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The minimal volume of a lattice polytope
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Abstract

Let P ⊂ Rd be a lattice polytope of dimension d. Let b denote the
number of lattice points belonging to the boundary of P and c those
in the interior of P . It follows from a lower bound theorem of Ehrhart
polynomials that, when c > 0, the volume of P is bigger than or equal
to (dc+ (d− 1)b− d2 + 2)/d!. In the present paper, via triangulations, a
short and elementary proof of the minimal volume formula is given.

1 Introduction

Let P ⊂ Rd be a lattice polytope of dimension d. In other words, P is a convex
polytope of dimension d each of whose vertices belongs to Zd. A lattice point of Rd is
a point belonging to Zd. Let b = b(P) denote the number of lattice points belonging
to the boundary ∂P of P and c = c(P) those in the interior of P . It follows from
the lower bound theorem of Ehrhart polynomials [2] that, when c > 0,

vol(P) ≥ (d · c(P) + (d− 1) · b(P)− d2 + 2)/d!, (1)

where vol(P) is the (Lebesgue) volume of P . However, the argument in [2] is rather
complicated with deep techniques on polytopes. In the present paper a short and
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elementary proof of the minimal volume formula (1) will be given. Pick’s formula
guarantees that, when d = 2, the inequality (1) is an equality [6].

A lattice polytope P ⊂ Rd of dimension d is called Castelnuovo [4] if the equality
holds in (1). A few remarks on Castelnuovo polytopes will be also stated.

2 Minimal volume formula

In general, let P ⊂ Rd be a convex polytope of dimension d and V ⊂ P a finite set
to which each of the vertices of P belongs. A triangulation of P on V is a collection
Γ of d-simplices (simplices of dimension d) for which

• each vertex of each d-simplex F ∈ Γ belongs to V ;

• each x ∈ V is a vertex of a d-simplex F ∈ Γ;

• if F ∈ Γ and G ∈ Γ, then F ∩G is a face of F and of G;

• P =
⋃

F∈Γ F .

The existence of a triangulation of P on V is guaranteed by [5, Lemma 1.1]. Thus
in particular, if P is a lattice polytope, then a triangulation of P on P ∩ Zd exists.

Lemma 2.1 Let P ⊂ Rd be a convex polytope of dimension d and V ⊂ P a finite
set to which each of the vertices of P belongs. Let b(P) = |V ∩ ∂P|, where ∂P is
the boundary of P, and c(P) = |V ∩ (P \ ∂P)|, where P \ ∂P is the interior of P.
Suppose that c(P) > 0. Then there exists a triangulation ΓP of P on V with

|ΓP | ≥ d · c(P) + (d− 1) · b(P)− d2 + 2.

Proof. We construct the required triangulation ΓP by induction on d. Let d ≥ 3.
Let Γ be a triangulation of P on V . Let ∆ denote the set of those F ∩∂P with F ∈ Γ
for which F ∩ ∂P is a (d− 1)-simplex. Fix G0 ∈ ∆. Remove G0 \ ∂G0 from ∂P , and
one can assume that P ′ = ∂P\(G0\∂G0) is a simplex in Rd−1 of dimension d−1 via a
one-point compactification. Furthermore, the number of points in V belonging to the
boundary of P ′ is b(P ′) = d and that to the interior of P ′ is c(P ′) = b(P)− d. Since
b(P) > d, it follows that c(P ′) > 0. The induction hypothesis yields a triangulation
∆′ of P ′ on P ′ ∩ V for which

|∆′| ≥ (d− 1) · (b(P)− d) + (d− 2) · d− (d− 1)2 + 2.

Let Γ(0) = ∆′ ∪ {G0}. Then ∂P =
⋃

G∈Γ(0) G.

Let x1, . . . , xc denote the points in V belonging to the interior of P . Now, set

Γ(1) = {conv(G ∪ {x1}) : G ∈ Γ(0)},

where conv(G∪{x1}) is the convex hull of G∪{x1} in Rd, and Γ(1) is a triangulation
of P on V (1) = (∂P ∩ V ) ∪ {x1}. Since |Γ(1)| = |Γ(0)| = |∆′|+ 1, it follows that

|Γ(1)| ≥ (d− 1) · (b(P)− d) + (d− 2) · d− (d− 1)2 + 3

= d+ (d− 1) · b(P)− d2 + 2.
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Let c ≥ 2 and x2 ∈ F with F ∈ Γ(1). Let F0 be the smallest face of F with
x2 ∈ F0. Then x2 belongs to the interior of F0. Let e = dimF0 and y0, y1, . . . , ye the
vertices of F0. Thus 1 ≤ e ≤ d. Let {G1, . . . , Gq} denote the set of those G ∈ Γ(1)

for which F0 is a face of G and, for each 1 ≤ i ≤ q, write Wi for the set of vertices
of Gi. It follows that, for each 1 ≤ i ≤ q and for each 0 ≤ j ≤ e,

G
(j)
i = conv((Wi \ {yj}) ∪ {x2})

is a d-simplex. Now, it then turns out that

Γ(2) = (Γ(1) \ {G1, . . . , Gq})
⋃ ( ⋃

1≤i≤q, 0≤j≤e

{G(j)
i }

)

is a triangulation of P on V (2) = (∂P ∩V )∪{x1, x2}. Since F0 6⊂ ∂P , one can regard

q⋃
i=1

conv({Wi \ {y0, . . . , ye}})

as a boundary of a convex polytope of dimension d− e. In particular q ≥ d− e+ 1.
Hence

|Γ(2)| ≥ d+ (d− 1) · b(P)− d2 + 2 + (d− e+ 1)e

≥ 2 · d+ (d− 1) · b(P)− d2 + 2.

Continuing the procedure yields a triangulation Γ(c) of P on

V (c) = (∂P ∩ V ) ∪ {x1, . . . , xc}

with
|Γ(c)| ≥ d · c(P) + (d− 1) · b(P)− d2 + 2,

as desired. �

Example 2.2 The picture drawn below demonstrates the procedure of construct-
ing the triangulation ΓP in the proof of Lemma 2.1. Let P = ABCDE denote the
pyramid over the quadrangle BCDE. Let V = {A,B,C,D,E, y1, x1, x2} where y1

belongs to the boundary of P and where each of x1 and x2 belongs to the interior of
P . Combining y1 with each of B,C,D,E yields the triangulation Γ(0) of the bound-
ary ∂P of P . Combining x1 ∈ P \ ∂P with each of A,B,C,D,E and y1 yields the
triangulation Γ(1) of P on V (1) = {A,B,C,D,E, y1, x1}. Let x2 belong to the interior
of the triangle F0 with the vertices x1 = y0, y1, D = y2. Combining x2 with each of
y0, y1, y2 yields the triangulation of F0 on {x2, y0, y1, y2}. Finally, combining x2 with
each of C and E yields the triangulation Γ(2) of P on V .
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We now come to the minimal volume formula (1).

Theorem 2.3 Let P ⊂ Rd be a lattice polytope of dimension d. Let b(P) denote the
number of lattice points belonging to the boundary ∂P of P and c(P) that number in
the interior of P. Suppose that c(P) > 0. Then one has

vol(P) ≥ (d · c(P) + (d− 1) · b(P)− d2 + 2)/d!, (2)

where vol(P) is the (Lebesgue) volume of P.

Proof. Lemma 2.1 guarantees the existence of a triangulation ΓP of P on P ∩ Zd

with

|ΓP | ≥ d · c(P) + (d− 1) · b(P)− d2 + 2. (3)

Since the volume of a lattice d-simplex of Rd is a multiple of 1/d!, the minimal volume
formula (2) follows from the inequality (3). �

3 Castelnuovo polytopes

As before, let P ⊂ Rd be a lattice polytope of dimension d. Following [4], we say
that P is Castelnuovo if P satisfies the equality of (1). When P is Castelnuovo and
when V = P ∩ Zd, the triangulation ΓP constructed in the proof of Lemma 2.1 is
unimodular. (Recall that a triangulation ΓP on P ∩Zd of a lattice polytope P ⊂ Rd

of dimension d is called unimodular if the volume of each of the d-simplices of Rd

belonging to ΓP is 1/d!.) Furthermore, the triangulation ΓP constructed in the proof
of Lemma 2.1 is regular. We refer the reader to [1] for fundamental materials on
regular triangulations. It then follows that every Castelnuovo polytope possesses a
regular unimodular triangulation.
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It is reasonable to find all possible sequences (d, b, c) of integers with d ≥ 3,
b ≥ d+ 1, c ≥ 1 for which there exists a Castelnuovo polytope P ⊂ Rd of dimension
d with b = b(P) and c = c(P).

It follows from [3] that, given integers d and c with d ≥ 3 and c ≥ 1, there exists
a Castelnuovo polytope (in fact, simplex) P ⊂ Rd of dimension d with b(P) = d+ 1
and c = c(P).
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