The minimal volume of a lattice polytope

Ichiro Sainose
Hiroshima Municipal Motomachi Senior High School Hiroshima 730-0005, Japan
sainose23517257@nifty.com

Ginji Hamano

School of Science and Engineering, Tokyo Denki University
Saitama 350-0394, Japan
18hz002@ms.dendai.ac.jp

Tatsuo Emura Takayuki Hibi
Department of Pure and Applied Mathematics
Graduate School of Information Science and Technolog
Osaka University, Osaka 565-0871, Japan
skmj50023@ares.eonet.ne.jp hibi@math.sci.osaka-u.ac.jp

Abstract

Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope of dimension d. Let b denote the number of lattice points belonging to the boundary of \mathcal{P} and c those in the interior of \mathcal{P}. It follows from a lower bound theorem of Ehrhart polynomials that, when $c>0$, the volume of \mathcal{P} is bigger than or equal to $\left(d c+(d-1) b-d^{2}+2\right) / d$!. In the present paper, via triangulations, a short and elementary proof of the minimal volume formula is given.

1 Introduction

Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope of dimension d. In other words, \mathcal{P} is a convex polytope of dimension d each of whose vertices belongs to \mathbb{Z}^{d}. A lattice point of \mathbb{R}^{d} is a point belonging to \mathbb{Z}^{d}. Let $b=b(\mathcal{P})$ denote the number of lattice points belonging to the boundary $\partial \mathcal{P}$ of \mathcal{P} and $c=c(\mathcal{P})$ those in the interior of \mathcal{P}. It follows from the lower bound theorem of Ehrhart polynomials [2] that, when $c>0$,

$$
\begin{equation*}
\operatorname{vol}(\mathcal{P}) \geq\left(d \cdot c(\mathcal{P})+(d-1) \cdot b(\mathcal{P})-d^{2}+2\right) / d! \tag{1}
\end{equation*}
$$

where $\operatorname{vol}(\mathcal{P})$ is the (Lebesgue) volume of \mathcal{P}. However, the argument in [2] is rather complicated with deep techniques on polytopes. In the present paper a short and
elementary proof of the minimal volume formula (1) will be given. Pick's formula guarantees that, when $d=2$, the inequality (1) is an equality [6].

A lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$ of dimension d is called Castelnuovo [4] if the equality holds in (1). A few remarks on Castelnuovo polytopes will be also stated.

2 Minimal volume formula

In general, let $\mathcal{P} \subset \mathbb{R}^{d}$ be a convex polytope of dimension d and $V \subset \mathcal{P}$ a finite set to which each of the vertices of \mathcal{P} belongs. A triangulation of \mathcal{P} on V is a collection Γ of d-simplices (simplices of dimension d) for which

- each vertex of each d-simplex $F \in \Gamma$ belongs to V;
- each $x \in V$ is a vertex of a d-simplex $F \in \Gamma$;
- if $F \in \Gamma$ and $G \in \Gamma$, then $F \cap G$ is a face of F and of G;
- $\mathcal{P}=\bigcup_{F \in \Gamma} F$.

The existence of a triangulation of \mathcal{P} on V is guaranteed by [5, Lemma 1.1]. Thus in particular, if \mathcal{P} is a lattice polytope, then a triangulation of \mathcal{P} on $\mathcal{P} \cap \mathbb{Z}^{d}$ exists.

Lemma 2.1 Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a convex polytope of dimension d and $V \subset \mathcal{P}$ a finite set to which each of the vertices of \mathcal{P} belongs. Let $b(\mathcal{P})=|V \cap \partial \mathcal{P}|$, where $\partial \mathcal{P}$ is the boundary of \mathcal{P}, and $c(\mathcal{P})=|V \cap(\mathcal{P} \backslash \partial \mathcal{P})|$, where $\mathcal{P} \backslash \partial \mathcal{P}$ is the interior of \mathcal{P}. Suppose that $c(\mathcal{P})>0$. Then there exists a triangulation $\Gamma_{\mathcal{P}}$ of \mathcal{P} on V with

$$
\left|\Gamma_{\mathcal{P}}\right| \geq d \cdot c(\mathcal{P})+(d-1) \cdot b(\mathcal{P})-d^{2}+2
$$

Proof. We construct the required triangulation $\Gamma_{\mathcal{P}}$ by induction on d. Let $d \geq 3$. Let Γ be a triangulation of \mathcal{P} on V. Let Δ denote the set of those $F \cap \partial \mathcal{P}$ with $F \in \Gamma$ for which $F \cap \partial \mathcal{P}$ is a $(d-1)$-simplex. Fix $G_{0} \in \Delta$. Remove $G_{0} \backslash \partial G_{0}$ from $\partial \mathcal{P}$, and one can assume that $\mathcal{P}^{\prime}=\partial \mathcal{P} \backslash\left(G_{0} \backslash \partial G_{0}\right)$ is a simplex in \mathbb{R}^{d-1} of dimension $d-1$ via a one-point compactification. Furthermore, the number of points in V belonging to the boundary of \mathcal{P}^{\prime} is $b\left(\mathcal{P}^{\prime}\right)=d$ and that to the interior of \mathcal{P}^{\prime} is $c\left(\mathcal{P}^{\prime}\right)=b(\mathcal{P})-d$. Since $b(\mathcal{P})>d$, it follows that $c\left(\mathcal{P}^{\prime}\right)>0$. The induction hypothesis yields a triangulation Δ^{\prime} of \mathcal{P}^{\prime} on $\mathcal{P}^{\prime} \cap V$ for which

$$
\left|\Delta^{\prime}\right| \geq(d-1) \cdot(b(\mathcal{P})-d)+(d-2) \cdot d-(d-1)^{2}+2
$$

Let $\Gamma^{(0)}=\Delta^{\prime} \cup\left\{G_{0}\right\}$. Then $\partial \mathcal{P}=\bigcup_{G \in \Gamma^{(0)}} G$.
Let x_{1}, \ldots, x_{c} denote the points in V belonging to the interior of \mathcal{P}. Now, set

$$
\Gamma^{(1)}=\left\{\operatorname{conv}\left(G \cup\left\{x_{1}\right\}\right): G \in \Gamma^{(0)}\right\},
$$

where $\operatorname{conv}\left(G \cup\left\{x_{1}\right\}\right)$ is the convex hull of $G \cup\left\{x_{1}\right\}$ in \mathbb{R}^{d}, and $\Gamma^{(1)}$ is a triangulation of \mathcal{P} on $V^{(1)}=(\partial \mathcal{P} \cap V) \cup\left\{x_{1}\right\}$. Since $\left|\Gamma^{(1)}\right|=\left|\Gamma^{(0)}\right|=\left|\Delta^{\prime}\right|+1$, it follows that

$$
\begin{aligned}
\left|\Gamma^{(1)}\right| & \geq(d-1) \cdot(b(\mathcal{P})-d)+(d-2) \cdot d-(d-1)^{2}+3 \\
& =d+(d-1) \cdot b(\mathcal{P})-d^{2}+2 .
\end{aligned}
$$

Let $c \geq 2$ and $x_{2} \in F$ with $F \in \Gamma^{(1)}$. Let F_{0} be the smallest face of F with $x_{2} \in F_{0}$. Then x_{2} belongs to the interior of F_{0}. Let $e=\operatorname{dim} F_{0}$ and $y_{0}, y_{1}, \ldots, y_{e}$ the vertices of F_{0}. Thus $1 \leq e \leq d$. Let $\left\{G_{1}, \ldots, G_{q}\right\}$ denote the set of those $G \in \Gamma^{(1)}$ for which F_{0} is a face of G and, for each $1 \leq i \leq q$, write W_{i} for the set of vertices of G_{i}. It follows that, for each $1 \leq i \leq q$ and for each $0 \leq j \leq e$,

$$
G_{i}^{(j)}=\operatorname{conv}\left(\left(W_{i} \backslash\left\{y_{j}\right\}\right) \cup\left\{x_{2}\right\}\right)
$$

is a d-simplex. Now, it then turns out that

$$
\Gamma^{(2)}=\left(\Gamma^{(1)} \backslash\left\{G_{1}, \ldots, G_{q}\right\}\right) \bigcup\left(\bigcup_{1 \leq i \leq q, 0 \leq j \leq e}\left\{G_{i}^{(j)}\right\}\right)
$$

is a triangulation of \mathcal{P} on $V^{(2)}=(\partial \mathcal{P} \cap V) \cup\left\{x_{1}, x_{2}\right\}$. Since $F_{0} \not \subset \partial \mathcal{P}$, one can regard

$$
\bigcup_{i=1}^{q} \operatorname{conv}\left(\left\{W_{i} \backslash\left\{y_{0}, \ldots, y_{e}\right\}\right\}\right)
$$

as a boundary of a convex polytope of dimension $d-e$. In particular $q \geq d-e+1$. Hence

$$
\begin{aligned}
\left|\Gamma^{(2)}\right| & \geq d+(d-1) \cdot b(\mathcal{P})-d^{2}+2+(d-e+1) e \\
& \geq 2 \cdot d+(d-1) \cdot b(\mathcal{P})-d^{2}+2
\end{aligned}
$$

Continuing the procedure yields a triangulation $\Gamma^{(c)}$ of \mathcal{P} on

$$
V^{(c)}=(\partial \mathcal{P} \cap V) \cup\left\{x_{1}, \ldots, x_{c}\right\}
$$

with

$$
\left|\Gamma^{(c)}\right| \geq d \cdot c(\mathcal{P})+(d-1) \cdot b(\mathcal{P})-d^{2}+2
$$

as desired.
Example 2.2 The picture drawn below demonstrates the procedure of constructing the triangulation $\Gamma_{\mathcal{P}}$ in the proof of Lemma 2.1. Let $\mathcal{P}=A B C D E$ denote the pyramid over the quadrangle $B C D E$. Let $V=\left\{A, B, C, D, E, y_{1}, x_{1}, x_{2}\right\}$ where y_{1} belongs to the boundary of \mathcal{P} and where each of x_{1} and x_{2} belongs to the interior of \mathcal{P}. Combining y_{1} with each of B, C, D, E yields the triangulation $\Gamma^{(0)}$ of the boundary $\partial \mathcal{P}$ of \mathcal{P}. Combining $x_{1} \in \mathcal{P} \backslash \partial \mathcal{P}$ with each of A, B, C, D, E and y_{1} yields the triangulation $\Gamma^{(1)}$ of \mathcal{P} on $V^{(1)}=\left\{A, B, C, D, E, y_{1}, x_{1}\right\}$. Let x_{2} belong to the interior of the triangle F_{0} with the vertices $x_{1}=y_{0}, y_{1}, D=y_{2}$. Combining x_{2} with each of y_{0}, y_{1}, y_{2} yields the triangulation of F_{0} on $\left\{x_{2}, y_{0}, y_{1}, y_{2}\right\}$. Finally, combining x_{2} with each of C and E yields the triangulation $\Gamma^{(2)}$ of \mathcal{P} on V.

We now come to the minimal volume formula (1).
Theorem 2.3 Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope of dimension d. Let $b(\mathcal{P})$ denote the number of lattice points belonging to the boundary $\partial \mathcal{P}$ of \mathcal{P} and $c(\mathcal{P})$ that number in the interior of \mathcal{P}. Suppose that $c(\mathcal{P})>0$. Then one has

$$
\begin{equation*}
\operatorname{vol}(\mathcal{P}) \geq\left(d \cdot c(\mathcal{P})+(d-1) \cdot b(\mathcal{P})-d^{2}+2\right) / d! \tag{2}
\end{equation*}
$$

where $\operatorname{vol}(\mathcal{P})$ is the (Lebesgue) volume of \mathcal{P}.
Proof. Lemma 2.1 guarantees the existence of a triangulation $\Gamma_{\mathcal{P}}$ of \mathcal{P} on $\mathcal{P} \cap \mathbb{Z}^{d}$ with

$$
\begin{equation*}
\left|\Gamma_{\mathcal{P}}\right| \geq d \cdot c(\mathcal{P})+(d-1) \cdot b(\mathcal{P})-d^{2}+2 \tag{3}
\end{equation*}
$$

Since the volume of a lattice d-simplex of \mathbb{R}^{d} is a multiple of $1 / d!$, the minimal volume formula (2) follows from the inequality (3).

3 Castelnuovo polytopes

As before, let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope of dimension d. Following [4], we say that \mathcal{P} is Castelnuovo if \mathcal{P} satisfies the equality of (1). When \mathcal{P} is Castelnuovo and when $V=\mathcal{P} \cap \mathbb{Z}^{d}$, the triangulation $\Gamma_{\mathcal{P}}$ constructed in the proof of Lemma 2.1 is unimodular. (Recall that a triangulation $\Gamma_{\mathcal{P}}$ on $\mathcal{P} \cap \mathbb{Z}^{d}$ of a lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$ of dimension d is called unimodular if the volume of each of the d-simplices of \mathbb{R}^{d} belonging to $\Gamma_{\mathcal{P}}$ is $1 / d!$.) Furthermore, the triangulation $\Gamma_{\mathcal{P}}$ constructed in the proof of Lemma 2.1 is regular. We refer the reader to [1] for fundamental materials on regular triangulations. It then follows that every Castelnuovo polytope possesses a regular unimodular triangulation.

It is reasonable to find all possible sequences (d, b, c) of integers with $d \geq 3$, $b \geq d+1, c \geq 1$ for which there exists a Castelnuovo polytope $\mathcal{P} \subset \mathbb{R}^{d}$ of dimension d with $b=b(\mathcal{P})$ and $c=c(\mathcal{P})$.

It follows from [3] that, given integers d and c with $d \geq 3$ and $c \geq 1$, there exists a Castelnuovo polytope (in fact, simplex) $\mathcal{P} \subset \mathbb{R}^{d}$ of dimension d with $b(\mathcal{P})=d+1$ and $c=c(\mathcal{P})$.

References

[1] C. Haase, A. Paffenholz, L. C. Piechnik and F. Santos, Existence of unimodular triangulations-positive results, Mem. Amer. Math. Soc. 270 (2021), \#1321.
[2] T. Hibi, A lower bound theorem for Ehrhart polynomials of convex polytopes, Adv. in Math. 105 (1994), 162-165.
[3] T. Hibi and A. Tsuchiya, Flat δ-vectors and their Ehrhart polynomials, Arch. Math. (Basel) 108 (2017), 151-157.
[4] R. Kawaguchi, Sectional genus and the volume of a lattice polytope, J. Algebraic Combin. 53 (2021), 1253-1264.
[5] R. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333-342.
[6] D. E. Varberg, Pick's theorem revisited, Amer. Math. Monthly 92 (1985), 584587.

