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Abstract

In this paper, we construct two new families of Supplementary Difference
Sets (SDS), that is,
4-{q2; (q2 − 1)/8; (q2 − 9)/16} SDS and 4-{q2; q(q − 1)/2; q(q − 2)} SDS.

1 Introduction

Hadamard matrices play important roles in communication systems, image process-
ing and computer security (see [4, 7]). Hadamard matrices can be constructed by
using different methods. Baumert and Hall Jr. [1], Turyn [8], and Xia et al. [9, 12]
constructed Hadamard matrices from Williamson matrices. Cooper and Seberry
(Wallis) defined T -matrices in 1972 [3]. Xia proposed the C-partitions on an abelian
group [10] and found an infinite family of C-partitions onGF (q2) with q ≡ 3 (mod 8),
q a prime power [14, 16]. Chen [2] constructed a partition on GF (q2), then M. Xia
et al. [15] generalized the results from GF (q2) to GF (q). See [6] for more details.
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Supplementary difference sets (SDS) are very useful in the construction of Hada-
mard matrices [10, 11, 13]. Compared to the results in [16], we give different methods
on the constructions of C-partitions and SDS in this paper. The construction is new

and the 4-
{
q2; (q2−1)

8
; (q2−9)

1
6
}
SDS is new.

Let G be an abelian group of order v. We denote the group operation by mul-
tiplication. Subsets D1, . . . , Dr of G are called r-{v; |D1|, . . . , |Dr|;λ} SDS, if for
every nonidentity element g in G, there are exactly λ elements (d, d

′
) in D1 × D1,

or D2 × D2, . . . , or Dr × Dr such that gd
′
= d. It is convenient to use the group

ring Z[G] of the group G over the ring Z of rational integers with addition and
multiplication. Here the elements of Z[G] are of the form

a1g1 + a2g2 + · · ·+ avgv, ai ∈ Z, gi ∈ G.

In Z[G], the addition + is given by the rule(∑
g

a(g)g

)
+

(∑
g

b(g)g

)
=
∑
g

(a(g) + b(g)) g.

The multiplication in Z[G] is given by the rule(∑
g

a(g)g

)(∑
h

b(h)h

)
=
∑
k

(∑
gh=k

a(g)b(h)

)
k.

For any subset A of G, we denote an element∑
g∈A

g ∈ Z[G],

and by abusing the notation, we denote it by A.

Let A and B be subsets of G and let t be an integer. We define

B(t) =
∑
b∈B

bt ∈ Z[G],

AB(−1) =
∑

a∈A,b∈B
ab−1 ∈ Z[G],

and denote
ΔA = AA(−1), Δ(A,B) = AB(−1) +BA(−1).

If A = ∅, we define
Δ∅ = 0, Δ(∅, B) = 0.

With this convention, D1, . . . , Dr being r-{v; |D1|, . . . , |Dr|;λ} SDS, are equivalent
to

r∑
i=1

ΔDi =

(
r∑

i=1

|Di| − λ

)
+ λG.
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If r = 1, the single SDS becomes a difference set (DS) in the usual sense. When
|D1| = · · · = |Dr| = k, we denote r-{v; |D1|, . . . , |dr|;λ} by r-{v; k;λ}. It is well-

known that 4-{q2; q(q−1)
2

; q(q − 2)} SDS have been constructed for prime powers q ≡
1 and 3 (mod 4), except for q ≡ 7 (mod 8). (See [2, 8, 9, 10, 11, 12, 13].)

In this paper we give two new families of SDS:

4−
{
q2;

(q2 − 1)

8
;
(q2 − 9)

16

}
and 4−

{
q2;

q(q − 1)

2
; q(q − 2)

}
,

where q is a prime power congruent to 3 (mod 8). By using the second SDS we can
construct Hadamard matrices of order 4q2.

2 Preliminaries

Let q be a prime power congruent to 3 (mod 4) and let g be a generator of the cyclic
group of G = GF (q2). Set

ci =

{
g2(q+1)j+i : j = 0, . . . ,

(q − 3)

2

}
, i = 0, 1, . . . , 2q + 1, (2.1)

si = ci ∪ ci+q+1, i = 0, 1, . . . , q. (2.2)

Then the ci and the si are partitions of GF (q2) into cosets of the quadratic residues
of GF (q) and the multiplicative group of GF (q), respectively.

Denote
Ψ0 = Δc0, Ψi = Δ(c0, ci), i = 1, . . . , 2q + 1,

and define
Ψi = Ψj as i ≡ j (mod 2q + 2).

We have

Δci = giΨ0, i = 0, 1, . . . , 2q + 1,

Δ(ci, cj) = giΨj−i = gjΨi−j i for i �= j.

In particular,
Ψi = giΨ−i = giΨ2q+2−i, i = 0, 1, . . . , 2q + 1.

From [10], we have the following lemma.

Lemma 2.1 If q ≡ 3 (mod 4) is a prime power, and v = q2, then the following
equations hold:

(a) Ψ0 =
(q−1)

2
+ (q−3)

4
s0;

(b) Ψq+1 =
(q−1)

2
s0;

(c) Ψi +Ψi+q+1 = G∗ − s0 − si, i = 1, . . . , q,

where G∗ = G \ {0}.
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Proof. From the definition of ci in (2.1), c0 is a Paley difference set and Ψq+1

contains all non-quadratic residues in GF (q). From [5] (page 178), it is easy to see

that Ψ0 =
(q−1)

2
+ (q−3)

4
s0 and Ψq+1 =

(q−1)
2

s0. So (a) and (b) are proven.

Since q ≡ 3 (mod 4) is a prime power, f(x) = x2 + 1 is irreducible in GF (q), and
ax + b (mod f(x)) is a finite field of GF (v), where a, b ∈ GF (q). Let q = 4m + 3,
and let h be a primitive element of GF (q). We have

c0 =
{
h2i : i = 0, . . . , 2m

}
, c4m+4 =

{
h2i+1 : i = 0, . . . , 2m

}
, and

s2m+2 = c2m+2 ∪ c6m+6 =
{
hix : i = 0, . . . , 4m+ 1

}
.

When i = 2m+ 2,

Ψ2m+2 +Ψ6m+6 =
∑

0≤k≤2m, 0≤j≤4m+1

((
h2k − hjx

)
+
(
hjx− h2k

))
=

∑
0≤k≤2m, 0≤j≤4m+1

((
hjx+ h2k

)
+
(
hjx+ h2k+1

))
=

∑
0≤j,k≤4m+1

(
hjx+ hk

)
= G∗ − s0 − s2m+2.

When i �= 2m+ 2, 1 ≤ i ≤ 4m+ 3, denote gi = hαx+ hβ. Then we have

ci + ci+4m+4 = si =
{
hα+jx+ hβ+j : j = 0, . . . , 4m+ 1

}
,

and

Ψi + Ψi+4m+4

= Δ(c0, si)

=
∑

0≤k≤2m, 0≤j≤4m+1

((
h2k − (hα+jx+ hβ+j

))
+
((
hα+jx+ hbeta+j

)− h2k
))

=
∑

0≤k≤2m, 0≤j≤4m+1

((
hα+jx+ (

(
hβ+j + h2k

))
+
(
hα+jx+

(
hbeta+j + h2k+1

)))
=

∑
0≤j,k≤4m+1

(
hα+jx+

(
hβ+j + hk

))
=

∑
0≤j≤4m+1, c∈GF (q)

(
hα+jx+ c

)− ∑
0≤j≤4m+1

(
hα+jx+ hβ+j

)
= G∗ − s0 − si.

So (c) is proven, and the proof is complete. �

It is easy to see that

q∑
i=0

giΨ0 =
q − 1

2

q∑
i=0

gi +
q − 3

4

q∑
i=0

gis0 =
(q2 − 1)

2
+

(q − 3)

4
G∗, and

q∑
i=0

giΨi =

q∑
i=0

Δ(c0, ci) =
(q − 1)

2
G∗, i = 1, . . . , q.
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3 Two new families of SDS

From now on let q ≡ 3 (mod 8) be a prime power. Set

A =

(q−3)
4∑

i=0

c8i, (3.1)

Aj = g
(j−1)(q+1)

4 A =

(q−3)
4∑

i=0

c
8i+

(j−1)(q+1)
4

, j = 1, 2, 3, 4. (3.2)

Theorem 3.1 There are 4-{q2; (q2−1)
8

; (q2−9)
16

} SDS for every prime power q with
q ≡ 3 (mod 8).

Proof. If q = 3, we take A1 = A2 = A3 = A4 = {0}. Clearly, A1, . . . , A4 are
4-{9; 1; 0} SDS. Now suppose q > 3. We take A1, . . . , A4 as defined in (3.1) and
(3.2).

We prove that these are 4-{q2; (q2−1)
8

; (q2−9)
16

} SDS. First, from a simple calculation,
we have

ΔA =

(q−3)
4∑

i=0

g4i(Ψ0 +

(q−3)
8∑

j=1

Ψ8j).

Then

4∑
k=1

ΔAk =

q∑
i=0

gi(Ψ0 +

(q−3)
8∑

j=1

Ψ8j)

=
(7q2 + 1)

16
+

(q2 − 9)

16
G.

So the proof is complete. �

Let X and Y be two subsets of {0, 1, . . . , 2q + 1}, such that

X ∩ {i+ q + 1(mod 2q + 2) : i ∈ X} = ∅, (3.3)

{i(mod q + 1) : i ∈ X} ∩ Y = ∅, (3.4)

and

|X|+ 2|Y | = q. (3.5)

Write

D =
∑
i∈X

ci +
∑
j∈Y

sj. (3.6)
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It is well-known that

ΔD =
(q−1)(q−|X|)

2
+

(q−|X|)(q+|X|−2)

4
G∗ − (q−|X|)

2

∑
i∈X

si +ΔE, (3.7)

where E =
∑

i∈X ci. (See [11] for more details.) We see that the equation (3.7) is
dependent on the set X only, but the set Y has nothing to do with it.

Theorem 3.2 Let q ≡ 3 (mod 8) be a prime power. Then there are 4-{q2; q(q−1)
2

;
q(q − 2)} SDS.

Proof. In (3.6), taking X = {8i : i = 0, . . . , (q−3)
4

} and Dk = g
(k−1)(q+1)

4 D, k =
1, 2, 3, 4, we have

4∑
k=1

ΔDk = q2 + q(q − 2)G.

The proof is now complete. �

The proof of SDS here is different from that in [10]. Using these SDS obtained
from Theorem 3.2, we can construct a Hadamard matrix of order 4q2.

Remark 3.1 In GF (9), let g = w+1 (mod w2+1, mod 3) be a generator of GF (9),
and set

Di = {0, gi−1, gi+3}, i = 1, 2, 3, 4.

Then they are 4-{9; 3; 3} SDS and their (1,−1) incidence matrices are of type 1; say
A, B, C, D, are symmetric and satisfy

A2 +B2 + C2 +D2 = 36I9,

AB − CD = AC − BD = AD − BC = 0.

(See [14] for more details.)

Although we have not got a 4-{q2; q(q−1)
2

; q(q − 2)} SDS for prime powers q with
q ≡ 7 (mod 8), nevertheless here is an example below.

Example 3.1 In GF (49), let g = w + 2 and

ci = {g16j+i(mod w2 + 1,mod 7) : j = 0, 1, 2}, i = 0, 1, . . . , 15,

si = ci + ci+8, i = 0, 1, . . . , 7.

Take X = {0, 3, 6} and Y = {1, 2}; put

D =
∑
i∈X

ci +
∑
j∈Y

sj,

Dk = g2(k−1)D, k = 1, 2, 3, 4. (3.8)
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It is easy to verify that D1, D2, D3, D4 in (3.8) are 4-{49; 21; 35} SDS. Take X =
{0, 3, 6, 9, 12} and Y = {2}; put

D =
∑
i∈X

ci + s2,

Dk = g2(k−1)D, k = 1, 2, 3, 4. (3.9)

It is easy to verify that D1, D2, D3, D4 in (3.9) are 4-{49; 21; 35} SDS too. Take

X = {0, 5, 10} and Y = {1, 3} (3.10)

or

X = {0, 4, 5, 10, 15} and Y = {1}, (3.11)

and putting Dk, k = 1, 2, 3, 4, as in (3.8), (3.9) respectively, we can get 4-{49; 21; 35}
SDS again.

Example 3.2 In GF (121), let g = x+ 4 and

ci =
{
g24j+i (mod x2 + 1, mod 11) : j = 0, 1, 2, 3, 4

}
, i = 0, . . . , 23,

si = ci ∪ ci+12, Ti =
∑
h∈si

h, i = 0, . . . , 11.

Set

D1 = c0 ∪ c8 ∪ c16 ∪ s1 ∪ s2 ∪ s3 ∪ s5;

Di = gi−1D1, i = 2, 3, 4.

We have

ΔD1 = 55 + 22(T0 + T4 + T8) + 25(T1 + T5 + T9) + 27(T2 + T6 + T10)

+25(T3 + T7 + T10),

so that
4∑

i=1

ΔDi = 121 + 99G,

and we can get a 4-{121; 55; 99} SDS.
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