any J-vector of an OA(λ2t, t+ 2, 2, t) satisfying inequalities (3.3) is
unique and therefore the corresponding OA(λ2t, t+ 2, 2, t) is unique.

Lemma 3.2 allows the classification of non-OD-equivalent OA(λ2t, k, 2, t) by find-
ing solutions in only one case, namely under inequalities (3.3), whereas the classifica-
tion of non-isomorphic OA(λ2t, k, 2, t) requires finding all solutions in two mutually
exclusive cases, namely under either inequalities (3.1) or inequalities (3.2). This re-
duction in the number of cases that need to be searched significantly simplifies the
OA(λ2t, t+ 2, 2, t) classification problem.

Suppose that D is an OA(λ2t, k, 2, t) whose J-vector satisfies inequalities (3.3).
By Lemma 2.4, J�j(D) = uj2

t, j ∈ [k + 1]. Then

u1 ≤ · · · ≤ uk ≤ −|uk+1|. (3.4)

Lemma 3.3. Suppose that k = t+ 2, t is even, and λ is odd. Let

λ+ u1 + · · ·+ uk+1 = 4p, (3.5)

with p ∈ Z≥0, uj ∈ 2Z+ 1 such that |uj| ≤ λ− 2 for j ∈ [k + 1]. Then the following
hold.

(i) Each solution (u1, . . . , uk+1, p) to equation (3.5) under inequalities (3.4) deter-
mines an OA(λ2t, t+ 2, 2, t) with J-vector given by J�j = 2tuj for j ∈ [k + 1].

(ii) A complete set of non-OD-equivalent OA(λ2t, t + 2, 2, t) is given by collecting
the arrays obtained in (i) over all solutions to equation (3.5).

Proof. The proof follows from Lemma 3.2 and Theorem 1 in Stufken and Tang [7];
see the Appendix.

Lemma 3.4. Suppose that k = t+ 2, t is even, and λ = 2λ∗ is even. Let

λ∗ + u1 + · · ·+ uk+1 = 2p, (3.6)

with p ∈ Z≥0, uj ∈ Z such that |uj| ≤ λ∗ for j ∈ [k + 1]. Then the following hold.
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(i) Each solution (u1, . . . , uk+1, p) to equation (3.6) under inequalities (3.4) deter-
mines an OA(λ2t, t+2, 2, t) with J-vector given by J�j = 2t+1uj for j ∈ [k + 1].

(ii) A complete set of non-OD-equivalent OA(λ2t, t + 2, 2, t) is given by collecting
the arrays obtained in (i) over all solutions to equation (3.6).

Proof. The proof follows from Lemma 3.2 and Theorem 2 in Stufken and Tang [7];
see the Appendix.

Let Z[a, b] and O[a, b] denote the set of integers and odd integers x such that
a ≤ x ≤ b, respectively.

Theorem 3.5. For even t, odd λ, and k = t+2, if λ ≤ t−1, then equation (3.5) has
no OA(λ2t, k, 2, t) solution under inequalities (3.4); if λ ≥ t+1, then equation (3.5)
has at least one OA(λ2t, k, 2, t) solution under inequalities (3.4), and the complete
set S1 of non-OD-equivalent OA(λ2t, k, 2, t) solutions is given by

p ∈ Z

[
0,

λ− t− 1

4

]
,

uk+1 ∈ O

[
−λ− 4p

k + 1
,
λ− 4p

k − 1

]
,

uk ∈ O

[
−λ− 4p+ uk+1

k
, −|uk+1|

]
,

uj ∈ O

[
−λ− 4p+ uj+1 + · · ·+ uk+1

j
, uj+1

]
, j = k − 1, k − 2, . . . , 2,

u1 = −(λ− 4p+ u2 + · · ·+ uk+1).

Proof. The proof follows from Lemma 3.3 and Lemma 7 in Stufken and Tang [7]; see
the Appendix.

Theorem 3.6. For even t, even λ = 2λ∗, and k = t+2, the complete set S2 of non-
OD-equivalent OA(λ2t, k, 2, t) as solutions to equation (3.6) under inequalities (3.4)
is given by

p ∈ Z

[
0,

λ∗

2

]
,

uk+1 ∈ Z

[
−λ∗ − 2p

k + 1
,
λ∗ − 2p

k − 1

]
,

uk ∈ Z

[
−λ∗ − 2p+ uk+1

k
, −|uk+1|

]
,

uj ∈ Z

[
−λ∗ − 2p+ uj+1 + · · ·+ uk+1

j
, uj+1

]
, j = k − 1, k − 2, . . . , 2,

u1 = −(λ∗ − 2p+ u2 + · · ·+ uk+1).
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Proof. The proof follows from Lemma 3.4 and Lemma 9 in Stufken and Tang [7]; see
the Appendix.

For even t and s = 2, OD-equivalence reduces the solution set to S1 for odd λ,
and S2 for even λ non-OD-equivalent OA(λ2t, t+ 2, 2, t). The sizes of S1 and S2 are
smaller than the corresponding sizes obtained for non-isomorphic OA(λ2t, t+2, 2, t).

Theorems 3.5 and 3.6 were validated by comparing to the classifications ob-
tained by using the methods of Geyer et al. [3] for OA(4λ, 4, 2, 2) for λ ∈ [51],
OA(16λ, 6, 2, 4) for λ ∈ [30], OA(64λ, 8, 2, 6) for λ ∈ [30], OA(256λ, 10, 2, 8) for
λ = 1, 3, 5, and OA(1024λ, 12, 2, 10) for λ = 1, 3.

4 Conclusion

We used OD-equivalence operations, a larger set of operations than isomorphism
operations, to analytically classify all non-OD-equivalent OA(λ2t, t+2, 2, t) when t is
even. Future research will involve classifying OA(λ2t, t+3, 2, t) up to OD-equivalence
for even t. We anticipate that classifying OA(λ2t, t + 3, 2, t) up to OD-equivalence
for even t is more tangible than classifying up to isomorphism.
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Appendix

In this section we provide the theoretical results from Stufken and Tang [7] that are
used in the paper. The numbering of the theorems and lemmas matches that in [7].

Let
λ+ u1 + · · ·+ uk+1 = 4p, (4.1)

where p ∈ Z≥0 and uj ∈ 2Z + 1 are such that |uj| ≤ λ − 2 for j = 1, . . . , k + 1.
Furthermore, let

u1 ≤ · · · ≤ uk ≤ −|uk+1|, (4.2)

u1 ≤ · · · ≤ uk−1 ≤ −|uk|, uk+1 ≤ −|uk| − 2. (4.3)

Theorem 1. Suppose that t is even and λ is odd. We then have that: (i) each
solution (u1, . . . , uk+1, p) to equation (4.1) under either (4.2) or (4.3) determines an
OA(λ2t, t + 2, 2, t) with J-vector given by J�j = 2tuj for j = 1, . . . , k + 1; (ii) the
complete set of non-isomorphic OA(λ2t, t + 2, 2, t)s is given by collecting the arrays
obtained in (i) over all the solutions to equation (4.1).
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Let λ = 2λ∗, where λ∗ ∈ Z≥0. Let

λ∗ + u1 + · · ·+ uk+1 = 2p, (4.4)

where p ∈ Z≥0 and uj ∈ Z are such that |uj| ≤ λ∗ for j = 1, . . . , k+1. Furthermore,
let

u1 ≤ · · · ≤ uk ≤ −|uk+1|, (4.5)

u1 ≤ · · · ≤ uk−1 ≤ −|uk|, uk+1 ≤ −|uk| − 1. (4.6)

Theorem 2. Suppose that t is even and λ = 2λ∗ is also even. We then have that: (i)
each solution (u1, . . . , uk+1, p) to equation (4.4) under either (4.5) or (4.6) determines
an OA(λ2t, t + 2, 2, t) with J-vector given by J�j = 2t+1uj for j = 1, . . . , k + 1; (ii)
the complete set of non-isomorphic OA(λ2t, t+2, 2, t)s for even t and even λ is given
by collecting the arrays obtained in (i) over all the solutions to equation (4.4).

Lemma 7. For even t and odd λ, if λ ≤ t − 1, then equation (4.1) has no solution
under inequalities (4.2). If λ ≥ t + 1, then equation (4.1) has at least one solution
under inequalities (4.2) and the complete set S1 of solutions is given by

p ∈ Z

[
0,

λ− t− 1

4

]
,

uk+1 ∈ O

[
−λ− 4p

k + 1
,
λ− 4p

k − 1

]
,

uk ∈ O

[
−λ− 4p+ uk + 1

k
,−|uk+1|

]
,

uj ∈ O

[
−λ− 4p+ uj+1 + · · ·+ uk+1

j
, uj+1

]
, j = k − 1, k − 2, . . . , 2,

u1 = −(λ− 4p+ u2 + · · ·+ uk+1).

Lemma 9. For even t, even λ = 2λ∗, the complete set S2 of solutions to (4.4) under
inequalities (4.5) is given by

p ∈ Z

[
0,

λ∗

2

]
,

uk+1 ∈ Z

[
−λ∗ − 2p

k + 1
,
λ∗ − 2p

k − 1

]
,

uk ∈ Z

[
−λ∗ − 2p+ uk+1

k
, −|uk+1|

]
,

uj ∈ Z

[
−λ∗ − 2p+ uj+1 + · · ·+ uk+1

j
, uj+1

]
, j = k − 1, k − 2, . . . , 2,

u1 = −(λ∗ − 2p+ u2 + · · ·+ uk+1).
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