The minimal volume of a lattice polytope

Ichiro Sainose

Hiroshima Municipal Motomachi Senior High School Hiroshima 730-0005, Japan sainose23517257@nifty.com

Ginji Hamano

School of Science and Engineering, Tokyo Denki University Saitama 350-0394, Japan 18hz002@ms.dendai.ac.jp

Tatsuo Emura – Takayuki Hibi

Department of Pure and Applied Mathematics Graduate School of Information Science and Technolog Osaka University, Osaka 565-0871, Japan skmj50023@ares.eonet.ne.jp hibi@math.sci.osaka-u.ac.jp

Abstract

Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope of dimension d. Let b denote the number of lattice points belonging to the boundary of \mathcal{P} and c those in the interior of \mathcal{P} . It follows from a lower bound theorem of Ehrhart polynomials that, when c > 0, the volume of \mathcal{P} is bigger than or equal to $(dc + (d-1)b - d^2 + 2)/d!$. In the present paper, via triangulations, a short and elementary proof of the minimal volume formula is given.

1 Introduction

Let $\mathcal{P} \subset \mathbb{R}^d$ be a *lattice polytope* of dimension d. In other words, \mathcal{P} is a convex polytope of dimension d each of whose vertices belongs to \mathbb{Z}^d . A *lattice point* of \mathbb{R}^d is a point belonging to \mathbb{Z}^d . Let $b = b(\mathcal{P})$ denote the number of lattice points belonging to the boundary $\partial \mathcal{P}$ of \mathcal{P} and $c = c(\mathcal{P})$ those in the interior of \mathcal{P} . It follows from the lower bound theorem of Ehrhart polynomials [2] that, when c > 0,

$$\operatorname{vol}(\mathcal{P}) \ge (d \cdot c(\mathcal{P}) + (d-1) \cdot b(\mathcal{P}) - d^2 + 2)/d!, \tag{1}$$

where $vol(\mathcal{P})$ is the (Lebesgue) volume of \mathcal{P} . However, the argument in [2] is rather complicated with deep techniques on polytopes. In the present paper a short and elementary proof of the minimal volume formula (1) will be given. Pick's formula guarantees that, when d = 2, the inequality (1) is an equality [6].

A lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ of dimension *d* is called *Castelnuovo* [4] if the equality holds in (1). A few remarks on Castelnuovo polytopes will be also stated.

2 Minimal volume formula

In general, let $\mathcal{P} \subset \mathbb{R}^d$ be a convex polytope of dimension d and $V \subset \mathcal{P}$ a finite set to which each of the vertices of \mathcal{P} belongs. A *triangulation* of \mathcal{P} on V is a collection Γ of d-simplices (simplices of dimension d) for which

- each vertex of each d-simplex $F \in \Gamma$ belongs to V;
- each $x \in V$ is a vertex of a *d*-simplex $F \in \Gamma$;
- if $F \in \Gamma$ and $G \in \Gamma$, then $F \cap G$ is a face of F and of G;
- $\mathcal{P} = \bigcup_{F \in \Gamma} F.$

The existence of a triangulation of \mathcal{P} on V is guaranteed by [5, Lemma 1.1]. Thus in particular, if \mathcal{P} is a lattice polytope, then a triangulation of \mathcal{P} on $\mathcal{P} \cap \mathbb{Z}^d$ exists.

Lemma 2.1 Let $\mathcal{P} \subset \mathbb{R}^d$ be a convex polytope of dimension d and $V \subset \mathcal{P}$ a finite set to which each of the vertices of \mathcal{P} belongs. Let $b(\mathcal{P}) = |V \cap \partial \mathcal{P}|$, where $\partial \mathcal{P}$ is the boundary of \mathcal{P} , and $c(\mathcal{P}) = |V \cap (\mathcal{P} \setminus \partial \mathcal{P})|$, where $\mathcal{P} \setminus \partial \mathcal{P}$ is the interior of \mathcal{P} . Suppose that $c(\mathcal{P}) > 0$. Then there exists a triangulation $\Gamma_{\mathcal{P}}$ of \mathcal{P} on V with

$$|\Gamma_{\mathcal{P}}| \ge d \cdot c(\mathcal{P}) + (d-1) \cdot b(\mathcal{P}) - d^2 + 2.$$

Proof. We construct the required triangulation $\Gamma_{\mathcal{P}}$ by induction on d. Let $d \geq 3$. Let Γ be a triangulation of \mathcal{P} on V. Let Δ denote the set of those $F \cap \partial \mathcal{P}$ with $F \in \Gamma$ for which $F \cap \partial \mathcal{P}$ is a (d-1)-simplex. Fix $G_0 \in \Delta$. Remove $G_0 \setminus \partial G_0$ from $\partial \mathcal{P}$, and one can assume that $\mathcal{P}' = \partial \mathcal{P} \setminus (G_0 \setminus \partial G_0)$ is a simplex in \mathbb{R}^{d-1} of dimension d-1 via a one-point compactification. Furthermore, the number of points in V belonging to the boundary of \mathcal{P}' is $b(\mathcal{P}') = d$ and that to the interior of \mathcal{P}' is $c(\mathcal{P}') = b(\mathcal{P}) - d$. Since $b(\mathcal{P}) > d$, it follows that $c(\mathcal{P}') > 0$. The induction hypothesis yields a triangulation Δ' of $\mathcal{P}' \cap V$ for which

$$|\Delta'| \ge (d-1) \cdot (b(\mathcal{P}) - d) + (d-2) \cdot d - (d-1)^2 + 2$$

Let $\Gamma^{(0)} = \Delta' \cup \{G_0\}$. Then $\partial \mathcal{P} = \bigcup_{G \in \Gamma^{(0)}} G$.

Let x_1, \ldots, x_c denote the points in V belonging to the interior of \mathcal{P} . Now, set

$$\Gamma^{(1)} = \{ \operatorname{conv}(G \cup \{x_1\}) : G \in \Gamma^{(0)} \}$$

where conv $(G \cup \{x_1\})$ is the convex hull of $G \cup \{x_1\}$ in \mathbb{R}^d , and $\Gamma^{(1)}$ is a triangulation of \mathcal{P} on $V^{(1)} = (\partial \mathcal{P} \cap V) \cup \{x_1\}$. Since $|\Gamma^{(1)}| = |\Gamma^{(0)}| = |\Delta'| + 1$, it follows that

$$\begin{aligned} |\Gamma^{(1)}| &\geq (d-1) \cdot (b(\mathcal{P}) - d) + (d-2) \cdot d - (d-1)^2 + 3 \\ &= d + (d-1) \cdot b(\mathcal{P}) - d^2 + 2. \end{aligned}$$

Let $c \geq 2$ and $x_2 \in F$ with $F \in \Gamma^{(1)}$. Let F_0 be the smallest face of F with $x_2 \in F_0$. Then x_2 belongs to the interior of F_0 . Let $e = \dim F_0$ and y_0, y_1, \ldots, y_e the vertices of F_0 . Thus $1 \leq e \leq d$. Let $\{G_1, \ldots, G_q\}$ denote the set of those $G \in \Gamma^{(1)}$ for which F_0 is a face of G and, for each $1 \leq i \leq q$, write W_i for the set of vertices of G_i . It follows that, for each $1 \leq i \leq q$ and for each $0 \leq j \leq e$,

$$G_i^{(j)} = \operatorname{conv}((W_i \setminus \{y_j\}) \cup \{x_2\})$$

is a *d*-simplex. Now, it then turns out that

$$\Gamma^{(2)} = (\Gamma^{(1)} \setminus \{G_1, \dots, G_q\}) \bigcup \left(\bigcup_{1 \le i \le q, \ 0 \le j \le e} \{G_i^{(j)}\}\right)$$

is a triangulation of \mathcal{P} on $V^{(2)} = (\partial \mathcal{P} \cap V) \cup \{x_1, x_2\}$. Since $F_0 \not\subset \partial \mathcal{P}$, one can regard

$$\bigcup_{i=1}^{q} \operatorname{conv}(\{W_i \setminus \{y_0, \dots, y_e\}\})$$

as a boundary of a convex polytope of dimension d - e. In particular $q \ge d - e + 1$. Hence

$$|\Gamma^{(2)}| \geq d + (d-1) \cdot b(\mathcal{P}) - d^2 + 2 + (d-e+1)e$$

$$\geq 2 \cdot d + (d-1) \cdot b(\mathcal{P}) - d^2 + 2.$$

Continuing the procedure yields a triangulation $\Gamma^{(c)}$ of \mathcal{P} on

$$V^{(c)} = (\partial \mathcal{P} \cap V) \cup \{x_1, \dots, x_c\}$$

with

$$|\Gamma^{(c)}| \ge d \cdot c(\mathcal{P}) + (d-1) \cdot b(\mathcal{P}) - d^2 + 2$$

as desired.

Example 2.2 The picture drawn below demonstrates the procedure of constructing the triangulation $\Gamma_{\mathcal{P}}$ in the proof of Lemma 2.1. Let $\mathcal{P} = ABCDE$ denote the pyramid over the quadrangle BCDE. Let $V = \{A, B, C, D, E, y_1, x_1, x_2\}$ where y_1 belongs to the boundary of \mathcal{P} and where each of x_1 and x_2 belongs to the interior of \mathcal{P} . Combining y_1 with each of B, C, D, E yields the triangulation $\Gamma^{(0)}$ of the boundary $\partial \mathcal{P}$ of \mathcal{P} . Combining $x_1 \in \mathcal{P} \setminus \partial \mathcal{P}$ with each of A, B, C, D, E and y_1 yields the triangulation $\Gamma^{(1)}$ of \mathcal{P} on $V^{(1)} = \{A, B, C, D, E, y_1, x_1\}$. Let x_2 belong to the interior of the triangle F_0 with the vertices $x_1 = y_0, y_1, D = y_2$. Combining x_2 with each of y_0, y_1, y_2 yields the triangulation of F_0 on $\{x_2, y_0, y_1, y_2\}$. Finally, combining x_2 with each of C and E yields the triangulation $\Gamma^{(2)}$ of \mathcal{P} on V.

We now come to the minimal volume formula (1).

Theorem 2.3 Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope of dimension d. Let $b(\mathcal{P})$ denote the number of lattice points belonging to the boundary $\partial \mathcal{P}$ of \mathcal{P} and $c(\mathcal{P})$ that number in the interior of \mathcal{P} . Suppose that $c(\mathcal{P}) > 0$. Then one has

$$\operatorname{vol}(\mathcal{P}) \ge (d \cdot c(\mathcal{P}) + (d-1) \cdot b(\mathcal{P}) - d^2 + 2)/d!, \tag{2}$$

where $\operatorname{vol}(\mathcal{P})$ is the (Lebesgue) volume of \mathcal{P} .

Proof. Lemma 2.1 guarantees the existence of a triangulation $\Gamma_{\mathcal{P}}$ of \mathcal{P} on $\mathcal{P} \cap \mathbb{Z}^d$ with

$$|\Gamma_{\mathcal{P}}| \ge d \cdot c(\mathcal{P}) + (d-1) \cdot b(\mathcal{P}) - d^2 + 2.$$
(3)

Since the volume of a lattice *d*-simplex of \mathbb{R}^d is a multiple of 1/d!, the minimal volume formula (2) follows from the inequality (3).

3 Castelnuovo polytopes

As before, let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope of dimension d. Following [4], we say that \mathcal{P} is *Castelnuovo* if \mathcal{P} satisfies the equality of (1). When \mathcal{P} is Castelnuovo and when $V = \mathcal{P} \cap \mathbb{Z}^d$, the triangulation $\Gamma_{\mathcal{P}}$ constructed in the proof of Lemma 2.1 is unimodular. (Recall that a triangulation $\Gamma_{\mathcal{P}}$ on $\mathcal{P} \cap \mathbb{Z}^d$ of a lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ of dimension d is called *unimodular* if the volume of each of the d-simplices of \mathbb{R}^d belonging to $\Gamma_{\mathcal{P}}$ is 1/d!.) Furthermore, the triangulation $\Gamma_{\mathcal{P}}$ constructed in the proof of Lemma 2.1 is *regular*. We refer the reader to [1] for fundamental materials on regular triangulations. It then follows that every Castelnuovo polytope possesses a regular unimodular triangulation. It is reasonable to find all possible sequences (d, b, c) of integers with $d \geq 3$, $b \geq d+1$, $c \geq 1$ for which there exists a Castelnuovo polytope $\mathcal{P} \subset \mathbb{R}^d$ of dimension d with $b = b(\mathcal{P})$ and $c = c(\mathcal{P})$.

It follows from [3] that, given integers d and c with $d \ge 3$ and $c \ge 1$, there exists a Castelnuovo polytope (in fact, simplex) $\mathcal{P} \subset \mathbb{R}^d$ of dimension d with $b(\mathcal{P}) = d + 1$ and $c = c(\mathcal{P})$.

References

- C. Haase, A. Paffenholz, L. C. Piechnik and F. Santos, Existence of unimodular triangulations—positive results, *Mem. Amer. Math. Soc.* 270 (2021), #1321.
- [2] T. Hibi, A lower bound theorem for Ehrhart polynomials of convex polytopes, Adv. in Math. 105 (1994), 162–165.
- [3] T. Hibi and A. Tsuchiya, Flat δ-vectors and their Ehrhart polynomials, Arch. Math. (Basel) 108 (2017), 151–157.
- [4] R. Kawaguchi, Sectional genus and the volume of a lattice polytope, J. Algebraic Combin. 53 (2021), 1253–1264.
- [5] R. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333–342.
- [6] D. E. Varberg, Pick's theorem revisited, Amer. Math. Monthly 92 (1985), 584– 587.

(Received 9 Jan 2022; revised 19 Oct 2022)