Constructions of new families for Supplementary Difference Sets

Tianbing Xia
School of Computing and Information Technology
University of Wollongong
NSW 2522, Australia
txia@uow.edu.au
Guoxin Zuo Mingyuan Xia
School of Mathematics and Statistics Central China Normal University Wuhan, Hubei 430079, P. R. China
zuogx@mail.ccnu.edu.cn xiamy@mail.ccnu.edu.cn
Jennifer Seberry
School of Computing and Information Technology
University of Wollongong
NSW 2522, Australia
jennie@uow.edu.au

Abstract

In this paper, we construct two new families of Supplementary Difference Sets (SDS), that is, $4-\left\{q^{2} ;\left(q^{2}-1\right) / 8 ;\left(q^{2}-9\right) / 16\right\}$ SDS and $4-\left\{q^{2} ; q(q-1) / 2 ; q(q-2)\right\}$ SDS.

1 Introduction

Hadamard matrices play important roles in communication systems, image processing and computer security (see $[4,7]$). Hadamard matrices can be constructed by using different methods. Baumert and Hall Jr. [1], Turyn [8], and Xia et al. [9, 12] constructed Hadamard matrices from Williamson matrices. Cooper and Seberry (Wallis) defined T-matrices in 1972 [3]. Xia proposed the C-partitions on an abelian group [10] and found an infinite family of C-partitions on $G F\left(q^{2}\right)$ with $q \equiv 3(\bmod 8)$, q a prime power [14, 16]. Chen [2] constructed a partition on $G F\left(q^{2}\right)$, then M. Xia et al. [15] generalized the results from $G F\left(q^{2}\right)$ to $G F(q)$. See [6] for more details.

Supplementary difference sets (SDS) are very useful in the construction of Hadamard matrices [10, 11, 13]. Compared to the results in [16], we give different methods on the constructions of C-partitions and SDS in this paper. The construction is new and the $4-\left\{q^{2} ; \frac{\left(q^{2}-1\right)}{8} ; \frac{\left(q^{2}-9\right)}{1} 6\right\}$ SDS is new.

Let G be an abelian group of order v. We denote the group operation by multiplication. Subsets D_{1}, \ldots, D_{r} of G are called $r_{-}\left\{v ;\left|D_{1}\right|, \ldots,\left|D_{r}\right| ; \lambda\right\}$ SDS, if for every nonidentity element g in G, there are exactly λ elements $\left(d, d^{\prime}\right)$ in $D_{1} \times D_{1}$, or $D_{2} \times D_{2}, \ldots$, or $D_{r} \times D_{r}$ such that $g d^{\prime}=d$. It is convenient to use the group ring $Z[G]$ of the group G over the ring Z of rational integers with addition and multiplication. Here the elements of $Z[G]$ are of the form

$$
a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{v} g_{v}, a_{i} \in Z, g_{i} \in G
$$

In $Z[G]$, the addition + is given by the rule

$$
\left(\sum_{g} a(g) g\right)+\left(\sum_{g} b(g) g\right)=\sum_{g}(a(g)+b(g)) g .
$$

The multiplication in $Z[G]$ is given by the rule

$$
\left(\sum_{g} a(g) g\right)\left(\sum_{h} b(h) h\right)=\sum_{k}\left(\sum_{g h=k} a(g) b(h)\right) k .
$$

For any subset A of G, we denote an element

$$
\sum_{g \in A} g \in Z[G]
$$

and by abusing the notation, we denote it by A.
Let A and B be subsets of G and let t be an integer. We define

$$
\begin{aligned}
B^{(t)} & =\sum_{b \in B} b^{t} \in Z[G], \\
A B^{(-1)} & =\sum_{a \in A, b \in B} a b^{-1} \in Z[G],
\end{aligned}
$$

and denote

$$
\Delta A=A A^{(-1)}, \quad \Delta(A, B)=A B^{(-1)}+B A^{(-1)}
$$

If $A=\emptyset$, we define

$$
\Delta \emptyset=0, \Delta(\emptyset, B)=0 .
$$

With this convention, D_{1}, \ldots, D_{r} being $r_{-}\left\{v ;\left|D_{1}\right|, \ldots,\left|D_{r}\right| ; \lambda\right\}$ SDS, are equivalent to

$$
\sum_{i=1}^{r} \Delta D_{i}=\left(\sum_{i=1}^{r}\left|D_{i}\right|-\lambda\right)+\lambda G
$$

If $r=1$, the single SDS becomes a difference set (DS) in the usual sense. When $\left|D_{1}\right|=\cdots=\left|D_{r}\right|=k$, we denote $r-\left\{v ;\left|D_{1}\right|, \ldots,\left|d_{r}\right| ; \lambda\right\}$ by $r-\{v ; k ; \lambda\}$. It is wellknown that $4-\left\{q^{2} ; \frac{q(q-1)}{2} ; q(q-2)\right\}$ SDS have been constructed for prime powers $q \equiv$ 1 and $3(\bmod 4)$, except for $q \equiv 7(\bmod 8)$. (See $[2,8,9,10,11,12,13]$.)

In this paper we give two new families of SDS:

$$
4-\left\{q^{2} ; \frac{\left(q^{2}-1\right)}{8} ; \frac{\left(q^{2}-9\right)}{16}\right\} \text { and } 4-\left\{q^{2} ; \frac{q(q-1)}{2} ; q(q-2)\right\}
$$

where q is a prime power congruent to $3(\bmod 8)$. By using the second SDS we can construct Hadamard matrices of order $4 q^{2}$.

2 Preliminaries

Let q be a prime power congruent to $3(\bmod 4)$ and let g be a generator of the cyclic group of $G=G F\left(q^{2}\right)$. Set

$$
\begin{align*}
& c_{i}=\left\{g^{2(q+1) j+i}: j=0, \ldots, \frac{(q-3)}{2}\right\}, \quad i=0,1, \ldots, 2 q+1, \tag{2.1}\\
& s_{i}=c_{i} \cup c_{i+q+1}, \quad i=0,1, \ldots, q . \tag{2.2}
\end{align*}
$$

Then the c_{i} and the s_{i} are partitions of $G F\left(q^{2}\right)$ into cosets of the quadratic residues of $G F(q)$ and the multiplicative group of $G F(q)$, respectively.

Denote

$$
\Psi_{0}=\Delta c_{0}, \quad \Psi_{i}=\Delta\left(c_{0}, c_{i}\right), \quad i=1, \ldots, 2 q+1
$$

and define

$$
\Psi_{i}=\Psi_{j} \quad \text { as } \quad i \equiv j(\bmod 2 q+2)
$$

We have

$$
\begin{aligned}
\Delta c_{i} & =g^{i} \Psi_{0}, \quad i=0,1, \ldots, 2 q+1 \\
\Delta\left(c_{i}, c_{j}\right) & =g^{i} \Psi_{j-i}=g^{j} \Psi_{i-j} i \quad \text { for } i \neq j
\end{aligned}
$$

In particular,

$$
\Psi_{i}=g^{i} \Psi_{-i}=g^{i} \Psi_{2 q+2-i}, \quad i=0,1, \ldots, 2 q+1
$$

From [10], we have the following lemma.
Lemma 2.1 If $q \equiv 3(\bmod 4)$ is a prime power, and $v=q^{2}$, then the following equations hold:
(a) $\Psi_{0}=\frac{(q-1)}{2}+\frac{(q-3)}{4} s_{0}$;
(b) $\Psi_{q+1}=\frac{(q-1)}{2} s_{0}$;
(c) $\Psi_{i}+\Psi_{i+q+1}=G^{*}-s_{0}-s_{i}, \quad i=1, \ldots, q$,
where $G^{*}=G \backslash\{0\}$.

Proof. From the definition of c_{i} in (2.1), c_{0} is a Paley difference set and Ψ_{q+1} contains all non-quadratic residues in $G F(q)$. From [5] (page 178), it is easy to see that $\Psi_{0}=\frac{(q-1)}{2}+\frac{(q-3)}{4} s_{0}$ and $\Psi_{q+1}=\frac{(q-1)}{2} s_{0}$. So (a) and (b) are proven.
Since $q \equiv 3(\bmod 4)$ is a prime power, $f(x)=x^{2}+1$ is irreducible in $G F(q)$, and $a x+b(\bmod f(x))$ is a finite field of $G F(v)$, where $a, b \in G F(q)$. Let $q=4 m+3$, and let h be a primitive element of $G F(q)$. We have

$$
\begin{aligned}
& c_{0}=\left\{h^{2 i}: i=0, \ldots, 2 m\right\}, c_{4 m+4}=\left\{h^{2 i+1}: i=0, \ldots, 2 m\right\}, \text { and } \\
& s_{2 m+2}=c_{2 m+2} \cup c_{6 m+6}=\left\{h^{i} x: i=0, \ldots, 4 m+1\right\} .
\end{aligned}
$$

When $i=2 m+2$,

$$
\begin{aligned}
\Psi_{2 m+2}+\Psi_{6 m+6} & =\sum_{0 \leq k \leq 2 m, 0 \leq j \leq 4 m+1}\left(\left(h^{2 k}-h^{j} x\right)+\left(h^{j} x-h^{2 k}\right)\right) \\
& =\sum_{0 \leq k \leq 2 m, 0 \leq j \leq 4 m+1}\left(\left(h^{j} x+h^{2 k}\right)+\left(h^{j} x+h^{2 k+1}\right)\right) \\
& =\sum_{0 \leq j, k \leq 4 m+1}\left(h^{j} x+h^{k}\right)=G^{*}-s_{0}-s_{2 m+2} .
\end{aligned}
$$

When $i \neq 2 m+2, \quad 1 \leq i \leq 4 m+3$, denote $g^{i}=h^{\alpha} x+h^{\beta}$. Then we have

$$
c_{i}+c_{i+4 m+4}=s_{i}=\left\{h^{\alpha+j} x+h^{\beta+j}: j=0, \ldots, 4 m+1\right\},
$$

and

$$
\begin{aligned}
\Psi_{i} & +\Psi_{i+4 m+4} \\
& =\Delta\left(c_{0}, s_{i}\right) \\
& =\sum_{0 \leq k \leq 2 m, 0 \leq j \leq 4 m+1}\left(\left(h^{2 k}-\left(h^{\alpha+j} x+h^{\beta+j}\right)\right)+\left(\left(h^{\alpha+j} x+h^{b e t a+j}\right)-h^{2 k}\right)\right) \\
& =\sum_{0 \leq k \leq 2 m, 0 \leq j \leq 4 m+1}\left(\left(h^{\alpha+j} x+\left(\left(h^{\beta+j}+h^{2 k}\right)\right)+\left(h^{\alpha+j} x+\left(h^{b e t a+j}+h^{2 k+1}\right)\right)\right)\right. \\
& =\sum_{0 \leq j, k \leq 4 m+1}\left(h^{\alpha+j} x+\left(h^{\beta+j}+h^{k}\right)\right) \\
& =\sum_{0 \leq j \leq 4 m+1, c \in G F(q)}\left(h^{\alpha+j} x+c\right)-\sum_{0 \leq j \leq 4 m+1}\left(h^{\alpha+j} x+h^{\beta+j}\right) \\
& =G^{*}-s_{0}-s_{i} .
\end{aligned}
$$

So (c) is proven, and the proof is complete.
It is easy to see that

$$
\begin{aligned}
& \sum_{i=0}^{q} g^{i} \Psi_{0}=\frac{q-1}{2} \sum_{i=0}^{q} g^{i}+\frac{q-3}{4} \sum_{i=0}^{q} g^{i} s_{0}=\frac{\left(q^{2}-1\right)}{2}+\frac{(q-3)}{4} G^{*}, \text { and } \\
& \sum_{i=0}^{q} g^{i} \Psi_{i}=\sum_{i=0}^{q} \Delta\left(c_{0}, c_{i}\right)=\frac{(q-1)}{2} G^{*}, i=1, \ldots, q
\end{aligned}
$$

3 Two new families of SDS

From now on let $q \equiv 3(\bmod 8)$ be a prime power. Set

$$
\begin{align*}
& A=\sum_{i=0}^{\frac{(q-3)}{4}} c_{8 i}, \tag{3.1}\\
& A_{j}=g^{\frac{(j-1)(q+1)}{4}} A=\sum_{i=0}^{\frac{(q-3)}{4}} c_{8 i+\frac{(j-1)(q+1)}{4}}, j=1,2,3,4 \tag{3.2}
\end{align*}
$$

Theorem 3.1 There are $4-\left\{q^{2} ; \frac{\left(q^{2}-1\right)}{8} ; \frac{\left(q^{2}-9\right)}{16}\right\}$ SDS for every prime power q with $q \equiv 3(\bmod 8)$.

Proof. If $q=3$, we take $A_{1}=A_{2}=A_{3}=A_{4}=\{0\}$. Clearly, A_{1}, \ldots, A_{4} are 4 - $\{9 ; 1 ; 0\}$ SDS. Now suppose $q>3$. We take A_{1}, \ldots, A_{4} as defined in (3.1) and (3.2).

We prove that these are $4-\left\{q^{2} ; \frac{\left(q^{2}-1\right)}{8} ; \frac{\left(q^{2}-9\right)}{16}\right\}$ SDS. First, from a simple calculation, we have

$$
\Delta A=\sum_{i=0}^{\frac{(q-3)}{4}} g^{4 i}\left(\Psi_{0}+\sum_{j=1}^{\frac{(q-3)}{8}} \Psi_{8 j}\right)
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{4} \Delta A_{k} & =\sum_{i=0}^{q} g^{i}\left(\Psi_{0}+\sum_{j=1}^{\frac{(q-3)}{8}} \Psi_{8 j}\right) \\
& =\frac{\left(7 q^{2}+1\right)}{16}+\frac{\left(q^{2}-9\right)}{16} G
\end{aligned}
$$

So the proof is complete.
Let X and Y be two subsets of $\{0,1, \ldots, 2 q+1\}$, such that

$$
\begin{align*}
X \cap\{i+q+1(\bmod 2 q+2): i \in X\} & =\emptyset \tag{3.3}\\
\{i(\bmod q+1): i \in X\} \cap Y & =\emptyset \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
|X|+2|Y|=q . \tag{3.5}
\end{equation*}
$$

Write

$$
\begin{equation*}
D=\sum_{i \in X} c_{i}+\sum_{j \in Y} s_{j} . \tag{3.6}
\end{equation*}
$$

It is well-known that

$$
\begin{equation*}
\Delta D=\frac{(q-1)(q-|X|)}{2}+\frac{(q-|X|)(q+|X|-2)}{4} G^{*}-\frac{(q-|X|)}{2} \sum_{i \in X} s_{i}+\Delta E \tag{3.7}
\end{equation*}
$$

where $E=\sum_{i \in X} c_{i}$. (See [11] for more details.) We see that the equation (3.7) is dependent on the set X only, but the set Y has nothing to do with it.
Theorem 3.2 Let $q \equiv 3(\bmod 8)$ be a prime power. Then there are $4-\left\{q^{2} ; \frac{q(q-1)}{2}\right.$; $q(q-2)\} S D S$.

Proof. In (3.6), taking $X=\left\{8 i: i=0, \ldots, \frac{(q-3)}{4}\right\}$ and $D_{k}=g^{\frac{(k-1)(q+1)}{4}} D, k=$ $1,2,3,4$, we have

$$
\sum_{k=1}^{4} \Delta D_{k}=q^{2}+q(q-2) G
$$

The proof is now complete.
The proof of SDS here is different from that in [10]. Using these SDS obtained from Theorem 3.2, we can construct a Hadamard matrix of order $4 q^{2}$.

Remark 3.1 $\operatorname{In} G F(9)$, let $g=w+1\left(\bmod w^{2}+1, \bmod 3\right)$ be a generator of $G F(9)$, and set

$$
D_{i}=\left\{0, g^{i-1}, g^{i+3}\right\}, \quad i=1,2,3,4
$$

Then they are $4-\{9 ; 3 ; 3\}$ SDS and their $(1,-1)$ incidence matrices are of type 1 ; say A, B, C, D, are symmetric and satisfy

$$
\begin{aligned}
A^{2}+B^{2}+C^{2}+D^{2} & =36 I_{9} \\
A B-C D=A C-B D=A D-B C & =0
\end{aligned}
$$

(See [14] for more details.)
Although we have not got a $4-\left\{q^{2} ; \frac{q(q-1)}{2} ; q(q-2)\right\}$ SDS for prime powers q with $q \equiv 7(\bmod 8)$, nevertheless here is an example below.

Example 3.1 In $G F(49)$, let $g=w+2$ and

$$
\begin{aligned}
c_{i} & =\left\{g^{16 j+i}\left(\bmod w^{2}+1, \bmod 7\right): j=0,1,2\right\}, i=0,1, \ldots, 15, \\
s_{i} & =c_{i}+c_{i+8}, i=0,1, \ldots, 7 .
\end{aligned}
$$

Take $X=\{0,3,6\}$ and $Y=\{1,2\} ;$ put

$$
\begin{align*}
D & =\sum_{i \in X} c_{i}+\sum_{j \in Y} s_{j} \\
D_{k} & =g^{2(k-1)} D, k=1,2,3,4 \tag{3.8}
\end{align*}
$$

It is easy to verify that $D_{1}, D_{2}, D_{3}, D_{4}$ in (3.8) are $4-\{49 ; 21 ; 35\}$ SDS. Take $X=$ $\{0,3,6,9,12\}$ and $Y=\{2\}$; put

$$
\begin{align*}
D & =\sum_{i \in X} c_{i}+s_{2} \\
D_{k} & =g^{2(k-1)} D, k=1,2,3,4 \tag{3.9}
\end{align*}
$$

It is easy to verify that $D_{1}, D_{2}, D_{3}, D_{4}$ in (3.9) are $4-\{49 ; 21 ; 35\}$ SDS too. Take

$$
\begin{equation*}
X=\{0,5,10\} \text { and } Y=\{1,3\} \tag{3.10}
\end{equation*}
$$

or

$$
\begin{equation*}
X=\{0,4,5,10,15\} \text { and } Y=\{1\} \tag{3.11}
\end{equation*}
$$

and putting $D_{k}, k=1,2,3,4$, as in (3.8), (3.9) respectively, we can get $4-\{49 ; 21 ; 35\}$ SDS again.

Example 3.2 In $G F(121)$, let $g=x+4$ and

$$
\begin{aligned}
& c_{i}=\left\{g^{24 j+i}\left(\bmod x^{2}+1, \bmod 11\right): j=0,1,2,3,4\right\}, i=0, \ldots, 23, \\
& s_{i}=c_{i} \cup c_{i+12}, \quad T_{i}=\sum_{h \in s_{i}} h, i=0, \ldots, 11 .
\end{aligned}
$$

Set

$$
\begin{aligned}
D_{1} & =c_{0} \cup c_{8} \cup c_{16} \cup s_{1} \cup s_{2} \cup s_{3} \cup s_{5} ; \\
D_{i} & =g^{i-1} D_{1}, \quad i=2,3,4 .
\end{aligned}
$$

We have

$$
\begin{aligned}
\Delta D_{1}=55+22\left(T_{0}+T_{4}+T_{8}\right)+ & 25\left(T_{1}+T_{5}+T_{9}\right)+27\left(T_{2}+T_{6}+T_{10}\right) \\
& +25\left(T_{3}+T_{7}+T_{10}\right),
\end{aligned}
$$

so that

$$
\sum_{i=1}^{4} \Delta D_{i}=121+99 G
$$

and we can get a $4-\{121 ; 55 ; 99\}$ SDS.

Acknowledgments

The authors thank the editor and the anonymous reviewers for their helpful comments and useful suggestions.

References

[1] L. D. Baumert and M. Hall Jr., A new construction for hadamard matrices, Bull. Amer. Math. Soc. 71 (1965), 169-170.
[2] Y. Q. Chen, On the existence of Abelian Hadamard difference sets and a new family of difference sets, Finite Fields Applic'ns 3 (1997), 234-256.
[3] J. Cooper and J. Seberry (Wallis), A construction for Hadamard arrays, Bull. Aust. Math. Soc. 7 (1972), 269-278.
[4] H. Evangelaras, C. Koukouvinos and J. Seberry, Applications of Hadamard matrices, J. Telecommunications and Inf. Tech. (2003), 3-10.
[5] M. Hall Jr., Combinatorial Theory, 2nd ed., John Wiley and Sons, New York, 1986.
[6] J. Seberry, Orthogonal Designs, Hadamard Matrices, Quadratic Forms and Algebras, Springer, 2017.
[7] J. Seberry, B. J. Wysocki and T.A. Wysocki, On some applications of Hadamard matrices. Metrika 62 (2005), 221-239;
https://doi.org/10.1007/s00184-005-0415-y.
[8] R. J. Turyn, A special class of Williamson matrices and difference sets, J. Combin. Theory Ser. A 36 (1984), 111-115.
[9] M. Xia, Some infinite classes of special Williamson matrices and difference sets, J. Combin. Theory Ser. A 61 (1992), 230-242.
[10] M. Xia, On supplementary difference sets and Hadamard matrices, Acta Mathematica Scientia 4(1) (1984), 81-92.
[11] M. Xia, Some new families of SDS and Hadamard matrices, Acta math. Sci. 16 (1996), 153-161.
[12] M. Xia and G. Liu, An infinite class of supplementary differences sets and Williamson matrices, J. Combin. Theory Ser. A 58 (1991), 310-317.
[13] M. Xia and T. Xia, Hadamard matrices constructed from supplementary difference sets in the class H_{1}, J. Combin. Des. 2(5) (1994), 325-339.
[14] M. Xia and T. Xia, A family of C-partitions and T-matrices, J. Combin. Des. 7 (1999), 269-281.
[15] M. Xia, T. Xia and J. Seberry, A new method for constructing Williamson matrices, Des. Codes Crypto. 35 (2005), 191-209.
[16] M. Xia, T. Xia, J. Seberry and G. Zuo, A new method for constructing T-matrices, Australas. J. Combin. 32 (2005), 61-78.

