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Abstract

In an orientation O of a graph G, an edge e is deletable if O − e is
strongly connected. For a 3-edge-connected graph G, Hörsch and Szigeti
defined the Frank number as the minimum k for which G admits k ori-
entations such that every edge e of G is deletable in at least one of the k
orientations. They conjectured the Frank number is at most 3 for every
3-edge-connected graph G. They proved the Petersen graph has Frank
number 3, but this was the only example with this property. We show
an infinite class of graphs having Frank number 3. Hörsch and Szigeti
showed every 3-edge-colorable 3-edge-connected graph has Frank num-
ber at most 3. It is tempting to consider non-3-edge-colorable graphs as
candidates for having Frank number greater than 2. Snarks are some-
times a good source of finding critical examples or counterexamples. One
might suspect various snarks should have Frank number 3. However, we
prove several candidate infinite classes of snarks have Frank number 2.
This holds also for the generalized Petersen Graphs GP (2s + 1, s). We
formulate numerous conjectures inspired by our experience.
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1 Introduction

The graphs in this paper are finite and without loops or multiple edges. We recom-
mend the book by Bondy and Murty [1] for the concepts used here.

A graph G is defined by its vertex set V and edge set E. An orientation of
G is a directed graph D = (V,A) such that each edge uv ∈ E is replaced by
exactly one of the arcs (u, v) or (v, u). In the entire paper, we use the concate-
nation u1u2 . . . uk for undirected paths and cycles, and use brackets and commas
(u1, u2, . . . , uk) for directed paths and circuits from u1 to uk. A circuit of length k,
denoted by (v1, v2, . . . , vk), is an orientation of a k-cycle, in which every vertex has
in-degree 1. A graph is cubic if every vertex has degree 3. A chord of a cycle or
circuit is an edge or arc connecting two non-consecutive vertices. A graph H is a
truncation of a cubic graph G at vertex v, if we get H from G by subdividing each
edge vxi incident with v by a new vertex vi for i ∈ {1, 2, 3}, deleting v and adding a
triangle on v1, v2, v3, thus H is also cubic. We also use the term truncation without
specifying v, meaning there exists a v as above. The term truncation was first used
by Kepler in constructing Platonic solids. In graph theory, probably Tutte [8] used
the term truncation in connection with Hamiltonian cycles of polyhedra.

A graph is k-edge-connected if the removal of any k−1 edges leaves a connected
graph. A digraph D is strongly connected if D contains a directed (x, y)-path for
any two vertices x, y ∈ V (D). An orientation of G is k-arc-connected if the removal
of any k−1 arcs leaves a strongly connected digraph. The following theorems are
fundamental results in the theory of directed graphs [7, 6].

Theorem 1.1 (Robbins). A graph has a strongly connected orientation if and only
if it is 2-edge-connected.

Theorem 1.2 (Nash-Williams). A graph has a k-arc-connected orientation if and
only if it is 2k-edge-connected.

This theorem has the following consequence: If we fix a 2-arc connected orien-
tation of a 4-edge-connected graph, then any arc can be removed and the remain-
ing digraph is still strongly connected. This situation changes for 3-edge-connected
graphs and their orientations. This motivated András Frank to raise some questions
on 3-edge-connected graphs and their orientations. These concepts and Frank’s ques-
tion appeared first in the paper by Hörsch and Szigeti [4]. In an orientation O of
G, the edge e is deletable if O − e is strongly connected. For a 3-edge-connected
graph G, Hörsch and Szigeti defined the Frank number F (G) as the minimum k for
which G admits k orientations such that every edge e of G is deletable in at least one
of the k orientations. In a more general setting, DeVos, Johnson and Seymour [3]
proved that any 3-edge-connected graph G satisfies F (G) ≤ 9. Hörsch and Szigeti
[4] showed that any 3-edge-connected graph G satisfies F (G) ≤ 7. They also showed
any 3-edge-colorable G has Frank number at most 3, and the Petersen graph has
Frank number 3. These results lead to the question whether there are any graphs
with Frank number greater than 2 besides the Petersen graph.
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In Section 3, we consider a few infinite families of 3-edge-connected graphs and
determine their Frank number, which turns out to be 2. We introduce a useful tool,
that helps us to check the Frank number.

In Section 4, we introduce local cubic modifications, that generalize truncation to
vertices of larger degree. More importantly, the perfect matching between the new
vertices of the cycle and the neighbors of v can be chosen arbitrarily. Although the
truncation of a 3-edge-connected cubic graph always remains 3-edge-connected, it is
not necessarily true for local cubic modifications in general. However, we prove that
even for a vertex of degree larger than 3, the perfect matching can always be chosen
such that the resulting graph remains 3-edge-connected.

As an important result, we construct infinitely many graphs with Frank number
3 in Section 4. We show that performing a local cubic modification on a vertex of
degree 3 preserves the Frank number. Using this operation on the Petersen graph
iteratively, we can prove our main result.

Theorem 1.3. There are infinitely many 3-edge-connected cubic graphs G such that
F (G)=3.

By investigating the properties of local cubic modifications, we are also able to
show the following. If one seeks other graphs with higher Frank number, then one
can restrict the search for the class of cubic, triangle-free graphs. We describe this
in detail in Section 4.

The results of Hörsch and Szigeti made us think probably some other non-3-
edge-colorable graphs might have Frank number larger than 2. Snarks are 4-edge-
chromatic bridgeless cubic graphs with girth at least 5. The Petersen graph is the
smallest snark. The next smallest are the Blanuša snarks. We show, they have Frank
number 2. We also study an infinite snark family. In Section 5, we show that each
flower snark has Frank number 2.

In Section 6, we prove exhaustively that indeed the Petersen graph is the only
cubic 3-edge-connected graph on at most 10 vertices having Frank number 3. Using
the observations from the previous sections the proof is significantly shorter than the
known proofs.

Some crucial properties of the Petersen graph can be generalized to the so called
generalized Petersen graphsGP (2s+1, s). One might hope to find a graph with Frank
number 3 among them. However, we prove in Section 7 that F (GP (2s + 1, s)) = 2
for s ≥ 3.

2 Preliminaries

If O is an orientation of G, then let −O be the orientation which we get by reversing
every arc in O.

Fact 2.1. The set of deletable edges is the same for O and −O.

We routinely have to check whether an edge is deletable. The following observa-
tion shows one way to do that.
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Proposition 2.2. Let G be a 2-edge-connected graph, and e = uv ∈ E(G). Suppose
that O is a strongly connected orientation of G such that the arc corresponding to e
goes from u to v. The orientation O− e, which we get by deleting the arc (u, v) from
O is strongly connected if and only if there exists a directed path in O − e from u
to v.

Proof. If there is no (u, v)-path in O − e, then O − e is not strongly connected by
definition. If there is a (u, v)-path P in O − e, then in any (x, y)-path of O, which
uses the arc (u, v), we replace (u, v) by P . Since O was strongly connected, we
now find an (x, y)-walk in O − e for any pair x and y. Therefore O − e is strongly
connected.

Since a strongly connected directed graph does not contain any source or sink
vertices, a vertex of total degree 3 can have out-degree 2 or 1. We call such a
vertex red or green, respectively. The following observation gives a necessary but
not sufficient condition on the deletability of an arc in a cubic graph.

Fact 2.3. Let G be a cubic graph and O a strongly connected orientation of G. If
an arc e = (u, v) is deletable, then u is red and v is green.

By Proposition 2.2, the deletability of the arc (u, v) is equivalent to the existence
of a directed path from u to v in O− e. Therefore u must have outdegree exactly 2,
and v must have indegree exactly 2. However, the example in Figure 1 shows that
these degree conditions are insufficient. If there exists an edge cut containing e such
that every arc except e is going in the same direction, then after deleting e, this edge
cut becomes a directed cut, hence no directed (u, v)-path exists anymore regardless
of the in- and outdegree of u and v.

Figure 1: The arc e = (u, v) is not deletable despite the fact that u is red, and
v is green

We use the following observation repeatedly. If O is a strongly connected orien-
tation of a 2-edge-connected graph and C is a circuit of O, then every chord of C is
deletable regardless of its orientation. Thus if O contains a Hamiltonian circuit C,
then every arc outside of C is deletable.
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3 Three elementary classes

In this section, we write subscripts modulo n or k depending on the context. We
use the following three results later in Section 6. Wheel graphs are a family of 3-
edge-connected graphs. For a positive integer n ≥ 3, the wheel Wn consists of a hub
vertex v0 and n other vertices forming a cycle such that v0 is adjacent to all other
vertices forming the spoke edges. Notice that W3 is the complete graph on 4 vertices.

Lemma 3.1. For every positive integer n ≥ 3, the wheel Wn has Frank number 2.

Proof. First let n be even. We give the first orientation O1 of the edges of Wn as
follows. We orient the edges of the outer n-cycle to get a circuit (v1, v2, . . . , vn).
We alternately orient the spoke edges: (v1, v0), (v0, v2), . . . , (v0, vn). For every odd i,
the arc (vi, vi+1) is deletable by Proposition 2.2 using the 2-path (vi, v0, vi+1). Also
for every odd i, the arc (vi, v0) is deletable by Proposition 2.2 using the 3-path
(vi, vi+1, vi+2, v0).

Now we give the second orientation O2. We orient the edges of the outer n-cycle to
get a circuit (v1, v2, . . . , vn). We alternately orient the spoke edges: (vn, v0), (v0, v1),
(v2, v0), . . . , (v0, vn−1). For every even i, the arc (vi, vi+1) is deletable by Proposi-
tion 2.2 using the 2-path (vi, v0, vi+1). Also for every even i, the arc (vi, v0) is deletable
by Proposition 2.2 using the 3-path (vi, vi+1, vi+2, v0). These two orientations of Wn

show that the Frank number is 2.
Let n be odd now. We give the first orientation O1 of the edges of Wn as follows.

We orient the edges to get a directed path (v1, v2, . . . , vn). However, we orient the last
edge from v1 to vn. We orient the spoke edges as follows: (v0, v1), (v0, vi) if i is even
and (vi, v0) if i is odd, except i = 1. Now for every odd i ∈ {1, . . . , n− 2}, the arcs
(vi, vi+1) are deletable by Proposition 2.2 using the 2-path (vi, v0, vi+1), and in the
case i = 1 the 3-path (v1, vn, v0, v2). The arc (v1, vn) is deletable by Proposition 2.2
using the path (v1, v2, . . . , vn). For every odd i larger than 1 smaller than n, the arcs
(vi, v0) are deletable by Proposition 2.2 using the path (vi, vi+1, vi+2, v0). For every
even i, the arc (v0, vi) is deletable by Proposition 2.2 using the path (v0, vi−2, vi−1, vi)
for i > 2 and (v0, v1, v2) for i = 2. Thus every spoke edge is deletable except (vn, v0)
and (v0, v1).

In the second orientation, we orient the outer cycle (vn, vn−1, . . . , v1) to get a
circuit. We orient the spoke edges as follows: (vi, v0) if i is odd and (vi, v0) if i is
even.

Now, for every even i, the arcs (vi+1, vi) are deletable by Proposition 2.2 using
the path (vi+1, v0, vi). Also (v1, v0) is deletable using the path (v1, vn, v0) and (vn, v0)
is deletable using the path (vn, . . . , v1, v0).

For an even integer n ≥ 4, let the Möbius ladder Mn be defined as follows. Let
v1v2 . . . vn be a cycle and we connect each opposite pair, these are edges of form
vivi+n/2.

Lemma 3.2. For every positive even integer n ≥ 4, the graph Mn has Frank num-
ber 2.
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Proof. First let n/2 be an odd number. We give the first orientation O1 of the edges
as follows. We orient the cycle edges consecutively (vi, vi+1) to get a circuit. This
implies every diagonal edge is deletable independent of its orientation. For every
odd i, we orient the diagonals as (vi, vi+n/2). Thereby the diagonal edges alternate
in direction (this uses the oddness of n/2). Now, for every odd i the arc (vi, vi+1) is
deletable by Proposition 2.2 using the path (vi, vi+n/2, vi+1+n/2, vi+1). We construct
the second orientation O2 from O1 by reversing the diagonals. Thereby for every
even i the arc (vi, vi+1) becomes deletable. Hence every edge is deletable in at least
one of the two orientations.

Figure 2: Two appropriate orientations of a Möbius ladder for n/2 even, where
the blue arcs are deletable.

Let n/2 be an even number now. In the first orientation, we orient the cycle edges
consecutively (vi, vi+1) to get a circuit. Thereby, all diagonal edges are deletable. For
every odd i smaller than n/2, we orient the diagonals as (vi, vi+n/2). For every even
i at most n/2, we orient the diagonals as (vi+n/2, vi), see Figure 2. Now, for every
odd i smaller than n/2, the arc (vi, vi+1) is deletable by Proposition 2.2 using the
path (vi, vi+n/2, vi+1+n/2, vi+1). For every even i greater than n/2, the arc (vi, vi+1)
is deletable by Proposition 2.2 using the path (vi, vi+n/2, vi+1+n/2, vi+1). Both arcs of
the outer circuit incident with vn and vn/2+1 are non-deletable.

In the second orientation, we create the following circuit C, that contains every
vertex but vn/2+1: (v1, v2, vn/2+2, vn/2+3, v3, v4, vn/2+4, vn/2+5, . . . , vn/2−1, vn/2, vn). We
add (vn/2, vn/2+1), (vn/2+2, vn/2+1) and (vn/2+1, v1) thereby making the orientation
strongly connected, plus (vn, vn−1). The remaining edges of Mn have arbitrary ori-
entation. Now, every second edge v2v3, . . . , vn/2−2vn/2−1 and vn/2+3vn/2+4, . . . , vn−1vn
are deletable independent of their orientation, since these are chords of a circuit.
The arc (vn, v1) is deletable by Proposition 2.2 using the path (vn, vn−1, vn/2−1, vn/2, i
vn/2+1, v1). The arc (vn/2, vn/2+1) is deletable by Proposition 2.2 using the path
(vn/2, vn, v1, v2, vn/2+2, vn/2+1). The arc (vn/2+2, vn/2+1) is deletable by Proposition 2.2
using the directed path (vn/2+2, . . . , vn/2) in C plus (vn/2, vn/2+1). We are done, since
every edge is deletable in at least one of the two given orientations of Mn.

Next, we consider the prisms, which are almost identical to Möbius ladders.

Lemma 3.3. For every k, the prism Pk = Ck×K2 has Frank number 2, where k ≥ 3.
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Proof. We denote the outer cycle by v1v2 . . . vk and the inner cycle by u1u2 . . . uk
and the spoke edges by uivi for every 1 ≤ i ≤ k. Let k be even. We give the first
orientation of the edges as follows. We orient the outer cycle edges consecutively
(vi, vi+1) to get a circuit. We orient the inner cycle edges consecutively backwards
(ui+1, ui) to get a circuit. We orient the spoke edges alternately. That is, every
vertex vi with odd index is the tail of a spoke arc, and every even-indexed vertex vi
is the head. Now for every odd i, the arc (vi, ui) is deletable by Proposition 2.2 using
the path (vi, vi+1, vi+2, ui+2, ui+1, ui). For every even i, the arc (ui, vi) is deletable by
Proposition 2.2 using the path (ui, ui−1, ui−2, vi−2, vi−1, vi). Hence every spoke edge
is deletable. For every odd i, the arc (vi, vi+1) is deletable by Proposition 2.2 using
the path (vi, ui, ui−1, . . . , ui+1, vi+1). For every even i, the arc (ui, ui−1) is deletable
by Proposition 2.2 using the path (ui, vi, vi+1, . . . , vi−1, ui−1). Since these arcs appear
alternately, we get the second orientation by reversing the spokes (Visually rotating
every arc by one.). We deduce that every edge is deletable in at least one of the two
orientations.

Let k be odd. The case k = 3 can be checked individually, see Figure 3.

Figure 3: Two appropriate orientations of the 3-prism, where the blue arcs are
deletable

Let k ≥ 5. We give the first orientation of the edges as follows. For every i, we
set (vi, vi+1) to get a circuit. For every i, we set (ui+1, ui) to get another circuit. We
orient the spoke edges as follows. For every odd i we set (vi, ui). For every even i
we set (ui, vi). Now every spoke edge is deletable by Proposition 2.2 as in the case k
even. For every odd i smaller than k, the arc (vi, vi+1) is deletable by Proposition 2.2
using the path (vi, ui, ui−1, . . . , ui+1, vi+1). Similarly for every odd i smaller than k,
the arc (ui+1, ui) is deletable.

In the second orientation, for every i, we set (vi+1, vi) except (vk, v1). For every i,
we set (ui, ui+1) except (u1, uk). For every odd i smaller than k, we set (vi, ui) and put
(uk, vk). For every even i, we set (ui, vi). In particular, there are two circuits of length
k + 2, which we use in the next part of the proof: C = (vk, vk−1, . . . , v1, u1, uk) and
C ′ = (u1, u2, . . . , uk, vk, v1). We use Proposition 2.2 again to show deletable edges.
The directed paths (vk, vk−1, . . . , v1) and (u1, u2, . . . , uk) guarantee that (vk, v1) and
(u1, uk) are deletable. For every odd i between 3 and k, the arc (vi, vi−1) is deletable
by Proposition 2.2 using the path (vi, ui, P

′
i , ui−1, vi−1), where P ′i is the subpath of

C ′ from ui to ui−1. Similarly the arc (ui−1, ui) is deletable by Proposition 2.2 using
the path (ui−1, vi−1, Pi, vi, ui), where Pi is the subpath of C from vi−1 to vi. Hence
every edge is deletable in at least one of the two orientations.
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4 Local cubic modification

Let us introduce the following local operation on a graph G of minimum degree
at least 3. For d ≥ 3, let v be a vertex of degree d, and let the neighbors of
v be x1, . . . , xd. We remove v and add new vertices v1, . . . , vd. We add a cycle
Cv = v1v2 . . . vd. We replace each edge vxi by an edge vjxi (see Figure 4) so that
each of the new vertices has exactly one neighbor from {x1, x2, . . . , xd}. The resulting
graph Gv is a local cubic modification of G at v. Let us remark there may be several
local cubic modifications at the same vertex v. It depends on the chosen perfect
matching M between {x1, x2, . . . , xd} and {v1, v2, . . . , vd}. Denote by Gv(M) the
local cubic modification of G at v with the chosen perfect matching M . Note that
truncation is a well-known subcase of local cubic modifications.

Figure 4: A local cubic modification at v

Let us emphasize that at this point it may happen that after performing a local
cubic modification the edge-connectivity decreases (see Figure 5).

Figure 5: The edge-connectivity may decrease by performing a local cubic
modification at v

In this paper, we focus on 3-edge-connected graphs. We show for any 3-edge-
connected graph, there exists a local cubic modification at any vertex, which is still
3-edge-connected.

Lemma 4.1. For any 3-edge-connected graph G and for an arbitrary vertex v ∈ V (G)
of degree d there exists a perfect matching M such that Gv(M) remains 3-edge-
connected.

Proof. Assume first, that v is not a cut vertex of G. Suppose to the contrary there
is an edge cut of size 2 in Gv(M) for every choice of M . For an arbitrary perfect
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matching M , let C(M) = {e, f} be an edge cut of size 2, and A(M) and B(M)
denote different non-empty connected components of Gv(M)− C(M).

Suppose A(M) ⊆ {v1, v2, . . . , vd} and consists of {vj1 , vj2 , . . . vj`}. Now |A(M)| ≤
2 since e and f must contain the edges of M incident with vji for all i ∈ {1, 2, . . . , `}.
On the other hand, e and f must belong to the new cycle Cv otherwise all the vertices
{v1, v2, . . . , vd} would be in the same connected component of Gv(M)−C(M). This
cannot happen since in that case |A(M)| = d ≥ 3, which is a contradiction. By
symmetry, the same argument also works for B(M).

Hence we can assume that both A(M) and B(M) have a vertex outside of
{v1, v2, . . . , vd}. Choose a vertex of both A(M) \ {v1, v2, . . . , vd} and B(M) \ {v1, v2,
. . . , vd}, y and z say. Since G is 3-edge-connected, there are at least 3 edge-disjoint
paths between y and z in G by Menger’s theorem. Therefore there exists at least
one path P yz disjoint from {e, f} in G. If P yz can be chosen such that it does not
go through v, then the same path exists in Gv(M), a contradiction. On the other
hand, if all possible P yz paths in G−{e, f} passes through v, then we can complete
any such P yz to P yz

v in Gv(M) by connecting the corresponding vertices vi and vj (i
and j are not necessarily distinct) using the cycle Cv. This completion can be done
unless both e and f are edges of Cv. But in that case, v would be a cut vertex in G,
which is a contradiction.

If v is a cut vertex ofG, then denote the non-empty connected components ofG−v
by K1, K2, . . . , Kk, where k ≥ 2. Since G is 3-edge-connected, |Ki ∩NG(v)| ≥ 3 for
any i ∈ {1, 2, . . . , k}. We interpret the choice of M as an assignment of the vertices of
Cv to the corresponding connected components of G− v. Imagine this assignment in
the following way. For every i ∈ {1, 2, . . . , k}, assign all vertices of Ki consecutively
on the cycle Cv, and then swap those k pair of consecutive vertices which correspond
to different components. The assignment is illustrated in Figure 6.

Figure 6: This assignment shows that M can be chosen such that Gv(M)
remains 3-edge-connected even if v is a cut vertex.

We claim that for such a perfect matching M , the local cubic modification Gv(M)
is 3-edge-connected. Suppose to the contrary there is an edge cut C = {e, f} of size
2 in Gv(M). Observe that both edges of the edge cut C must belong to the cycle
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Cv. Otherwise the vertices v1, v2, . . . , vd would be in the same connected component.
Thus C leads to an edge-cut of size at most 2 in G, a contradiction.

Assume both e and f belong to Cv; then deleting C from Cv results in two arcs.
If there exists an i ∈ {1, 2, . . . , k} such that the vertices of Ki ∩NG(v) are adjacent
to at least one vertex from both arcs then again the vertices v1, v2, . . . , vd would be in
the same connected component which leads to a contradiction. Hence Gv(M)−C is
disconnected if and only if M is chosen such that for all i ∈ {1, 2, . . . , k} the vertices
of Ki ∩NG(v) are adjacent to vertices from the same arc of the two arcs of Cv − C.
Due to the carefully chosen assignment shown in Figure 6, one can check that no
matter how we select two edges {e′, f ′} of Cv there exists an i ∈ {1, 2, . . . , k} such
that the vertices assigned to Ki intersect both arcs of Cv − {e′, f ′}.

Let us call a local cubic modification Gv(M) proper if it is 3-edge-connected.
In the rest of the paper, we assume that Gv always denotes a proper local cubic
modification of the 3-edge-connected graph G at vertex v.

Let us recall that Hörsch and Szigeti [4] introduced the notion of cubic extensions
of a graph with minimum degree at least 3 in Subsection 2.3. It is a global modifi-
cationwhich replaces every vertex v of degree at least 4 with a cycle of size deg(v),
leave the vertices of degree 3 intact, and substitute every edge with an edge between
the corresponding objects in such a way that this not necessarily unique graph is
cubic.

However, it is true that every cubic extension of a graph can be realized as a
series of proper local cubic modifications. In the other direction, if we perform a
series of proper local cubic modifications of a graph at all vertices of degree at least
4, then we get a cubic extension. Consequently, Lemma 4.1 implies that one can find
a 3-edge-connected cubic extension of a 3-edge-connected graph even if there are cut
vertices.

The following general observation plays a key role in the next proofs, when applied
to proper local cubic modifications.

Fact 4.2. Let Gv be a proper local cubic modification of G at v, and an orienta-
tion Ov be given such that there exists a directed (y, z)-path P yz

v in Ov for {y, z} *
{v1, v2, . . . , vd}. Now a directed (y, z)-path also exists for the inherited orientation
O of G if |{y, z} ∩ {v1, . . . , vd}| = 0 and a directed (y, v)-path also exists in O if
z ∈ {v1, . . . , vd}.

Now we are ready to show that a proper local cubic modification cannot decrease
the Frank number. Moreover, if the vertex v has degree 3, then it cannot increase
either. Hence in that case, the Frank number remains the same.

Lemma 4.3. Let G be a 3-edge-connected graph. If Gv is a proper local cubic mod-
ification of G at v, then F (Gv) ≥ F (G).

Proof. Suppose to the contrary that F (Gv) = k < F (G) witnessed by the strongly
connected orientations Ov

1 , . . . , O
v
k. Let O1, . . . , Ok be the orientations of Gwhich

coincide with Ov
1 , . . . , O

v
k on identical edges. Also let the direction of vjxi be copied

to vxi in each orientation. Since each Ov
j was strongly connected, for any pair of
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vertices y, z there exists a directed path between them in both directions. By Fact 4.2,
we can deduce that Oj also has the same property hence it is strongly connected.

We claim each edge e = yz of G is deletable in at least one orientation. Let Ov
j

be the orientation of Gv, where e with the appropriate orientation (say (y, z)) was
deletable. We know that Ov

j is strongly connected and contains a directed (y, z)-path
P v
yz in Ov

j − {e}. Consequently, similarly to the proof of Fact 4.2, Oj − {e} contains
a directed (y, z)-path Pyz where Pyz can be obtained from P v

yz by contracting the
subgraph between the first and last vertex of Cv ∩ P v

yz. Therefore e is deletable in
Oj by Proposition 2.2.

Corollary 4.4. Let G be a 3-edge-connected graph. Every 3-edge-connected cubic
extension H of G satisfies F (H) ≥ F (G).

By Lemma 4.3, we can create an infinite family G of cubic graphs with F (G) ≥ 3
for any G ∈ G starting from the Petersen graph in the following way. Hörsch and
Szigeti [4] showed the Petersen graph has Frank number 3. Pick a vertex v of the
Petersen graph, and consider a proper local cubic modification Gv of G at v. Since
the Petersen graph is cubic and 3-edge-connected and Gv is 3-edge-connected as
well, hence by Lemma 4.3, we get F (Gv) ≥ F (G). After iterating this proper local
cubic modification procedure with an arbitrary vertex of the always cubic current
graph, the Frank number never decreases. Thus we created an infinite family of
3-edge-connected graphs with Frank number at least 3.

In Theorem 1.3, we claimed the existence of an infinite family of cubic graphs
with Frank number equal to 3. So far we have seen that the Frank number cannot
decrease performing a proper local cubic modification at an arbitrary vertex v. In
the next lemma, we show that the Frank number cannot increase if deg(v) = 3.

Lemma 4.5. Let G be a 3-edge-connected graph and v a vertex of degree 3. If Gv is
a proper local cubic modification of G at v, then F (Gv) ≤ F (G).

Proof. Suppose the orientationsO = {O1, O2, . . . , Ok} are the witnesses of F (G) = k.
We create k orientations Ov = {Ov

1 , O
v
2 , . . . , O

v
k} of Gv to prove F (Gv) ≤ k. Let us

focus on the modified part ofGv, we just copy the orientations from the corresponding
Oi outside of the modified part. Since every Oi is a strong orientation, the 3-edge-cut
formed by the edges {av, bv, cv} cannot be a directed cut.

By Fact 2.1, we might assume that in every orientation Oi, exactly two edges
leave v. For convenience, instead of referring to a, b, c as the concrete neighbors of v,
let us permute their roles. We may assume that a denotes the tail of the unique arc
entering v. In Figure 7, we introduce the four orientations we use later in this proof.
Note that the first two orientations become the same if we interchange the roles of b
and c, and so do the last two orientations. Hence there are essentially two types of
extensionswhich we use on the modified part of Gv.

Firstly, observe that no matter which extensions we use from Figure 7, the ori-
entation Ov

i we get is also strongly connected. Indeed, we can enter the triangle
va, vb, vc only from a and we can leave in both directions through b or c, hence every
directed path of Oi can be extended even if it goes through v in G. Moreover, there
exists a directed path between any pair of new vertices in Ov

i .
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Figure 7: The four orientations we use on the new arcs (essentially two different
types)

An arc of Oi not incident with v is deletable if and only if the same arc is deletable
in Ov

i . By Proposition 2.2, it is enough to show a directed path between its endpoints
in the modified graph as well. As we discussed in the previous paragraph, this can
be done and it does not depend on the choice of the orientation of the triangle at
the modified vertex v as long as we use the four orientations above. Therefore for
every edge not incident with v, there exists an orientation Ov

i of Gv so that the
corresponding arc is deletable in Ov

i .
Choose a smallest subset S = {Oj1 , Oj2 , . . . , Oj`} of O such that all of the edges

incident with v is deletable in at least one of the orientations in S. Here 1 < ` ≤ 3
holds.

If |S| = 2, then in at least one of these orientations both arcs leaving v are
deletable and in the other orientation the third edge incident with v is not just
outgoing but also deletable. In Figure 8, we show how the orientations {Ov

j1
, Ov

j2
} look

like at the modified vertex v (remember that the role of b and c are interchangeable).
Notice that the blue color indicate which arcs are deletable.

Indeed, the arcs of type (vx, x) are deletable in Ov
ji

if and only if (v, x) was
deletable in Oji . The arcs inside the triangle of type (vx, vy) are deletable either
trivially or because of the fact that Oji is strongly connected.

If |S| = 3, then for each of the edges incident with v, there is a unique orientation
of S so that the corresponding arc is deletable. By choosing the appropriate roles
for the three neighbors we can use one of the last two orientations in Figure 7 that
results in three orientations for which every arc of the triangle is also deletable in
at least one of them. Indeed, the arc opposite to the deletable one which leaves
v is always deletable by Proposition 2.2 since there is a directed path within the
triangle. Naturally, we can use any of the orientations described in Figure 7 in
any of those orientations of O which have not yet been touched. Hence we proved
F (Gv) ≤ F (G).
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Figure 8: The orientations {Ov
j1
, Ov

j2
}, if |S| = 2 and the blue arcs are deletable.

Corollary 4.6. If a 3-edge-connected graph G contains at least one vertex of degree 3,
then there is an infinite family H of 3-edge-connected graphs such that F (G) = F (H)
for every H ∈ H.

Proof. Lemma 4.3 and Lemma 4.5 together imply the following: if a 3-edge-connected
graph G contains at least one vertex of degree 3, then by successively performing
a proper local cubic modification at vertices of degree 3, we get a family of graphs
with the same Frank number as G. Notice that in each step, the newly introduced
vertices have degree 3.

Thus if we start with the Petersen graph, we can build a family of graphs with
Frank number exactly 3, concluding the proof of Theorem 1.3.

However, if a graph H is 3-edge-connected and distinct from K4 but contains a
triangle T , then we can contract the vertices of T into a new vertex vT (or in other
words identify these vertices) such that vT is adjacent to the other neighbors of the
three vertices of T , thus the resulting graph H/T is simple (since H was cubic) and
cubic. What can we say about the relation between the Frank number of H and
H/T?

Since H is a proper local cubic modification of H/T at vT , we get F (H) ≥
F (H/T ) by Lemma 4.3. On the other hand, Lemma 4.5 yields that F (H/T ) ≤ F (H)
since vT is a vertex of degree 3 in H/T . Hence F (H) = F (H/T ). Consequently,
we can contract triangles starting from H until the resulting graph H∗ is either
triangle-free or H∗ ' K4 while the Frank number remains the same. We know that
F (K4) = 2, and F (H∗) ≥ 2 if H∗ is a 3-edge-connected cubic triangle-free graph.

Theorem 4.7. Let G be a 3-edge-connected graph such that F (G) ≥ 3. There exists
a cubic, triangle-free, 3-edge-connected graph H∗ such that F (H∗) ≥ F (G) ≥ 3.
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Proof. By Corollary 4.4, we can consider the cubic extension H of G for which
F (H) ≥ F (G). After contracting triangles, the resulting graph H∗ is either triangle-
free or it is K4 while F (H∗) = F (H) by the previous paragraph. Notice that con-
tracting triangles in a 3-edge-connected cubic graph does not create parallel edges.
Since F (G) ≥ 3 thus H∗ = K4 is a contradiction, hence we get a 3-edge-connected
cubic triangle-free graph H∗ such that F (H∗) ≥ F (G) ≥ 3.

Theorem 4.7 may help the computer aided search for 3-edge-connected graphs
with Frank number greater than 2. For every graph G with Frank number 3, that
we have constructed so far the graph H∗ is the Petersen graph.

5 Snarks

Snarks are bridgeless cubic graphs with chromatic index 4 and girth at least 5. The
Petersen graph is the smallest such graph. Hörsch and Szigeti [4] proved each 3-edge-
connected, 3-edge-colorable graph has Frank number at most 3, and the Petersen
graph has Frank number 3. Therefore, we expected to find other examples with
Frank number 3 among snarks.

In this section, we investigate the second smallest snarks that are the Blanuša
snarks and an infinite family of snarks, the so-called flower snarks. For every odd
n ≥ 5 let Jn denote the flower snark on 4n vertices. One can construct this graph
starting with n copies of stars on 4 vertices with centers v1, v2, . . . , vn and outer
vertices denoted by {ai, bi, ci} for 1 ≤ i ≤ n. Then add an n-cycle on the vertices
(a1, a2, . . . , an), and a 2n-cycle on (b1, b2, . . . , bn, c1, c2, . . . , cn). It turns out that the
Frank number of each of these snarks is 2.

Theorem 5.1. Both Blanuša snarks have Frank number 2.

Proof. Since these snarks are not 4-edge-connected, therefore they do not admit a
2-arc-connected orientation by Theorem 1.2. Hence their Frank number must be
greater than 1. On the other hand, we construct two strongly connected orientations
{O1, O2} of these snarks and then verify that they are strongly connected and every
arc is deletable in at least one of these orientations which concludes the proof. The
two orientations of the Blanuša snarks are explicitly given in Figures 9, 10.

The first thing is to check that these orientations are indeed strongly connected.
To see this, observe in each orientation, each vertex is covered by a circuit. For any
two vertices there is a chain of intersecting circuits covering these vertices, hence
there is a directed path between them in both directions.

To prove that an arc (u, v) is deletable, it is enough to find a directed path from
u to v after the deletion of (u, v) by Proposition 2.2.

In Figures 9, 10 the blue arcs indicate the deletable arcs of the corresponding
orientations. For the two Blanuša snarks, there is no general rule (other than using
the still intact circuits) for deciding whether an arc is deletable or not, one should
manually check them. But finding the appropriate directed path after the deletion
is usually straightforward due to the small degrees of the vertices.



J. BARÁT AND Z.L. BLÁZSIK / AUSTRALAS. J. COMBIN. 88 (1) (2024), 52–76 66

Figure 9: The first Blanuša snark has Frank number 2, the blue arcs are
deletable.

Figure 10: The second Blanuša snark has Frank number 2, the blue arcs are
deletable.

Theorem 5.2. Every member of the infinite family of flower snarks has Frank num-
ber 2.

Proof. Since the flower snarks are also not 4-edge-connected, therefore they do not
admit a 2-arc-connected orientation by Theorem 1.2. Hence their Frank number
must be also greater than 1. Again, we construct two strongly connected orienta-
tions {O1, O2} of Jn and then verify that these orientations are indeed witness that
F (Jn) = 2.

The two orientations of the infinite family of flower snarks are illustrated in
Figure 11. The first orientation of the flower snark uses circuits (a1, a2, . . . , an) and
(b1, b2, . . . , bn, c1, c2, . . . , cn). For every odd i (1 ≤ i ≤ n) vi has out-degree 2 and
the only incoming arc is from bi, and for every even i vertex vi has in-degree 2 and
the only outgoing arc is to bi. The second orientation of the flower snark comes
from the first orientation by reversing some of its arcs and directed paths: paths
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(a1, a2, . . . , an) and (cn, b1, b2, . . . , bn, c1) are reversed along with the arcs between vi
and ci except for (v1, c1) which remains the same, and also (v1, a1) is reversed.

Figure 11: F (Jn) = 2, for any odd n, the blue arcs are deletable.

It is again easy to check that these orientations are indeed strongly connected.
As before, observe in each orientation, each vertex is covered by a circuit. For any
two vertices there is a chain of intersecting circuits covering these vertices, hence
there is a directed path between them in both directions.

To prove that an arc (u, v) is deletable, it is enough to find a directed path from
u to v after the deletion of (u, v) by Proposition 2.2.

In Figure 11, the blue arcs indicate the deletable arcs of the corresponding ori-
entations. Some hints are included in Figure 11 which can be generalized for an
arbitrary flower snark Jn. However, there is no general rule (other than using the
still intact circuits) for deciding whether an arc is deletable or not, one should man-
ually check them. But finding the appropriate directed path after the deletion is
usually straightforward due to the small degrees of the vertices.
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6 Small graphs

Hörsch and Szigeti [4] showed the Petersen graph has Frank number 3. We comple-
ment their result with the following.

Theorem 6.1. If G is a 3-edge-connected cubic graph on at most 10 vertices different
from the Petersen graph, then G has Frank number at most 2.

Proof. We used the House of Graphs [2] and nauty [5] to determine all candidates.
There are two such graphs on 6 vertices. One of them is M6, and the other one is
the 3-prism. By Lemma 3.2, M6 has Frank number 2. The 3-prism is the truncation
of K4, therefore has Frank number 2.

There are four 3-edge-connected, cubic graphs on 8 vertices: the cube, M8, the
3-prism with a handle, and one more, call it S depicted in Figure 12. By Lemma 3.2,
M8 has Frank number 2. The 3-prism with a handle is a double truncation of K4,
therefore it has Frank number 2. The graph S is a truncation of M6, therefore it has
Frank number 2. Figure 13 shows that the Frank number is 2 for the cube.

Figure 12: The graph S.

Figure 13: Orientations of the cube showing Frank number 2; the blue arcs are
deletable.

There are fourteen 3-edge-connected cubic graphs on 10 vertices. Among them,
the graphs containing a triangle can be constructed from K4, M6 or the cube by
consecutive truncations. We show the triangle-free, 3-edge-connected, cubic graphs
on 10 vertices in Figure 14.



J. BARÁT AND Z.L. BLÁZSIK / AUSTRALAS. J. COMBIN. 88 (1) (2024), 52–76 69

Figure 14: The triangle-free 3-edge-connected cubic graphs on 10 vertices

Figure 15: Orientations showing Frank number 2, the blue arcs are deletable.

The graphs G2 and G3 were examined in Section 2, The Petersen graph, G6 is
the only graph with Frank number 3. For the remaining graphs G1, G4, G5, we give
the two orientations on Figure 15. In each case, the blue edges are deletable.
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7 The Petersen family

Hörsch and Szigeti [4] proved the Petersen graph has Frank number 3. We give a
simple, short, hybrid proof of the fact that the Petersen graph has Frank number
larger than 2.

Proposition 7.1. The Frank number of the Petersen graph is larger than 2.

Proof. We can determine all non-isomorphic strongly connected orientations of the
Petersen graph using nauty [5]. We find there are only 18 such orientations. We list
the adjacency matrices of these directed graphs in the Appendix. In our notation, a
1 in row i and column j denotes the arc (i, j). If we suppose the Frank number is 2,
then we should find two orientations such that every edge is deletable in at least one
of the orientations. Since there are 15 edges, one of the orientations must contain at
least 8 deletable arcs. However, there are at most 8 deletable arcs in any of the 18
orientations. Therefore, we collect the orientations of the Petersen graph with 7 or 8
deletable arcs. We find that 8 of the 18 orientations satisfy this condition. We also
know, there are at most two deletable arcs incident with any vertex. Therefore, in
the first orientation, every vertex must be incident with at least 1 deletable arc. We
find only 4 orientations having this property out of the 8. These are G(12), G(15),
G(17), G(18) in the Appendix. Each of the four graphs has 8 deletable arcs. It
remains to see whether we can combine two sets of 8 arcs to cover all edges at least
once. We find the deletable arcs of G(15) and G(17) form a path with 7 edges plus
an independent edge (type 1), see Figure 16.

Figure 16: The orientation G(15) of the Petersen graph with 8 blue deletable
arcs

In G(12) and G(18) we find a 5-path and a 3-path (type 2) of deletable edges.
The non-deletable edges in any of G(12), G(15), G(17), G(18) form three paths of
lengths 1,2 and 4. These edges cannot be covered by the deletable edges of G(12)
or G(18). This observation shows we cannot combine two orientations of different
types or two of type 2. It is left to check whether any of the pairings G(15)-G(15),
G(15)-G(17) or G(17)-G(17) works. However, G(15) and G(17) differ only by the
direction of a single arc, which is deletable in both cases. It remains to check if we
can map the vertices of the non-deletable arcs of G(15) to the deletable arcs of the
7-path of G(15) or G(17). (The third edge of the 7-path must be the overlap in the
two set of deletable arcs.) Since this is not the case, we conclude the Frank number
of the Petersen graph is larger than 2.
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The generalized Petersen graph GP (2s+1, t) has vertex set {u1, . . . , u2s+1, v1, . . . ,
v2s+1}. The edges are uivi, uiui+1 and vivi+t for i = 1, . . . , 2s+ 1 modulo 2s+ 1. In
this notation, the Petersen graph is isomorphic to GP (5, 2).

We investigated the most natural generalized Petersen graphs in the hope of
finding another example of a 3-edge-connected graph with Frank number at least 3.
As it turned out, the generalized Petersen graph G(2s+1, s) admits two appropriate
orientations, consequently its Frank number is 2.

Theorem 7.2. If GP (2s + 1, s) denotes the generalized Petersen graph for s ≥ 3,
then F (GP (2s+ 1, s)) = 2.

Proof. By Theorem 1.2, the graph GP (2s + 1, s) does not admit a 2-arc-connected
orientation since it is not 4-edge-connected. Thus F (GP (2s + 1, s)) > 1. Note that
GP (2s+1, s) is not Hamiltonian. However, it contains a cycle of length n− 1, where
n = 4s+ 2 is the number of vertices of GP (2s+ 1, s).

In both cases O1 admits the long cycle as a circuit, namely (u1, u2, . . . , u2s+1, v2s+1,
vs, v2s, vs−1, v2s−1, . . . , v2, vs+2, v1), and the arc (u2s+1, u1) completes another circuit
on the outer cycle. The only vertex outside of this circuit is vs+1 and regardless of
the parity of s the arcs (v1, vs+1) and (v2s+1, vs+1) are added. The only difference
between the odd and even case arises at the spoke edges. If s is even, then O1

contains (u2i, v2i) and (v2i−1, u2i−1) for 1 ≤ i ≤ s and (u2s+1, v2s+1). But if s is odd,
then O1 contains (v2i, u2i) and (u2i+1, v2i+1) for 1 ≤ i ≤ s and (v1, u1).

In both cases the orientation of the spoke edges of O2 remains the same as they
were in O1. In both cases the orientation on the outer cycle is reversed almost
completely. If s is even then only (u2s−1, u2s) remains the same as in O1, and for s odd
(u2, u3) is the only arc not changing direction. In both cases the second orientations of
the inner cycle can be described easily by stating that for s even {vs+1, vs+2, . . . , v2s}
and for s odd {v1, v2, . . . , vs+1} are the red vertices. The orientation of the edges of
the inner cycle in O2 can be determined similarly in the two cases. In both cases if
a spoke edge is directed from the inner cycle and if the corresponding inner vertex
is supposed to be red then the only incoming arc of that vertex should come from
that neighbor of the inner cycle which has a smaller index (one should think about
the indices cyclically).

The constructions are very similar regardless of the parity of s. Orientation O1

is basically the same and O2 should be rotated in opposite directions for the two
cases. In Figure 17 and 18, we illustrate two orientations of GP (2s+ 1, s) for s even
and odd respectively. The proofs are also very similar. Therefore, we only give the
detailed argument for the even case. Thus suppose from now on that s is even.

First we have to show that these are strong orientations. O1 contains a cir-
cuit containing all but one vertex and the cut, formed by the arcs incident with
the missing vertex vs+1, is not a directed cut. Hence O1 is a strong orientation.
O2 has a long directed path (u2s−1, u2s−2, . . . , u1, u2s+1, u2s), and there is a circuit
(u2s, v2s, vs−1, us−1, us−2, vs−2, v2s−1, u2s−1), therefore all vertices ui belong to the
same strongly connected component. One can rotate the following circuit (u2s+1,
v2s+1, vs+1, v1, u1) clockwise by two positions, confirming that O2 is also a strong
orientation.
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Figure 17: F (G(2s + 1, s)) = 2 for s ≥ 3, s even (illustrated for s = 8), the
blue arcs are deletable.

Figure 18: F (G(2s+ 1, s)) = 2 for s ≥ 3, s odd (illustrated for s = 5); the blue
arcs are deletable.

In O1 the arcs between ui and vi are deletable (except for i = s + 1) regardless
of their orientation since they are chords of the long circuit. By Proposition 2.2, the
blue arcs on the outer part are deletable since there is a directed path between its
endvertices using the inner circuit. Similarly, the inner blue arcs are deletable since
there is a directed path using the outer circuit. For O2, one can also find the directed
paths switching between the use of the inner and outer circuits. Since every arc is
deletable in at least one of these orientations, we proved F (GP (2s+ 1, s)) = 2.
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8 Discussion

If there exist three orientations of G such that every vertex is incident with a deletable
arc in each orientation (and these 3 arcs are different for each vertex), then the graph
has Frank number at most 3. Therefore, it is a first step to show that at least one
such orientation exists. In the proof, we use considerations of Hörsch and Szigeti [4].

Proposition 8.1. For every cubic 3-edge-connected graph G, there exists a strongly
connected orientation D of G such that for every vertex v, there exists an arc av
incident with v such that D − av is strongly connected.

Proof. The key statement is the following: for every edge e of G, there exists a
perfect matching M(e) of G such that e ∈M(e) and every 3-edge-cut of G contains
precisely 1 edge of G. We prove this by induction on the number of vertices n. The
statement holds for n = 4, and also for any essentially 4-edge-connected graph G.
For the latter, we use the strong form of Petersen’s Theorem, where we can prescribe
an edge of the perfect matching. For a larger n and assuming G is not essentially
4-edge-connected, consider a 3-edge-cut C that divides G − C into G1 and G2. We
may assume that both sides have more than 1 vertex. For i = 1, 2, we create G∗i by
contracting G3−i in G.

First assume e ∈ C. We apply the induction hypothesis on G∗i for i = 1, 2 and
prescribing the image of e of C for Mi(e). This gives us two perfect matchings:
M1(e) in G∗1 and M2(e) in G∗2 with the required properties. Now we consider G. We
identify the edges of M1(e) and M2(e) that correspond to the edge e and copy the
edges of M1(e) and M2(e) otherwise. This defines a perfect matching M of G with
the required properties, since C is the only new 3-edge-cut. Other edge cuts inherit
the required property by the induction hypothesis.

Secondly assume e /∈ C and e ∈ G∗1. We apply the induction hypothesis on G∗1
prescribing e. We get M1(e), that contains precisely one of the edges corresponding
to C, the edge f say. Now we apply the induction hypothesis on G∗2 prescribing the
edge f ′, that corresponds to f . We get M2(f

′). Now we define the perfect matching
M of G to be the union of M1(e) and M2(f

′) identifying f and f ′. Thereby C also
satisfies the required property, and every other cut of G inherits this by the inductive
hypothesis.

Now we apply Lemma 4 of [4] to derive that the edges of M are deletable. Since
M was a perfect matching, every vertex of G is incident with one edge.

We pose the following conjectures, each of which is connected to the Frank num-
ber. If F (G) = 2, then every vertex v is incident with two edges e1(v) and e2(v)
such that e1(v) is deletable in one orientation and e2(v) in the other orientation. We
think this phenomenon might always hold.

Conjecture 8.2. For every cubic 3-edge-connected graph G, there exist two strongly
connected orientations D1 and D2 of G such that for every vertex v, there exist two
different arcs a1(v) and a2(v) incident with v such that D1 − a1(v) and D2 − a2(v)
are strongly connected.
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Studying the Frank number, we found that the following was always true. A
counterexample would immediately give us a graph with Frank number larger than 2.

Conjecture 8.3. For every cubic 3-edge-connected graph G, there exists a strongly
connected orientation D of G such that for at least half of the arcs D− a is strongly
connected.

Finally, we experienced that Hamiltonicity adds extra structure, which helps to
bound the Frank number.

Conjecture 8.4. If a 3-edge-connected cubic graph G admits a Hamiltonian cycle,
then G has Frank number 2.

This is true up to 12 vertices.
Permutation snarks on 2k vertices are similar to k-prisms. There are two k-cycles
v1v2 . . . vk and u1u2 . . . uk, and there is a permutation φ : [k] → [k] such that viuφ(i)
are the remaining edges.

Question 8.5. Does every permutation snark G have Frank number 2?
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Appendix

We fix the following incidence matrix of the Petersen graph:

0111000000

1000110000

1000001001

1000000110

0100001010

0100000101

0010100100

0001011000

0001100001

0010010010

The following matrices correspond to the strongly connected orientations of the
Petersen graph. In our notation, a 1 in row i and column j denotes the arc (i, j).
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G(1) G(2) G(3) G(4) G(5)

0110000000 0110000000 0110000000 0110000000 0110000000

0000110000 0000110000 0000110000 0000110000 0000110000

0000001001 0000001001 0000001001 0000001001 0000001001

1000000100 1000000100 1000000100 1000000100 1000000000

0000001010 0000001000 0000000010 0000000010 0000001010

0000000001 0000000001 0000000101 0000000001 0000000100

0000000100 0000000100 0000100000 0000100000 0000000100

0000010000 0000010000 0000001000 0000011000 0001000000

0001000000 0001100000 0001000000 0001000000 0001000001

0000000010 0000000010 0000000010 0000000010 0000010000

G(6) G(7) G(8) G(9) G(10)

0110000000 0110000000 0110000000 0110000000 0110000000

0000110000 0000110000 0000110000 0000110000 0000110000

0000001001 0000001001 0000001001 0000001000 0000001000

1000000000 1000000000 1000000000 1000000100 1000000100

0000001010 0000001010 0000001000 0000001010 0000001000

0000000100 0000000001 0000000001 0000000001 0000000001

0000000100 0000000100 0000000100 0000000100 0000000100

0001000000 0001010000 0001010000 0000010000 0000010000

0001000000 0001000000 0001100000 0001000000 0001100000

0000010010 0000000010 0000000010 0010000010 0010000010

G(11) G(12) G(13) G(14) G(15)

0110000000 0110000000 0110000000 0110000000 0110000000

0000110000 0000110000 0000110000 0000110000 0000110000

0000001000 0000001000 0000001000 0000001000 0000001000

1000000100 1000000100 1000000010 1000000010 1000000010

0000000010 0000000010 0000001010 0000000010 0000000010

0000000101 0000000001 0000000100 0000000101 0000000100

0000100000 0000100100 0000000100 0000100100 0000100100

0000001000 0000010000 0001000000 0001000000 0001000000

0001000001 0001000000 0000000001 0000000001 0000000001

0010000000 0010000010 0010010000 0010000000 0010010000

G(16) G(17) G(18)

0110000000 0110000000 0110000000

0000110000 0000110000 0000110000

0000001000 0000001000 0000001000

1000000000 1000000000 1000000000

0000001000 0000000010 0000000010

0000000001 0000000100 0000000100

0000000100 0000100100 0000100000

0001010000 0001000000 0001001000

0001100000 0001000001 0001000001

0010000010 0010010000 0010010000
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[4] F. Hörsch and Z. Szigeti, Connectivity of orientations of 3-edge-connected graphs,
European J. Combin. 94 (2021), Paper No. 103292, 18 pp.

[5] B. D. McKay and A. Piperno, Practical graph isomorphism II, J. Symbolic Com-
put. 60 (2014), 94–112.

[6] C. St.J. A. Nash-Williams, On orientations, connectivity, and odd vertex pairings
in finite graphs, Canad. J. Math. 12 (1960), 555–567.

[7] H. E. Robbins, A theorem on graphs, with an application to a problem on traffic
control, Amer. Math. Monthly 46(5) (1939), 281–283.

[8] W. T. Tutte, Hamiltonian circuits, Colloquio Intemazionale sulle Theorie Com-
binatoria, Atti Convegni Lincei 17, Accad. Naz. Lincei, Roma I (1976), 193–199.

(Received 18 Oct 2022; revised 25 Aug 2023, 17 Oct 2023, 3 Nov 2023)

http://hog.grinvin.org
http://www.sfu.ca/~mdevos/papers/courteous.pdf

	Introduction
	Preliminaries
	Three elementary classes
	Local cubic modification
	Snarks
	Small graphs
	The Petersen family
	Discussion

