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Abstract

In 2003, Deutsch and Elizalde defined a family of bijective maps be-
tween the set of Dyck paths to itself which is induced by some par-
ticular permutations. In this paper, we extend the construction of the
maps by allowing the permutation to be arbitrary. We characterise the
permutations which generate the same map and find all permutations
generating a bijection among Dyck paths. Consequently, we give a new
combinatorial interpretation of the quantity (2n − 1)!! as well as some
new statistics of Dyck paths which are equidistributed to some known
height statistics via our generalised maps.

1 Introduction

Bijective methods are one of the classic tools in enumerative combinatorics. One enu-
meration problem can be translated to another, often in a different discrete structure.
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There are various results about bijections between the set of Dyck paths to itself
as well as to some other discrete structures. For example, Deutsch showed that the
number of high peaks has the Narayana distribution [2]. He also proved in [3] that
the number of valleys and the number of double-rises, as well as the height of the first
peak and the number of returns are equidistributed. Furthermore, there are studies
about bijections from the set of Dyck paths to pattern-avoiding permutations [5, 6, 7]
and to bar graphs [4].

In 2003, Deutsch and Elizalde defined a family of bijections between the set of
Dyck paths to itself in [6]. The maps, deemed by the authors as simple and unusual,
are generated by some particular permutation in the symmetric group and have a
pleasant property that they establish an equidistribution between one statistic of
Dyck paths to other known statistics as well as some results in enumerating pattern-
avoiding permutations.

In this paper, we work on a natural generalisation of the maps defined by Deutsch
and Elizalde by letting the maps be generated by arbitrary permutations. We first
noticed that some maps produced by different permutations might be completely
identical. From this, we studied the complete characterisation of such permutations.
Furthermore, among those permutation-generated maps, we find a much larger family
of bijections compared to that in [6]. We call any permutation generating such
bijection a circularly-connected permutation (CCP).

Using our generalised maps, we provide an alternative combinatorial interpret-
ation of an identity involving (2n − 1)!! from Callan [1]. Moreover, we obtain a
connection between a Dyck path enumeration problem with respect to some existing
height statistics and the number of unmatched steps. The latter is a new statistic
whose meaning will be introduced in Section 5. We show that the distribution of
those statistics among all Dyck paths are equal by utilising our bijections.

This paper is organised as follows. The notation and basic definitions are provided
in Section 2. In Section 3, we define the generalised maps and their intermediate
consequences. In Section 4, we prove that CCPs and only CCPs generate bijections.
In the last section, we discuss some results on statistics on Dyck paths.

2 Dyck paths: generalities and terminology

We adopt the following notation, which we also summarise in Appendix B. We denote
the set of integers from a to b inclusive by [a, b]. For brevity, [n] := [1, n]. We
always assume any arithmetic operation imposed on [n] to be modular. The group
of permutations of elements of [n] is denoted by Sn. Following the notation in [6],
for σ ∈ Sn we write σk in place of σ(k). By σ[k], we mean {σ1, σ2, . . . , σk}.

Given a two-dimensional integer lattice Z
2, we can make a lattice path starting

at (0, 0) consisting of up-steps (1, 1) and down-steps (1,−1), represented by u and d

respectively. A Dyck path of size n is such a lattice path between (0, 0) and (2n, 0)
which never goes below the x-axis. Any Dyck path can be encoded by a string of u
and d which we call its Dyck word. Step k of a Dyck path P is denoted by Pk ∈ {u, d}.
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We will use the notation uk to indicate a string of k consecutive up-steps with dk

defined similarly. Finally, Dn denotes the set of all Dyck paths of size n.

Figure 1: A Dyck path P ∈ D4 with Dyck word uuduuddd = u2du2d3, P2 = u, and P7 = d.

For any D ∈ Dn, following Elizalde’s original definition in [6], we define a tunnel
of D to be the horizontal segment between two lattice points of D that intersects D
only in those two points and always stays below D. If D ∈ Dn, then D has exactly
n tunnels and each tunnel can be associated with a pair (k, l) such that step k and
step l are connected by a tunnel.

Figure 2: The four tunnels of uuduuddd.

The tunnel pairs of D can be encoded as a permutation τD, called the tunneling
of D, where τD(k) = � if and only if (k, �) is a tunnel pair. For example, if D is the
Dyck path in Figure 2 above, then the four tunnels are the horizontal line segments
connecting (0, 0) and (8, 0), (1, 1) and (3, 1), (3, 1) and (7, 1), as well as (4, 2) and
(6, 2), with τD = 83276541.

A Dyck path D ∈ Dn can also be represented as a circle labeled with points in
[2n] arranged in a clockwise manner, where vertices with label k and � are joined
by a chord if and only if τD(k) = �. We call this the circular representation of
the Dyck path D. For example, the above Dyck path admits the following circular
representation.

1

2

3
4

5

6

7
8

It is clear that the n chords are non-intersecting since D is a Dyck path.

Given a Dyck path P , let h(P ) be the height of the highest peak in P and
hk(P ) denote the height of P after step k, that is, k subtracted by twice the number
of down-steps until step k. For example, if P is the Dyck path in Figure 1, then
h2(P ) = 2, h3(P ) = 1, h5(P ) = 3, h7(P ) = 1.
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3 Construction of the map and some consequences

3.1 σ-paths

We are ready to define our permutation-generated map.

Definition 3.1. Given a permutation σ ∈ S2n and a Dyck path D, the σ-path of
D, denoted by σ(D), is a lattice path constructed by the following algorithm: at
iteration k ∈ [2n],

σ(D)k =

{
u if τD(σk) /∈ σ[k],

d otherwise.

The map D �→ σ(D) is denoted by σ(·).
Remark 3.2. The condition τD(σk) /∈ σ[k] is equivalent to σ−1τD(σk) > k.

Remark 3.3. A more informal way to describe the construction of σ(D) is as follows:
at iteration k ∈ [2n], step k of σ(D) is u if and only if the tunnel pair of step σk of
D has not been read before.

The reader is encouraged to compare this with the construction of the map Φ by
Deutsch and Elizalde in [6, Section 3]. Indeed, the map Φ in their construction is
σ(·) with

σk =

{
k+1
2

if k is odd,

2n+ 1− k
2

if k is even.

It is not hard to see that σ(D) is a Dyck path for all σ ∈ S2n and D ∈ Dn.
The resulting word of σ(D) has precisely n up-steps and down-steps since D has n
tunnels. Moreover, the number of down-steps in the first k positions will not be less
than that of up-steps for any k ∈ [2n] since the only way a down-step in position
k is produced is to have the tunnel pair of step σk of D read. Before it is read, an
up-step must have been written at some step � < k. Hence the resulting word is a
Dyck word.

Example 3.4. Let D ∈ D4 be represented by its Dyck word uuddudud and σ =
14285763. Now,

• at k = 1, τD(σ1) = 4 /∈ σ[1] = {1}, so σ(D)1 = u,

• at k = 2, τD(σ2) = 1 ∈ σ[2] = {1, 4} so σ(D)2 = d,

• at k = 3, τD(σ3) = 3 /∈ σ[3] = {1, 4, 2} so σ(D)3 = u,

and so on. Completing the process, the Dyck word of σ(D) is uduuuddd.
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3.2 Number of different permutation-generated maps

A quick observation suggests that two different permutations could correspond to the
same map. For instance, consider the permutations λ = 1234 and μ = 2143. From
this, it is natural to investigate the conditions for which two permutations admit the
same map as well as the number of different permutation-generated maps. It is easy
to check that there is exactly one map when n = 1 and three different maps when
n = 2. The enumeration of such maps for n ≥ 3 is non-trivial. We present our first
result below.

Theorem 3.5. For n ≥ 3, there are

1− n2 + 2

n−1∑
a=1

n−1∑
b=1

n!n!

max{a, 2}!max{b, 2}!

((
2n− 2− a− b

n− 2

)
+

(
2n− 2− a− b

n− 1− a

))

different permutation-generated maps.

To prove the result above, we need to define some terminology first. Define an
equivalence relation ∼ on S2n with λ ∼ μ if and only if λ(D) = μ(D) for any
D ∈ Dn. The equivalence class of σ will be denoted by class(σ). It is easy to see
that the problem of counting the number of different maps is equivalent to that
of counting the number of distinct class(σ). This is done by giving sufficient and
necessary conditions for two permutations to be in the same class.

Definition 3.6. For n ≥ 3, the family of a permutation λ ∈ S2n is the set

fam(λ) := {μ ∈ S2n : λ[2] = μ[2] and λi = μi for all i ∈ [3, 2n− 2]}.

For example, fam(12345678) = {12345678, 12345687, 21345678, 21345687}. Note
that fam(λ) always has exactly four elements and induces a partition on S2n.

Proposition 3.7 (Sufficient condition 1). Two permutations that belong to the same
family belong to the same class.

Proof. For any μ ∈ fam(λ) and D ∈ Dn, we have μ(D)2 = u if λ(D)2 = u (since
τD(λ1) �= λ2) and μ(D)2 = d if λ(D)2 = d (since τD(λ1) = λ2). Thus, λ(D)2 = μ(D)2
for all D ∈ Dn. Similarly, λ(D)2n−1 = μ(D)2n−1 for all D ∈ Dn. Since λi = μi

for all i ∈ [3, 2n − 2], we have λ(D) = μ(D) for all D ∈ Dn. We conclude that
class(λ) = class(μ) for all μ ∈ fam(λ).

Definition 3.8. For n ≥ 3, the parity of a permutation σ is a pair of positive integers
par(σ) = (a, b) such that a is the smallest integer with σa �≡ σa+1 mod 2 and b is
the smallest integer with σ2n+1−b �≡ σ2n−b mod 2.

For example, par(13275468) = (2, 3). Observe that for any D ∈ Dn, par(σ) =
(a, b) implies that σ(D)i = u for all i ∈ [a] and σ(D)j = d for all j ∈ [2n+1− b, 2n].
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Proposition 3.9 (Necessary condition 1). Two permutations that belong to the same
class have the same parity.

Proof. Let par(λ) = (a1, b1) and par(μ) = (a2, b2). Suppose that class(λ) = class(μ)
but par(λ) �= par(μ). Without loss of generality, let a1 �= a2 with a1 ≥ a2 + 1.
Obviously, there exists a Dyck path D ∈ Dn with τD(μa2) = μa2+1 since μa2 �≡
μa2+1mod 2. In this case, μ(D)a2+1 = d. On the other hand, a2 + 1 ≤ a1 implies
λi ≡ λa2+1mod 2 for all i ∈ [a2 + 1]. Thus, λ(D)a2+1 = u. We have λ(D) �= μ(D), a
contradiction.

Proposition 3.10 (Necessary condition 2). Suppose par(λ) = par(μ). If there exist
three distinct integers 1 ≤ i < j < k ≤ 2n and distinct integers P,Q,R ∈ [2n] such
that

1. Q �≡ R mod 2,

2. P + 1 �= Q,R,

3. {λi, λj} = {P, P + 1}, {μj, μk} = {Q,R} or
{λi, λj} = {Q,R}, {μj, μk} = {P, P + 1},

then class(λ) �= class(μ).

Proof. Suppose such i, j, k exist. Obviously, there exists a Dyck path D ∈ Dn such
that τD(P ) = P + 1 and τD(Q) = R. In other words, τD(λi) = λj and τD(μj) = μk.
Since i < j < k, we have λ(D)j = d and μ(D)j = u. This shows that λ(D) �= μ(D),
so class(λ) �= class(μ).

To illustrate Proposition 3.10, take λ = 13275468 and μ = 53271468 as examples.
The triples (i, j, k) = (3, 5, 8) and (P,Q,R) = (8, 2, 5) satisfy all conditions in the
proposition.

Definition 3.11. Suppose par(λ) = par(μ) = (a, b). We call λ and μ friends pre-
cisely when the following conditions are satisfied:

1. λ[a] = μ[a]

2. λi = μi for all i ∈ [a+ 1, 2n− b].

In other words, λ and μ are friends if the first a and last b entries of λ and μ are
permutation of each other and their middle entries are identical.

For example, 13275468 and 31275846 are friends while the pair 13275468 and
53271468 are not friends. The following proposition is obvious.

Proposition 3.12 (Sufficient condition 2). Two permutations that are friends belong
to the same class.
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Propositions 3.7 – 3.12 are the ingredients to prove the following characterisation
theorem. The complete proof is by casework and tedious, so it will be presented
in Appendix A. A big part of the proof is to establish the existence of a triple
(i, j, k) that satisfies Proposition 3.10 in every possible case to show that two given
permutations with the same parity belong to different classes.

Theorem 3.13. Let par(λ) = par(μ) = (a, b). The following criteria characterise
the conditions when λ and μ are in the same class.

(1) If a = b = n, then class(λ) = class(μ).

(2) If a = b = n − 1, then class(λ) = class(μ) precisely when {λn, λn+1} =
{μn, μn+1}.

(3) If 1 < a, b ≤ n − 1, (a, b) �= (n − 1, n − 1), then class(λ) = class(μ) precisely
when λ and μ are friends.

(4) If exactly one of a or b equals 1, then class(λ) = class(μ) precisely when there
exists μ′ ∈ fam(μ) such that λ and μ′ are friends.

(5) If a = b = 1, then class(λ) = class(μ) precisely when μ ∈ fam(λ).

With this in mind, we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. This is done by simple counting using the results in Theo-
remr 3.13. If par(σ) = (a, b), then

|class(σ)| =

⎧⎪⎨
⎪⎩
2n!n! if a = b = n,

2(n− 1)!(n− 1)! if a = b = n− 1,

max{a, 2}!max{b, 2}! otherwise.

For any integers a, b ∈ [n], we define P(a, b) =
∣∣{σ : par(σ) = (a, b)}∣∣. By simple

counting, we observe that if a, b < n,

P(a, b)

2n!n!
=

(
2n− 2− a− b

n− 2

)
+

(
2n− 2− a− b

n− 1− a

)

while P(n, n) = 2n!n!, and P(a, b) = 0 otherwise. For any pair (a, b), the number
of different maps generated by σ such that par(σ) = (a, b) is P(a, b)/ |class(σ)|. The
result thus follows by taking the sum of all possible a, b ∈ [n].

Remark 3.14. The number of different permutation-generated maps for n = 1 up
to n = 6 is given by

1, 3, 154, 8369, 711226, 90349957.

This is a new sequence in the Online Encyclopedia of Integer Sequences (OEIS) [8]
with sequence number A344898. Moreover, one can verify that the ratio between the
number of different maps and the number of all possible permutations asymptotically
converges to (

√
e− 5/4)2 ≈ 0.158979.

https://oeis.org/A344898
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3.3 A reformulation of a combinatorial identity

In [1, Section 3], Callan gave the following double factorial identity whose proof
utilises the Hafnian of a particular matrix. For a given Dyck path P , the sets
UP = {u1 < u2 < · · · < un : Pui

= u} and DP = {d1 < d2 < · · · < dn : Pdi = d}
encode all the up-steps and down-steps of P respectively.

Theorem 3.15 (Proposition 1 of [1]). Let P be a Dyck path of size n and huk
be the

height of step uk ∈ UP . We have∑
P∈Dn

n∏
k=1

huk
(P ) = (2n− 1)!!. (1)

We will offer a different proof of Theorem 3.15 by defining a weaker version of
the equivalence relation ∼ defined previously.

Proof. Let Q ∈ Dn be fixed. We define an equivalence relation ∼Q on S2n with
λ ∼Q μ if and only if λ(Q) = μ(Q). Given two Dyck paths P and Q, we proceed by
finding an algorithm to find σ satisfying σ(Q) = P .

Algorithm 3.16. Given Dyck paths P and Q, find σ such that σ(Q) = P .

1. Set UP = {u1 < u2 < · · · < un : Pui
= u} and DP = {d1 < d2 < · · · <

dn : Pdi = d}.
2. For i ∈ [n], assign σui

freely such that all of σu1 , σu2 , . . . , σun belong to different
tunnels of Q, that is, τQ(σui

) �= σuj
for any i �= j.

3. Iterate for k = 1, . . . , n:

(a) Gather all indices i which have the properties that ui < dk and τQ(σui
)

has not been filled yet. In other words, construct the set {i : ui <
dk and τQ(σui

) �= σdj for some j < k}. Choose any element i∗ from the
set.

(b) Assign σdk = τQ(ui∗).

Note that the number of choices of the assignment of σui
in Step 2 is 2nn!. Also,

at iteration k of Step 3, the number of ways to choose i∗ is the same as the height
of P at the beginning of step dk, which is hdk−1(P ). Thus, the number of ways to
choose i∗ for all iterations is

LP :=
n∏

k=1

hdk−1(P ) =
n∏

k=1

huk
(P ).

So, the total number of possible σ is 2nn!LP . As a result, when Q is fixed, the size of
each equivalence class CP := {σ : σ(Q) = P} induced by ∼Q is |CP | = 2nn!LP for all
P . Our derivation of the identity (1) follows since

∑
P∈Dn

|CP | = |S2n| = (2n)!.
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4 Permutation-generated bijections

We observe that this generalisation does not retain bijectivity. It is therefore of inter-
est to classify all permutations whose maps they generate are bijections. Such a per-
mutation has a nice geometric interpretation which we call the circularly-connected
permutation or CCP in short.

A set X ⊆ [2n] is a block of size k if there exists some x ∈ X such that X =
{x, x + 1, . . . , x + k − 1} where the addition is regarded modulo 2n. This is best
illustrated if we order the elements of [2n] on a circle in a clockwise manner.

1
2

3

4
5

6

2n− 1 2n

Figure 3: Two blocks of size 2 and 3.

Definition 4.1. A permutation σ ∈ S2n is a CCP if for each k ∈ [2n], σ[k] is a block
of size k. The set of all CCPs on [2n] is denoted by CCP2n.

Example 4.2. The permutation σ = 213645 ∈ S6 is a CCP while σ′ = 236145 is
not.

Remark 4.3. Using the language of graph theory, a permutation σ is a CCP if the
subgraph of C2n induced by σ[k] is connected for all k ∈ [2n].

We proceed by establishing the main claim that CCPs generate bijections.

Theorem 4.4 (Characterisation of permutation-generated bijections). σ(·) is a bi-
jection if and only if σ is a CCP.

We divide the discussion of the proof into two subsections, one for each direction.

4.1 CCPs generate bijections

We show that we can reverse the construction of the σ-path given in Definition 3.1.
In other words, given σ and a Dyck path Q, we can find P such that σ(P ) = Q.

Definition 4.5. Let τ be a pairing permutation of [2n], that is, an involution with
no fixed points. For any a, b ∈ [2n], we say that the tuple (a, b) is τ -non-crossing if
for any block C with endpoints a and b, τ(c) ∈ C for every c ∈ C. The permutation
τ is called non-crossing if (c, τ(c)) is τ -non-crossing for all c ∈ [2n].
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It follows that τ is the tunneling of a Dyck path if and only if τ is non-crossing.
Note that (a, b) being τ -non-crossing is equivalent to (a, b) being a tunnel pair in a
Dyck path whose tunneling is τ . We are now ready to give an inverse algorithm to
find P given σ and Q such that σ(P ) = Q.

Algorithm 4.6 (Inverse Algorithm). Given a Dyck path Q and σ ∈ CCP2n, find a
Dyck path P and τ ∈ S2n such that σ(P ) = Q and τP = τ .

Consider the circular representation of Q and initially set all elements of [2n] to
be unpaired. For all k ∈ [2n] such that Qk = d, do the following procedure:

1. Find an element w such that w is an endpoint of the block σ[k−1] and w is next
to σk.

2. From w, traverse the block σ[k−1] to find the first unpaired element v ∈ σ[k−1].

3. Set τ(σk) = v and τ(v) = σk.

4. Set both σk and v to be paired.

Once all iterations are done, set P to be the Dyck path whose tunneling is τ .

Example 4.7. Set Q = uududd and σ = 162354 ∈ CCP6. Note that Q3 = Q5 =
Q6 = d. We illustrate Algorithm 4.6 in the following table.

Iteration k σ[k−1] σk w v Tunneling produced
1 3 {1, 6} 2 1 1 τ(2) = 1, τ(1) = 2
2 5 {1, 6, 2, 3} 5 6 6 τ(5) = 6, τ(6) = 5
3 6 {1, 6, 2, 3, 5} 4 3 or 5 3 τ(3) = 4, τ(4) = 3

Table 1: Iteration table of Algorithm 4.6.

The Dyck path P whose tunneling is τ = 214365 is ududud.

1 = w = v

2 = σ3

34

5

6 1

2

34

σ5 = 5

v = w = 6 1

2

3 = vσ6 = 4

w = 5

6

Figure 4: Iteration 1 (left), iteration 2 (middle), iteration 3 (right).

Algorithm 4.6 is well-defined whenever σ ∈ CCP2n. To see this, it is sufficient to
guarantee the existence and uniqueness of the elements w and v specified in the first
and second steps of each iteration (except in the last iteration) in the algorithm.

For any di ∈ DQ with i < n, observe that at iteration di > 1, it is necessary that
σdi is a consecutive element of an endpoint w of the block σ[di−1] by the definition of
CCP. Since σ is a CCP and i < n, w is uniquely determined.
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Next, at the beginning of the second step, there are exactly i−1 paired elements.
Since Q is a Dyck path, there are at least 2i − 1 elements in σ[ki−1]. Thus, there
exists at least one unpaired element in σ[ki−1] implying the existence of v. Since w is
unique, so is v.

The following two lemmas establish that the output P of Algorithm 4.6 does
indeed satisfy σ(P ) = Q.

Lemma 4.8. The permutation τ produced in Algorithm 4.6 is non-crossing. Hence,
τ is a tunneling of a Dyck path P .

Proof. It is obvious that τ is a pairing permutation. For any di ∈ DQ, we claim that
(σdi , τ(σdi)) is τ -non-crossing. Consider the block C with endpoints σdi and τ(σdi)
which is also a subset of σ[di]. Note that all elements in C are paired at the end of
iteration i.

For contradiction, suppose that there exists c ∈ C such that τ(c) /∈ C. Let
c = σd� with � < i. At the end of iteration d�, by the definition of the algorithm, all
the elements in the block with endpoints c and τ(c) which also forms a subset of σ[d�]

are paired. Observe that τ(σdi) must be in the block since otherwise τ(c) would be
in C. However, τ(σdi) is unpaired during this iteration, a contradiction. The result
follows from the claim.

Lemma 4.9 (Algorithm 4.6 is an inverse algorithm). Let σ ∈ CCP2n and Q ∈ Dn.
If P is the Dyck path produced by Algorithm 4.6, then σ(P ) = Q.

Proof. It is sufficient to prove that σ(P )ui
= Qui

= u for all ui ∈ UQ. From the
definition of the algorithm, we have τP (σuj

) �= σui
for all uj < ui. For any k such

that dk < ui, it is necessary that τP (σdk) �= σui
since σdk is paired at iteration k and

σui
/∈ σ[dk]. Therefore, τP (σ�) �= σui

for all � < ui, which means σ(P )ui
= Qui

= u,
hence the result.

Proof of Theorem 4.4(⇐=). By Lemma 4.9, σ(·) is a surjection between finite sets.

4.2 Non-CCPs generate non-bijections

We show that if σ is not a CCP, there exists a Dyck path Q such that Q �∈ Imageσ(·).

Proof of Theorem 4.4 (=⇒). By contradiction, suppose that σ(·) is a bijection and
σ is not a CCP. Since σ is not a CCP, there exists a smallest integer k ∈ [2, 2n− 2]
such that σ[k−1] is a block but σ[k] is not. We consider two cases:

Case 1: k = 2j. Consider two different blocks B1, B2, both with endpoints σk and
σk−1. Since σ[k−1] is a block but σ[k] is not, we have σ[k]∩B1 �= B1 and σ[k]∩B2 �= B2.
Without loss of generality, suppose that σk+1 ∈ B1. Since σ[k]∩B2 �= B2, there exists
a smallest integer l > k + 1 such that σl ∈ B2.
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We can choose Q such that Q1Q2 . . . Qk = (ud)j and

Qk+1 . . . Ql =

{
ul−k−1d if l ≤ n + j + 1,

un−jdl−n−j if l > n+ j + 1.

Since σ(·) is a bijection, there exists P ∈ Dn such that σ(P ) = Q. Since σ(P )l =
Ql = d and Q1 . . . Qk ∈ Dj, we have τP (σl) ∈ {σk+1, . . . , σl−1}. Thus, σl ∈ B2

but τP (σl) ∈ B1. In other words, (σk, σk−1) = (σk, τP (σk)) is not τP -non-crossing, a
contradiction.

Case 2: k = 2j + 1. First, notice that there exists a Dyck path D such that
σ(D) = (ud)n since σ(·) is a bijection. Thus, τD(σ2i−1) = σ2i for all i ∈ [n], so
σ2i−1 �≡ σ2i mod2 for all i ∈ [n].

We claim that for any Q,P ∈ Dn with Q1 . . . Qk = u(ud)j and σ(P ) = Q,
the values of τP (σ3), . . . , τP (σ2j+1) do not depend on the choice of Qk+1 . . . Q2n.
We proceed with induction. For σ3, since σ(P )3 = Q3 = d, we have τP (σ3) ∈
{σ1, σ2}. Since σ1 �≡ σ2mod 2, there is exactly one possible option for τP (σ3),
which depends only on σ. Now, suppose that τP (σ3), τP (σ5), . . . , τP (σ2q−1) satisfy
the claim for some q ≥ 2. Since σ(P )2i−1 = Q2i−1 = d for i ∈ [3, q], we have
τP (σ2i−1) ∈ σ[2q−1]. Notice that there exists exactly one element σr ∈ {σ1}∪{σ2i}q−1

i=1

other than τP (σ3), τP (σ5), . . . , τP (σ2q−1). By the induction hypothesis, the value
of r does not depend on Qk+1 . . . Q2n. Because σ2i−1 �≡ σ2i mod2 for all i ∈ [n],
σ[2q] consists of exactly q odd and q even integers. Excluding all σ3, . . . , σ2q−1 and
τP (σ3), τP (σ5), . . . , τP (σ2q−1), we have σr �≡ σ2q mod 2. Since σ(P )2q+1 = Q2q+1 = d,
we have τP (σ2q+1) ∈ {σr, σ2q}. Since σr �≡ σ2q mod 2, there is exactly one possible
option for τP (σ2q+1) that depends only on σ, which completes the induction and
proves the claim.

From the claim, there exists an integer m < 2j + 1 such that τP (σ2j+1) = σm for
all Q,P ∈ Dn with Q1 . . . Qk = u(ud)j and σ(P ) = Q. Consider an integer r where
σr ∈ {σ1} ∪ {σ2i}ji=1 other than τP (σ3), τP (σ5), . . . , τP (σk). Consider two different
blocks B1, B2, both with endpoints σk and σm. Since σ[k−1] is a block but σ[k] is not a
block, we have σ[k]∩B1 �= B1 and σ[k]∩B2 �= B2. Without loss of generality, suppose
that σr ∈ B1. Since σ[k] ∩ B2 �= B2, there exists a smallest integer l ≥ k + 1 such
that σl ∈ B2.

Now, consider the Dyck path Q′ such that Q′
1Q

′
2 . . . Q

′
k = u(ud)j and

Q′
k+1 . . . Q

′
l =

⎧⎪⎨
⎪⎩
d if l = k + 1,

ul−k−1d if k + 1 < l ≤ n+ j,

un−j−1dl−n−j+1 if l > n+ j.

Since σ(·) is a bijection, there exists P ′ ∈ Dn such that σ(P ′) = Q′. Note that
the values of m, r, l defined before also hold for Q′ and P ′. Since σ(P ′)l = Q′

l = d

and Q′
1 . . . Q

′
k = u(ud)j , we have τP ′(σl) ∈ {σr} ∪ {σi}l−1

i=k+1. Thus, σl ∈ B2 but
τP ′(σl) ∈ B1. In other words, (σk, σm) = (σk, τP ′(σk)) is not τP ′-non-crossing, a
contradiction. See Figure 5 below for illustration.
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σm

σr

B1

τP ′(σl)σk

σl

B2

σ[k−1]

Figure 5: (σk, σm) is not τP ′ -non-crossing.

Therefore, σ must be a CCP and this concludes the proof.

Remark 4.10. Deutsch and Elizalde’s permutations σ and σ(r) in [6] are CCPs. In
total, there are exactly n22n−1 CCPs. If σ ∈ CCP2n, n ≥ 3, then par(σ) = (1, 1).
Thus |class(σ)| = 4 and there are exactly n22n−3 different permutation-generated
bijections.

5 Statistics preserved by the bijections

In this section, we define several statistics which are translated by the permutation-
generated bijections to some classic statistics in Dn.

Definition 5.1. Let P ∈ Dn and a, k ∈ [2n]. Suppose that S ⊆ [2n]. A step i ∈ S is
unmatched in S if τP (i) /∈ S and matched otherwise. Let ua,k(P ) denote the number
of unmatched steps in {Pi}i∈I where I = {a, . . . , a+k−1} ⊆ [2n], that is, k circularly
consecutive steps of P starting from step a.

Example 5.2. In Figure 6 below, unmatched and matched steps of P with respect to
our choice of a and k are represented by dashed red and thick blue lines respectively.

Figure 6: P = uuuduudddudd, u2,5(P ) = 3 (left) and u9,7(P ) = 1 (right).

It is easy to see that for any P ∈ Dn and k ∈ [2n], we obtain hk(P ) = u1,k(P ).
For other choices of a, the relationship between hk(P ) and ua,k(P ) is less obvious.
However, there is a nice relationship between them when P is mapped by σ(·) for
some σ.

Theorem 5.3. Let a, k ∈ [2n] be arbitrary. There exists a permutation σ ∈ S2n that
depends on a and k such that for any P ∈ Dn, we have ua,k(P ) = hk (σ(P )).
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Proof. We specify σ to be any CCP such that σ[k] = {a, . . . , a + k − 1}. By the
definition of σ(·), the number of down-steps among the first k steps of σ(P ) is
equal to the number of different tunnel pairs whose steps are taken from the set
{Pa, . . . , Pa+k−1}. To simplify matters, if we denote the latter by t, consequently
hk (σ(P )) = k − 2t. By definition, this is equal to ua,k(P ).

The theorem above implies that the statistics ua,k and hk are distributed identi-
cally.

Corollary 5.4. Let a, k ∈ [2n] and � ∈ [n]. We have the following enumeration
identity: ∣∣∣{P ∈ Dn : ua,k(P ) = �}

∣∣∣ = ∣∣∣{P ∈ Dn : hk(P ) = �}
∣∣∣. (2)

Proof. The result follows from the bijectivity of σ(·) defined in Theorem 5.3.

Note that (2) does not depend on a. This means that the number of Dyck paths
with a certain number of unmatched steps among any k consecutive (circular) steps
is always the same.

Remark 5.5. The right-hand side of (2) has a closed form

(�+ 1)2

(k + 1)(2n− k + 1)

(
k + 1

k+�
2

+ 1

)(
2n− k + 1

n− k+�
2

)

with the convention that
(
n
i

)
= 0 if i /∈ Z. The value above can be easily derived

by considering the condition hk(P ) = � as a path P that is forced to pass through a
particular point.

Theorem 5.3 also implies another correspondence between two other statistics in
Dn. For any P ∈ Dn and a ∈ [2n], let h(P ) be the height of the highest peak in
P . The distribution of the number of Dyck paths with statistic h is well-known,
for example one could consult OEIS A080936 [8]. Obviously, h(P ) = max

k∈[2n]
hk(P ).

Similarly, define
u(a)
max(P ) := max

k∈[2n]
ua,k(P ).

The following corollary shows that u
(a)
max and h are equidistributed.

Corollary 5.6. Let P ∈ Dn and a ∈ [2n] be arbitrary, then for all � ∈ n,∣∣∣{P ∈ Dn : u(a)
max(P ) = �}

∣∣∣ = ∣∣∣{P ∈ Dn : h(P ) = �}
∣∣∣. (3)

Proof. Consider the permutation σ ∈ S2n with σk = a + k − 1. Thus σ satisfies the
condition mentioned in the proof of Theorem 5.3 for any k ∈ [2n]. The result follows
directly from this.

https://oeis.org/A080936
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Example 5.7. To illustrate Corollary 5.6, we list the the values of u
(a)
max for n = 3

in Table 2 below.

P h(P ) u
(1)
max(P ) u

(2)
max(P ) u

(3)
max(P ) u

(4)
max(P ) u

(5)
max(P ) u

(6)
max(P )

uuuddd 3 3 2 2 3 2 2
uududd 2 2 1 2 1 2 1
uuddud 2 2 2 3 2 2 3
uduudd 2 2 3 2 2 3 2
ududud 1 1 2 1 2 1 2

Table 2: Various values of u
(a)
max in D3.

Concluding Remarks

Although the generalisation produces a considerably large amount of bijections com-
pared to those of Deutsch and Elizalde, the application is known for only relatively
small numbers of CCPs. There might also be some relation of another subclass of
CCPs to some established Dyck path statistics. Finally, one could investigate the
application of the permutation-generated maps in general by utilising the character-
isation of permutations admitting the same map provided in Theorem 3.13.

Appendix A: Proof of Theorem 3.13

Proof of Theorem 3.13 (1). For any λ, μ ∈ S2n with par(λ) = par(μ) = (n, n) and
D ∈ Dn, we have λ(D)i = μ(D)i = u for all i ∈ [n] and λ(D)j = μ(D)j = d for all
j ∈ [n + 1, 2n], hence the result.

For our proof of Theorem 3.13 parts (2)–(5), we need to prove the following
lemma. In the following proof, we shall call any triple (i, j, k) that satisfies Proposi-
tion 3.10 a destroying triple.

Lemma 5.8. Let λ, μ ∈ S2n with par(λ) = par(μ) = (a, b), where a, b < n and
(a, b) �= (n− 1, n− 1). If class(λ) = class(μ), then the following statements hold:

(1) λi = μi for all i ∈ [a+ 2, 2n− 1− b],

(2) If 1 < a, b < n− 1, then λa+1 = μa+1 and λ2n−b = μ2n−b,

(3) If a = n− 1 (respectively, b = n− 1), then λa+1 = μa+1 (respectively,
λ2n−b = μ2n−b),

(4) If a = 1 (respectively, b = 1), then {λ1, λ2} = {μ1, μ2} (respectively,
{λ2n−1, λ2n} = {μ2n−1, μ2n}).
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Proof. We will prove the results by proving the contrapositive of each statement.
For each statement, if there exists such a destroying triple, then we are done by
Proposition 3.10. Suppose otherwise.

(1) Let λj �= μj for some j ∈ [a+ 2, 2n− 1− b]. We break into two cases.

Case 1: λj ≡ μj mod 2
Let i be an integer such that λi = λj − 1. Without loss of generality, suppose that
i < j. Let k be any integer such that j < k ≤ 2n and μj �≡ μk mod 2. Since (i, j, k)
is not a destroying triple, we must have μk = λj − 1. Let p be any integer such that
μj �≡ μpmod 2 with μp �= λj − 1 and μp �= λj + 1. Notice that p always exists for
n ≥ 3 and p < j because μp �= λj − 1. Let q be an integer that satisfies λq = λj + 1.
If j < q, then we have a destroying triple (p, j, q), a contradiction. If j > q, then we
have a destroying triple (q, j, k), a contradiction.

Case 2: λj �≡ μj mod 2
Let s be any integer such that λs = λj−1 or λs = λj+1 which also satisfies λs �= μj.
Let t be any integer such that μt = μj −1 or μt = μj +1 satisfying μt �= λj . Without
loss of generality, suppose that s < j. If t > j, then (s, j, t) is a destroying triple, a
contradiction. If t < j, we consider three subcases:

• If λj �≡ λ2n−b mod2 and μj �≡ μ2n−b mod 2, consider the triple (s, j, 2n−b). Since
(s, j, 2n− b) is not a destroying triple, we have μ2n−b = λj . Since (t, j, 2n− b)
is not a destroying triple, we have λ2n−b = μj. Let x be an integer such
that λx = μt. If x < 2n − b, we have a destroying triple (x, 2n − b, 2n), a
contradiction. If x > 2n− b, choose an integer y < a + 2 < 2n− b, y �= j such
that μy �≡ μ2n−b mod 2. Notice that y always exists. In this case, we have a
destroying triple (y, 2n− b, x), a contradiction.

• If λj ≡ λ2n−b mod2 and μj �≡ μ2n−bmod 2, similarly as above we have μ2n−b =
λj . Since λj ≡ λ2n−b �≡ λ2n−i for all 0 ≤ i < b and (t, j, 2n − i) is not a
destroying triple, we have λ2n−i = μj. Thus, b = 1 and λ2n = μj. Let v
be an integer such that μv = λs. If v < 2n − 1, we have a destroying triple
(v, 2n− 1, 2n), a contradiction. If v > 2n− 1, then v = 2n. Choose an integer
w < 2n − 1, w �= s such that λw �≡ λ2n−1mod 2. Notice that w always exists
for n ≥ 3. In this case, we have a destroying triple (w, 2n− 1, 2n) on (λ, μ), a
contradiction. The case when λj �≡ λ2n−b mod 2 and μj ≡ μ2n−b mod2 can be
proved in a similar way.

• If λj ≡ λ2n−bmod 2 and μj ≡ μ2n−b mod2, by employing a similar argument as
the previous subcase we have b = 1, λ2n = μj, and μ2n = λj. If λj = μ2n−1 + 1
or λj = μ2n−1−1, we choose an integer k < 2n−1 such that λk �≡ μ2n−1mod 2.
Notice that k always exists for n ≥ 3. In this case, we have a destroying triple
(k, 2n − 1, 2n), a contradiction. If λj �= μ2n−1 + 1, μ2n−1 − 1, we choose an
integer l < 2n − 1 such that μl = μ2n−1 − 1 or μl = μ2n−1 + 1 which also
satisfies μl �= λ2n−1. Notice that l always exists for n ≥ 3. Then we have a
destroying triple (l, 2n− 1, 2n), a contradiction.
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(2) Suppose that λa+1 �= μa+1. Let s be any integer such that λs = λa+1 − 1 or
λs = λa+1+1 which also satisfies λs �= μa+1. Without loss of generality, suppose
that s > a + 1. Choose an integer t such that t < a + 1, μt �≡ μa+1mod 2 and
μt �= λa+1, λs. Notice that t always exists since a > 1. We have a destroying
triple (t, a+1, s), a contradiction. The case when λ2n−b �= μ2n−b is similar since
1 < a, b < n− 1.

(3) For this proof, we only consider the case when a = n − 1. The case when
b = n − 1 is similar. Since a = n − 1, we have λn �≡ λ2n−bmod 2. Since
b < n− 1, we have λn ≡ λn+1mod 2 and μn ≡ μn+1mod 2. By Lemma 5.8 (1),
we have that λn+1 = μn+1. It follows that λn ≡ μn mod2. If λ2n−b = λn − 1 or
λ2n−b = λn+1, choose an integer s < n such that μs �= λ2n−b and μs �≡ μnmod 2.
We have a destroying triple (s, n, 2n − b), a contradiction. Otherwise, there
exists an integer t < n such that λt = λn − 1 or λt = λn + 1 which also
satisfies λt �= μ2n−b. In this case, we have a destroying triple (t, n, 2n − b), a
contradiction.

(4) Suppose that {λ1, λ2} �= {μ1, μ2}. If λ2 = μi ∈ {μ1, μ2}, consider a path
D ∈ Dn such that τD(μ1) = μ2. In this case, we have λ(D)2 = u and μ(D)2 = d.
Thus, λ(D) �= μ(D). The case when μ2 ∈ {λ1, λ2} is similar. If λ2 /∈ {μ1, μ2}
and μ2 /∈ {λ1, λ2}, we consider two subcases:

• If μ1 = μ2 + 1 or μ1 = μ2 − 1, we choose an integer s > 2 such that
λs �= μ1, μ2 and λs �≡ λ2mod 2. In this case, we have a destroying triple
(1, 2, s), a contradiction.

• If μ1 �= μ2 + 1, μ2 − 1, we choose an integer t > 2 such that μt = μ2 + 1
or μt = μ2 − 1 which also satisfies μt /∈ {λ1, λ2}. In this case, we have a
destroying triple (1, 2, t), a contradiction.

This completes the proof.

Now, we are ready to present the proof of Theorem 3.13 parts (2)–(5).

Proof of Theorem 3.13 parts (2)–(5).

(2) (=⇒) Let λ, μ ∈ S2n with par(λ) = par(μ) = (n − 1, n − 1). Suppose that
{λn, λn+1} �= {μn, μn+1}. Without loss of generality, suppose that λn /∈ {μn, μn+1}.
If there exists a destroying triple, then we are done by Proposition 3.10. Suppose
otherwise. Let s be an integer such that λs = λn−1 or λs = λn+1 with λs �= μn, μn+1

and s < n. Such s exists because n ≥ 3 and s ≤ n + 1. Therefore, (s, n, n + 1) is a
destroying triple, a contradiction.

(⇐=) Pick any D ∈ Dn. Since par(λ) = par(μ) = (n − 1, n − 1), we have
λ(D)i = μ(D)i = u for all i ∈ [n−1] and λ(D)j = μ(D)j = d for all j ∈ [n+2, 2n]. If
τD(λn) = λn+1, we have τD(μn) = μn+1. Thus, λ(D)n = μ(D)n = u and λ(D)n+1 =
μ(D)n+1 = d. If τD(λn) �= λn+1, we have τD(μn) �= μn+1. In this case, λ−1τD(λn) < n
and λ−1τD(λn+1) > n+ 1. By definition, λ(D)n = d and λ(D)n+1 = u. Similarly, we
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have μ(D)n = d and μ(D)n+1 = u. We conclude that λ(D) = μ(D) for all D ∈ Dn,
proving the claim.

(3) (=⇒) Notice that λa+1 = μa+1 by Lemma 5.8 parts (2) – (3). We will prove
that λ[a] = μ[a]. Suppose otherwise, then there exists p < a + 1 such that λp /∈ μ[a].
Consider a path D ∈ Dn such that τD(λp) = λa+1. In this case, we have λ(D)a+1 = d.
On the other hand, we have τ(μa+1) = τ(λa+1) = λp /∈ μ[a], implying that μ(D)a+1 =
u. It follows that λ(D) �= μ(D), a contradiction. Thus, λ[a] = μ[a]. By Lemma 5.8
part (1), we have λi = μi for all i ∈ [a + 2, 2n − 1 − b]. If a < n − 1, we have
λ2n−b = μ2n−b by Lemma 5.8 part (2). If a = n − 1, we have λ2n−b = μ2n−b since
λ[a] = μ[a]. Therefore, λ and μ are friends.

(4) (=⇒) Without loss of generality, suppose that a > 1, b = 1. By Lemma 5.8 parts
(2) – (3), we have μa+1 = λa+1. Similar to the previous case, we have λ[a] = μ[a].
By Lemma 5.8 part (1), we have λi = μi for all i ∈ [a + 2, 2n − 2]. It follows that
{λ2n−1, λ2n} = {μ2n−1, μ2n}. Obviously, there exists μ′ ∈ fam(μ) with μ′

i = μi for all
i ∈ [2n− 2] and μ′

2n−1 = λ2n−1. In this case, λ and μ′ are friends, as desired.

(5) (=⇒) This is a direct consequence of Lemma 5.8 parts (1) and (4).

The converse of (3), (4), (5) are direct consequences of Propositions 3.7 and
3.12.

Appendix B: Table of notation and terminology

The following table summarises the notation and terminology we used throughout
this paper and the section and page in which they first appeared.

Notation Section Page Terminology Section Page

[a, b], [n] 2 2 tunnel, tunneling 2 3
Sn, Dn 2 2 circular representation 2 3
σk, σ[k] 2 2 σ-paths 3.1 4

u, d, uk, dk 2 2 family 3.2 5
τP 2 3 parity 3.2 5

h(P ), hk(P ) 2 3 friends 3.2 6
σ(·) 3.1 4 circularly-connected permutation 4 9

∼, class(σ), par(σ) 3.2 5 block 4 9
UP and DP 3.3 8 pairing permutation 4.1 10

∼Q 3.3 8 non-crossing 4.1 10
ua,k(P ) 5 14 unmatched and matched steps 5 14

u
(a)
max(P ) 5 15 destroying triple App. A 17

Table 3: Notation and terminology in this paper.
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