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Abstract

The class of graphs that are planar, 3-connected, of radius one, are exactly
the 1-skeletons of polyhedra with one vertex adjacent to all others. Let F
be a planar, 3-connected graph of radius one on p vertices, with a vertices
of degree three. We characterise all unigraphic degree sequences for such
graphs, when a ≥ 3 and p is large enough with respect to a. The proof
methods reveal the structure of this class of graphs. We also solve the
case a = 2 for any value of p.

1 Introduction

1.1 Results

The distance d(u, v) between two vertices u, v of a (finite, simple) connected graph
F = (V,E) is the length of a minimal uv-path. The graph radius of F is defined as

rad(F ) := min{ecc(v) : v ∈ V },

where
ecc(v) := max{d(v, w) : w ∈ V }

is the eccentricity of v. In this paper we will refer to the graph radius simply as the
radius.

The planar, 3-connected graphs are the 1-skeletons of 3-polytopes [26]. In the
literature these graphs are in fact called 3-polytopes, or sometimes polyhedra. They
are the planar graphs that are uniquely embeddable in a sphere [28]. Their regions
are bounded by cycles (polygons), and this fact is true more generally for planar,
2-connected graphs [5, Proposition 4.26]. For recent work on distance, radius, and
related topics for graphs, see e.g. [23, 1, 15]. For distance and radius topics for
polytopes, see e.g. [24, 25, 22].
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According to Tutte’s Theorem [27, Theorem (6.1)], if F is a 3-polytope of size
(i.e. number of edges) q that is not a pyramid (i.e. a wheel graph), then either F
or its dual may be obtained by adding an edge to a 3-polytope of size q − 1. This
yields an algorithm to generate all 3-polytopes. For the sub-family of 3-polytopes of
graph radius 1, there is the following faster algorithm to generate them all. Hence-
forth, expressions such as F − v, F + v, F − {e1, e2} stand for removing/adding
vertices/edges/sets of vertices or edges from/to a graph.

Remark 1.1. Every 3-polytope of graph radius 1 and size q that is not a pyramid
may be obtained by adding an edge to a 3-polytope of radius 1 and size q − 1. To
see this, observe that a graph F is 3-polytopal of radius 1 if and only if F − v is
planar and has a region bounded by all remaining vertices, where v is a vertex of
eccentricity 1 in F . If F is not a pyramid, then there is an edge e such that F −v−e
still has a region bounded by all remaining vertices. The author wishes to thank
Lionel Brütsch and Niels Willems for helping to make this point explicit.

The degree of a vertex is the number of edges incident to it (vertices adjacent to
it). Letting V = {v1, v2, . . . , vp} and di = deg(vi) for i = 1, 2, . . . , p, we call

s : d1, d2, . . . , dp (1.1)

the degree sequence of F . The elements of (1.1) are usually written in non-increasing
order, however, in this paper we cannot make this assumption globally. That is
because several sequences that we will consider depend on one or more parameters,
and which entries in the sequence are bigger sometimes depends on the values of
these parameters.

Vice versa, a sequence s (1.1) is called graphic (sometimes ‘graphical’) if there
exists an order (i.e. number of vertices) p graph F of degree sequence s. We then
say that F is a realisation of s. The classical theorems of Havel [11], Hakimi [9]
and Erdős-Gallai [7] determine when s is graphic. With the Havel–Hakimi algorithm
[11, 9], one can construct such an F realising s. For recent work on degree sequences
of graphs, see e.g. [2, 23, 15]. For recent results on degree sequences of 3-polytopes,
see e.g. [20, 19].

A sequence s is called unigraphic if, up to isomorphism, there is exactly one
graph of degree sequence s. With some abuse of terminology, we will refer to the
corresponding realisation F as unigraphic. Koren [13] and Li [14] devised criteria
to establish when a given s is unigraphic. Unigraphic non-2-connected graphs have
been classified [12], and also those satisfying d2 = dp−1 when the sequence (1.1) is
written in non-increasing order [13, Theorem 6.1].

The problem might be more treatable if we ask which s are uniquely realisable by
a graph F belonging to a given sub-class of graphs, i.e., satisfying certain properties.
For instance, it is easy to explicitly list the types of unigraphic sequences of tree
graphs [10, Exercise 6.11]. Then it may or may not be the case that s is unigraphic
with respect to the class of all graphs, e.g. 2, 2, 2, 1, 1 is unigraphic with respect to
the sub-class of trees, but not unigraphic with respect to the class of all graphs.
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In this paper, we consider the following question. What are the degree sequences
that are realised by one and only one 3-polytopal graph? In this paper, we attempt
to answer this question for the class of 3-polytopes of radius 1. Plainly rad(F ) = 1
means that there exists a vertex, v1 say, adjacent to all others, i.e. we can take
d1 = p − 1. In what follows, we will denote by a the number of degree 3 vertices
in F ,

a = a(F ) := #{v ∈ V : deg(v) = 3} (1.2)

(this is the smallest possible degree, as F is 3-connected). It is not difficult to show
that a ≥ 2 (see Lemma 1.5 below).

Our main result characterises the families of unigraphic sequences where a ≥ 3
and p is large enough compared to a. The notation nm in a sequence means that the
value n appears m times.

Theorem 1.2. Let s be a sequence as in (1.1), and denote by a the number of degree
three vertices. Assuming a ≥ 3 and p ≥ 3a, then s is unigraphic as a 3-polytope of
radius 1 if and only if s is one of the following:

B1 : p− 1, (x+ 3)2, p− 1− 2x+ 3, 4p−7, 33, p ≥ 10, 3 ≤ x ≤ b(p− 4)/2c;

B2 : p− 1,

(
p+ 1

4
+ 3

)4

, 4p−9, 34, p ≥ 15, p ≡ 3 (mod 4);

B3 : p− 1,

(
p+ 3

5
+ 3

)5

, 4p−11, 35, p ≥ 22, p ≡ 2 (mod 5);

C : p− 1, x+ 3, 2(a− 1)− x+ 3, 5p−a−3, 3a, p≥8, 3≤a≤p/3,
1+2d(a−2)/2e≤x≤2a−3, x odd;

D : p− 1,
(p
4
+ 3
)4
, 4p−8, 33, p ≥ 12, p ≡ 0 (mod 4),

or the exceptional 14, 59, 35.

The proof of Theorem 1.2 takes up the entirety of Sections 2 and 3. The proof,
which is highly non-trivial, uncovers much of the structure of these graphs.

We point out that once a ≥ 3 is fixed and p grows, all except finitely many
unigraphic 3-polytopes of radius 1 with a vertices of degree three will be of one of
the types B1, B2, B3, C, D.

On the other hand, if we fix p, it is straightforward to see that, if s is unigraphic
and F is not a pyramid (i.e. wheel graph), then 2 ≤ a ≤ p/2 (for the upper bound
e.g. one may adapt Lemma 1.5). Then Theorem 1.2 classifies the unigraphic s for
2 ≤ a ≤ p/3 but not for p/3 < a ≤ p/2.

The unigraphic 3-polytopes corresponding to these sequences will be described
once we have introduced some notation. Recall that expressions of the form F + v,
F − {e1, e2} mean adding/removing vertices or edges.

Definition 1.3. For F the graph of a 3-polytope satisfying deg(v1) = p− 1, we note
that F − v1 is a non-empty, planar, Hamiltonian graph. It has a region containing
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all of its vertices. Henceforth, H will denote a Hamiltonian cycle in F − v1. We will
always immerse F − v1 in the plane so that H bounds the external region. Note also
that

G := F − v1 − E(H)

is a non-empty planar graph, of sequence

s′ : d2 − 3, d3 − 3, . . . , dp − 3. (1.3)

Exactly a entries in s′ are zeroes. We will denote by Z the set of isolated vertices
in G.

Now we are in a position to better describe the polytopes F corresponding to
the sequences in Theorem 1.2. We may do this by characterising G − Z. In the
exceptional 14, 59, 35, G−Z is the disjoint union of three triangles. In all other cases
G − Z is connected. For types B1, B2, and B3, G − Z is a triangle, triangulated
quadrilateral (i.e., diamond graph) and triangulated pentagon respectively, together
with vertices of degree one adjacent to the boundary points of the triangle, or trian-
gulated quadrilateral or pentagon. In B1, at least two of the vertices of degree > 1
have the same degree; in B2 (resp. B3), all of the 4 (resp. 5) vertices of degree > 1
have the same degree.

For C, G − Z is formed of a set of triangles intersecting at a vertex u pairwise,
another (possibly empty) set of triangles intersecting at a vertex v pairwise, and a
uv-path (that may be trivial, i.e. possibly u = v). For D, G−Z is a triangle together
with a fourth vertex adjacent to exactly one point on the boundary of the triangle,
and with extra degree one vertices adjacent each to one of these four vertices, so that
these four have the same degree in G.

Theorem 1.2 leaves out the case a = 2. For this case, we have the following.

Proposition 1.4. Let s be a sequence as in (1.1), with exactly 2 vertices of degree
three. Then s is unigraphic as a 3-polytope of radius 1 if and only if s is one of the
following:

A1 : p− 1, 4p−3, 32, p ≥ 5, p odd;
A2 : p− 1, p− 3, 4p−4, 32, p ≥ 8;

A3 : p− 1, (x+ 3)(p−5)/(x−1), 4(p−5)(x−2)/(x−1)+2, 32, p ≥ 6, (p− 5)/(x− 1) ∈ N;
A4 : p− 1, x+ 3, p− x, 4p−5, 32, p ≥ 8, b(p− 1)/2c ≤ x ≤ p− 5.

Proposition 1.4 will be proven in Section 4.
In all of the types A1, A2, A3, and A4, G is a forest, and either it has at most

two non-trivial trees, or all non-trivial trees are copies of K2 (type A1).
With similar methods but an increasing amount of work, one can go about proving

a statement of this flavour (i.e. without the restriction p ≥ 3a of Theorem 1.2) for
the cases a = 3, a = 4, . . . . These are omitted here.
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Related literature. To the best of our knowledge, the problem of characterising
3-dimensional polytopes by their degree sequences, and finding those that do not
share their sequence with any other 3-polytopes, was posed for the first time in this
paper. At the time of writing, there was not a lot of information in this direction
in the literature, to the best of our knowledge. Since then, with Delitroz [4] we
have addressed the analogous problem of unigraphic degree sequences of 3-polytopes
where the largest entry is p − 2 rather than p − 1. In the general case, this seems
to be a difficult problem. The first real breakthrough came in [17], where we proved
that if a 3-polytope is the only one realising its sequence, then it has no n-gonal
faces for n ≥ 8. The arguments in [17] are independent from, and consistent with,
the results of the present paper.
A related problem is to determine which degree sequences of 3-polytopes have a
unique realisation among the class of all graphs, rather than among the class of 3-
polytopal graphs. For instance, the n-gonal pyramid is unigraphic with respect to
the class of 3-polytopes, but for n ≥ 6, not with respect to the class of all graphs.
As it turns out, there are only eight solutions to this related problem [18].
Recently, we have shown that

x, y, 3x+y−4, x ≥ y ≥ 3

are the only graph degree sequences with exactly one self-dual 3-polytopal realisation
[16, Theorem 4]. Moreover, among sequences with exactly one 3-polytopal realisa-
tion, this realisation is self-dual only in the case of pyramids and of 4, 4, 3, 3, 3, 3 [16,
Corollary 6].

1.2 Conventions

Everywhere we fix the notation F = (V,E), |V | = p and |E| = q for a 3-polytope
of radius 1, order p, size q, and degree sequence s (1.1). We write F1 ' F2 when
F1, F2 are isomorphic graphs. The notation H,G, s′ will always be as in Definition
1.3.

We use Kp for the complete graph on p ≥ 1 vertices, Cp with p ≥ 3 for a cycle,
and Sn for the star graph on n ≥ 2 edges. A caterpillar is a tree where if we delete
all degree one vertices, we are left with a central path c1, c2, . . . , c`, ` ≥ 1. The
caterpillar depends only on ` and on xj := deg(cj), j = 1, . . . , `, and we will denote
it by C(x1, . . . , x`). A special case is the star, C(x) = Sx.

A connected graph with no separating vertices is called a block. A block of a
graph G is a G-subgraph that is a block, and maximal with respect to the property
of being a block. Equivalently, a block of a graph is either an isolated vertex (trivial
block), or a bridge, or a maximal 2-connected subgraph. A cyclic block is a block of a
graph containing a cycle, i.e., a maximal 2-connected subgraph. Isolated vertices and
bridges are acyclic blocks. The circumference of a graph is the length of its longest
cycle.
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1.3 Initial considerations

As mentioned in the Introduction, for each radius one 3-polytope we have a ≥ 2
(recall (1.2)), and actually we can show rather more.

Lemma 1.5. If F is a radius one 3-polytope, then

a ≥ 2 +
∑
i≥3

(i− 2) ·BG(i), (1.4)

where
BG(i) := #{blocks of G with circumference i}.

Proof. We begin by showing that a ≥ 2. As the graph G is non-empty, we may
take e1 = uv to be any edge. The claim is, at least one vertex on each of the two
uv-paths of the cycle H has degree 0 in G. To see this, fix any w 6= u, v on one of the
uv-paths (w exists as e1 = uv is an edge in G so it cannot be an edge in H). Either
degG(w) = 0, or there is an edge e2 = wx ∈ E(G). Now G is planar so that e1, e2
cannot cross. We then consider the wx-subpath of the initial uv-path, and reason as
above to conclude that since G is finite, we indeed have a ≥ 2.

Now let G contain exactly one block, with circumference i, say. This determines
i (internally disjoint) u1u2-, u2u3-, . . . , uiu1- paths in H, hence reasoning as above
a ≥ i = 2 + (i− 2) and (1.4) is proven in the case of one block.

Next, call J the subgraph of G induced by vertices lying on cyclic blocks of G.
We claim that there exists at least one block B of J with vertices all lying on the
same path u1, u2, . . . , un of H, such that u2, . . . , un−1 belong to no other cyclic block
of J . We start by checking if a block B1 satisfies this property. If not, we can find
an edge e = w1wm on the boundary of B1, such that w1, w2, . . . , wm are consecutive
on H, no vertices from w2, . . . , wm−1 belong to B1, and moreover by planarity of J
there is at least one cyclic block B2 of J with vertices a subset of the w1, w2, . . . , wm.
We repeat the above procedure with B2 in place of B1, and by finiteness of J we
eventually find at least a cyclic block B with vertices all lying on the same path
u1, u2, . . . , un of H, such that u2, . . . , un−1 belong to no other cycle of J .

Let i be the circumference of B. We denote the vertices of a cycle in B of longest
length by

uk1 , uk2 , . . . , uki ,

in order along u1, u2, . . . , un. Then there is a degree 0 vertex of G along u1, u2, . . . , un
between ukl and ukl+1

for each 1 ≤ l ≤ i− 1. We finally remove B from J so that we
can argue that any such block added to J increases a by at least (i− 1)− 1 = i− 2,
and the proof of the present lemma is complete.

1.4 Overview of the proofs

Sections 2 and 3 are entirely dedicated to proving Theorem 1.2. In Section 2, we
will show that apart from the exceptional case 14, 59, 35, if p ≥ 3a then G − Z is
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connected. In the second part of the proof (Section 3), we will analyse several cases
for connected G − Z, and assuming s is unigraphic, either determine F or bound p
with respect to a. The first case is whenG−Z−Y is 2-connected, where Y is the set of
degree 1 vertices in G (Section 3.1). The second and third cases are for G−Z−Y not
2-connected, distinguishing between when no block of G−Z−Y contains all vertices
that are separating in G (Section 3.2), and when such a block exists (Section 3.3). A
proposition summarising results closes each section. Combining these propositions,
we will prove Theorem 1.2 (Section 3.4).

One general idea is that, outside of the types of sequence listed in Theorem 1.2,
the number of vertices of G not lying on a cyclic block of G is bounded. This fact
allows us to obtain an upper bound for p depending on a.

The proof of Proposition 1.4 (the case a = 2) may be found in Section 4. Finally,
we have collected some data on the enumeration of radius one and unigraphic 3-
polytopes. This is relegated to appendix A.

2 Proof of Theorem 1.2: first part

Henceforth we assume that the number of degree three vertices in F is a ≥ 3.
Recall Definition 1.3 for v1, H,G, s′, Z. All figures in this paper are sketches for the
graph F − v1. Its Hamiltonian cycle H is the external cycle.

Lemma 2.1. If s is unigraphic, p ≥ 7, and a ≥ 3, then G has at least one cycle.

Proof. Suppose by contradiction that G is a forest. Firstly, we will show that every
tree degree sequence admits a realisation as a caterpillar. Indeed, if

x1, x2, . . . , x`, 1
m, x1, . . . , x` ≥ 2, (2.1)

is the degree sequence of a (p, q) tree graph, then

∑̀
i=1

xi +m = 2q = 2(p− 1) = 2(`+m− 1),

hence

m =
∑̀
i=1

xi − 2`+ 2 =
∑̀
i=1

(xi − 2) + 2.

The caterpillar C(x1, . . . , x`) has exactly

(x1 − 1) + (x` − 1) +
`−1∑
i=2

(xi − 2) = m

vertices of degree 1, hence it is a realisation of (2.1).
Therefore, if s is unigraphic, and G a forest, then every tree of G is a caterpillar.

It follows that the sequence obtained by s on removing all vertices of degree three
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(i.e. the isolated vertices of G) save two of them has a realisation as a 3-polytope of
radius one (cf. Section 4).

The main idea is that, for a ≥ 3 and G a disjoint union of caterpillars, we may
relocate one of the isolated vertices of G aroundH, obtaining another non-isomorphic
realisation of s, except for the case 5, 42, 33 of Figure 1b. Indeed, since F is not a
pyramid, G has at least two non-isolated vertices. If it has exactly two of them, then
s is not unigraphic as soon as there are four or more isolated vertices in G, i.e., as
soon as p ≥ 7; if it has three or more of them, then s is not unigraphic either – refer
to Figure 1. The proof of this lemma is complete.

(a) Although 7, 6, 5, 43, 32 is unigraphic (a =
2, type A4, p = 8, x = 4), the depicted
8, 6, 5, 43, 33 is not. For instance, moving
b3 to the shortest a0a4-path yields a non-
isomorphic realisation.

(b) The unigraphic 5, 42, 33.

Figure 1: If s is unigraphic, p ≥ 7, and a ≥ 3, then G is not a forest.

Next, we consider the number k of cyclic connected components in G.

Lemma 2.2. If s is unigraphic, p ≥ 7, and a ≥ 3, then G has one, two or three
cyclic connected components, and if three, then they are all triangles.

Proof. Denote by Gl, 1 ≤ l ≤ k, the cyclic connected components of G. For fixed
l, denote by ul,j, 1 ≤ j ≤ il, the il ≥ 3 vertices of Gl in the order that they
appear around the Hamiltonian cycle H, clockwise starting from u1,1. Consider their
following two orderings around H,

u1,1, u2,1, . . . , uk,1, uk,2, . . . , uk,ik , uk−1,2, . . . , uk−1,ik−1
, . . . , u2,2, . . . , u2,i2 , u1,2, . . . , u1,i1

and

u1,1, u2,1, . . . , u2,i2 , u1,2, u3,1 . . . , u3,i3 , . . . , u1,i1 , ui1+1,1, . . . , ui1+1,ii1+1
, . . . , uk,1 . . . , uk,ik

where in the second ordering ul,j actually appears only for l ≤ k. In the first
ordering we have four consecutive vertices belonging to four different components,
namely u1,1, u2,1, u3,1, u4,1, unless k ≤ 3, whereas it is easy to see that this cannot
happen in the second ordering (recall that the Gl are cyclic, hence il ≥ 3 for every
1 ≤ l ≤ k). Thereby, if s is unigraphic, then necessarily k ≤ 3.
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Now suppose that k = 3. The second of the above two orderings reads

u1,1, u2,1, . . . , u2,i2 , u1,2, u3,1 . . . , u3,i3 , u1,3, u1,4, . . . , u1,i1 . (2.2)

We also have the feasible ordering

u1,1, u2,1, . . . , u2,i2 , u1,2, u1,3, u3,1 . . . , u3,i3 , u1,4, . . . , u1,i1 . (2.3)

In (2.2), the vertex u1,2 from G1 does not follow or precede any other vertex from G1.
In (2.3), there is no vertex from any of G1, G2, G3 that does not follow or precede
any other vertex from the same component, unless i1 = 3 (where u1,1 indeed has
such property). Therefore, if s is unigraphic and k = 3, then G1 has exactly three
vertices and is cyclic, i.e. it is a triangle. We may change the roles of G1, G2, G3 in
(2.2) and (2.3) to show that G2, G3 are triangles as well.

Next, we show that under the same assumptions, there can be no non-trivial tree
components.

Lemma 2.3. If G is unigraphic, p ≥ 7, and a ≥ 3, then G has no non-trivial tree
components.

Proof. By Lemma 2.2, there is at least one cyclic component of G. If there are two
or more, and if by contradiction there is at least one non-trivial tree component,
then there are three non-trivial components that are not all isomorphic. A slight
generalisation of the scenario in a = 2 of two copies of K2 and a star that is not
K2—refer to Section 4—tells us that this is impossible for s unigraphic. By the way,
it follows that in the case k = 3 if s is unigraphic then s is simply 14, 59, 35 (i.e. G is
the disjoint union of three triangles and five isolated vertices). The same argument
excludes the case of exactly one cyclic component and two or more non-trivial trees.

It remains to analyse what happens for exactly one cyclic component G1 and
one non-trivial tree T . We have already seen that this tree is a caterpillar T =
C(x1, . . . , x`). Let u1, . . . , ui be the vertices of G1 in order around H. We can choose
any among u1, u2, or u2, u3, . . . , or ui1 , u1 to be the two closest vertices on H to the
elements of V (T ), and moreover we can choose to order u1, u2, . . . , ui clockwise or
counter-clockwise around H.

Let u1uj, 3 ≤ j ≤ i−1 be an edge. Then by planarity u2uj+1 6∈ E(G). Reordering
u1, . . . , ui around H, we see that G is not unigraphic—Figure 2. Therefore, G1 = Ci
is just an i-gon.

It follows that
s′ : x1, . . . , x`, 2

i, 1b, 0a

for some b ≥ 2. Then there is another realisation of G as the caterpillar

C(x1, . . . , x`, 2, . . . , 2︸ ︷︷ ︸
i

)

together with a isolated vertices, contradiction.
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Figure 2: In this example, ui, u1 are the closest vertices of G1 to V (T ) around H.
Letting u1u4 ∈ E(G), by planarity it follows that u2u5 6∈ E(G), hence G is not
unigraphic.

Now assume that G has exactly two cyclic components G1, G2 (and thanks to
Lemma 2.3 there are no non-trivial tree components). Our goal for the rest of this
section is to show that in this case p ≤ 3a− 1. The argument starts similarly to the
case of G1, T of Lemma 2.3: to not contradict unigraphicity or planarity, at least one
of G1, G2 is just an i-gon, say G1 = Ci.

We claim that G2 cannot contain acyclic blocks: by contradiction, let w,w′ ∈
V (G2) be the endpoints of an acyclic block ww′. Then we contradict unigraphicity
by writing

G− ww′ − u1ui + wu1 + uiw
′,

where u1, . . . , ui are the vertices of G1 = Ci in order around the cycle.
Thanks to Lemma 1.5,

a ≥ i+
∑
j≥3

(j − 2) ·BG(j),

where BG(j) counts blocks of G2 of circumference j. As all blocks of G2 are cyclic,
we may rewrite

a ≥ |V (G1)|+ |V (G2)| −#{blocks of G2} ≥ |V (G1)|+
|V (G2)| − 1

2
,

so that we have the bound

p = 1 + a+ |V (G1)|+ |V (G2)| ≤ 3a+ 2− |V (G1)| ≤ 3a− 1,

as claimed.
The arguments of this section imply the following.

Proposition 2.4. If s is unigraphic, a ≥ 3, and p ≥ 3a, then either s is 14, 59, 35,
or G (Definition 1.3) has exactly one non-trivial connected component, and this
component contains a cycle.

3 Proof of Theorem 1.2: second part

Thanks to Proposition 2.4, to prove Theorem 1.2 it remains to inspect the scenario
when G (of Definition 1.3) has exactly one non-trivial connected component, and
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this component contains a cycle. Recall the notation − and + for removing/adding
vertices/edges/sets of vertices/edges from/to a graph, and also recall that

Z := {vertices of degree 0 in G} = {z1, . . . , za},
Y := {vertices of degree 1 in G},
B := G− Z − Y. (3.1)

3.1 B is 2-connected

In this section we suppose that B in (3.1) is 2-connected. Say that the vertices
b1, . . . , bi of B are ordered clockwise around the Hamiltonian cycle H. If y ∈ Y ,
ybj ∈ E(G) for some 1 ≤ j ≤ i, then by planarity y lies on either the bj−1bj- or bjbj+1-
path in H not containing any of the other vertices of B. These two possibilities mean
that there is more than one realisation of s, unless possibly when either |Y | ≤ 1, or
when every bj is adjacent to at least one element of Y .

In the former case, we write p = 1 + a + |Y | + i. Now, bib1 and bjbj+1 for all
1 ≤ j ≤ i − 1 are edges of B, so that they cannot be edges of H. We deduce that
there is at least one element of Z between every pair of consecutive vertices of B
along H, thus i ≤ a. Therefore, we have the admissible bound on the order of the
graph

p ≤ 1 + a+ |Y |+ a ≤ 2a+ 2.

We are left with the case of every bj being adjacent to at least one element of Y .

• If B is just a cycle of length i ≥ 3, then s′ reads

deg(b1), . . . , deg(bi), 1
b, 0d, b =

i∑
j=1

deg(bj)− 2i.

For i ≥ 4 we may alter G as follows. Let y ∈ Y be adjacent to b1. We take

G− yb1 − b2b3 + yb2 + b1b3.

Here and in what follows, when we apply such a transformation, if need be
we also relocate vertices around H (in this case, namely y) so as to preserve
planarity. Then s is not unigraphic for i ≥ 4. On the other hand, when i = 3,
one can check that s is unigraphic if and only if a = 3 and at least two of
deg(b1), deg(b2), deg(b3) are equal: s is of type B1.

• Now let B be a triangulated i-gon, i ≥ 4. For i ≥ 6, we may alter G as follows.
Take any triangulated hexagon in the triangulation of B, delete one diagonal
bj1bj2 of the hexagon and add another diagonal bj3bj4 , with j1, j2, j3, j4 distinct.
This has the effect of decreasing by 1 the values deg(bj1), deg(bj2) and increasing
by 1 the values deg(bj3), deg(bj4). We then take two vertices in Y adjacent one
each to bj3 , bj4 , and make them adjacent (one each) to bj1 , bj2 instead (this may
be done without altering the value of a). Then s is not unigraphic for i ≥ 6.
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Now let i = 4, 5 (and here there is only one way to triangulate a quadrilateral
or pentagon). It is straightforward to check that s is unigraphic if and only if
all vertices of B have the same degree in G, and moreover a = i. We get the
types B2 and B3 for i = 4, 5 respectively.

• It remains to inspect the case where B is neither a cycle nor a triangulated
polygon. Then there exist two adjacent regions R1 and R2 in B, of respective
boundary lengths i1, i2, such that i1 ≥ i2 and i1 ≥ 4. Similarly to the case
where B is a cycle, we delete the edge bj1bj2 between R1, R2, add the edge
bj1bj3 , where bj3 6= bj1 is adjacent to bj2 on the boundary of R1, then take a
vertex in Y adjacent to bj3 , and make it adjacent to bj2 instead (again we do
not alter a). This is another realisation of s, and if i1 6= i2 + 1 it is clearly not
isomorphic to the initial one, as i1 has decreased by 1 and i2 increased by 1. If
i1 = i2 + 1 and i2 ≥ 4, we perform the transformation above but exchanging
the roles of R1, R2 to reach the same conclusion.

Finally, if i1 = 4 and i2 = 3, then R1, R2 form a pentagon bj1 , bj2 , bj3 , bj4 , bj5
with a diagonal bj1 , bj4 , say. We perform the transformation

G− bj3bj4 + bj1bj3 − ybj1 + ybj4

with y ∈ Y , to conclude that s is not unigraphic in this case.

We summarise the results of this section as follows.

Proposition 3.1. Assume that s is unigraphic, G (Definition 1.3) has exactly one
cyclic component, and B in (3.1) is 2-connected. Then either s is of type B1, B2, or
B3, or p ≤ 2a+ 2.

3.2 B is not 2-connected, case 1

In this section we suppose that B in (3.1) is not 2-connected. For s unigraphic, in
a cyclic block of G either one, or all vertices are separating in G: the idea is similar
to the first argument in Section 3.1.

We assume in this section that

each cyclic block of G contains exactly one vertex that is separating in G. (3.2)

We deduce that, if we delete from G all cyclic blocks, we are left with one tree,
that is a caterpillar T = C(x1, . . . , x`) due to the arguments in Section 2 (possibly
the trivial caterpillar). If T is trivial, then G has exactly one separating vertex u,
contained in every non-trivial block of G.

Let us focus for now on the case that T is non-trivial. Here our first observation
is that the vertices

c1, c2, . . . , c`

on the central path of T all have the same degree, both in T and in G, save possibly
when ` = 2. Indeed, otherwise, by reordering them along the path, it would be
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Figure 3: By unigraphicity, if ` 6= 2, then c1, c2, . . . , c` have the same degree in T
and in G.

possible to construct two non-isomorphic graphs G sharing the same sequence, e.g. as
in Figure 3.

Next, we claim that no vertex on the central path of T may lie on a cyclic block
of G. By contradiction, assume that there exists cj, 1 ≤ j ≤ `, lying on a cyclic
block of G. By reordering the vertices on the central path of the caterpillar as above,
we may take j = 1. Considering the transformation in Figure 4, we see that s is not
unigraphic, contradiction.

Figure 4: No vertex on the central path of T may lie on a cyclic block of G.

Hence only endvertices of T may lie on cyclic blocks of G. Next, let u be a vertex
adjacent to c1 in T , and lying on a cyclic block B1 of G. Then we claim that

degT (c1) = 2.

By contradiction, writing V (B1) = {u1, . . . , ui−1, u = ui}, we have in order around H

c1, u1, . . . , ui−1, {vertices of other cyclic blocks containing u}, u, y, A,

with c1y ∈ E(G), degG(y) = 1, and A a non-empty set, since deg(c1) ≥ 3 (e.g. Fig-
ure 5, left). We take

G− yc1 + c1u1 − u1u2 + u2y

moving y to the u2u3-path in H, and moving the isolated vertices of G lying be-
tween u1, u2 to the c1u1-path in the new graph (Figure 5, right). This new graph is
not isomorphic to G, as removing all cyclic blocks now leaves two non-trivial trees
(it is essential that A is non-empty, i.e. deg(c1) ≥ 3). Hence s is not unigraphic,
contradiction.
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Figure 5: In this example, z ∈ Z, and the dashed-dotted line represents edges incident
to a non-empty graph A. We transform the graph G on the left to G− yc1 + c1u1 −
u1u2 + u2y on the right.

We now combine the above observations to see that there cannot exist an end-
vertex u′ of T , adjacent to cj, 2 ≤ j ≤ ` − 1, lying on a cyclic block of G. By
contradiction, we can reorder the vertices on the central path of the caterpillar, so
that there also exists an endvertex u of T , adjacent to either c1 or c` (say c1), and
lying on a cyclic block of G. As seen a moment ago, this implies degT (c1) = 2. Since
c1, c2, . . . , c` all have the same degree in T , this in turn implies degT (cj) = 2. On the
other hand, since u′ is adjacent to cj, we also have degT (cj) ≥ 3, contradiction.

To summarise, if the caterpillar T is non-trivial, then it is a simple path

T = C(2, . . . , 2),

and moreover, if u, v denote the endvertices of T adjacent to c1, c` respectively, there
is a non-empty set B of cyclic blocks of G containing u, and there is a possibly empty
set B′ of cyclic blocks of G containing v. Further, no other vertex of T lies on a cyclic
block of G.

Altogether, if (3.2) holds, then G consists of: a path

u := c0, c1, c2, . . . , c`, v := c`+1, `+ 1 ≥ 0,

a non-empty set B of cyclic blocks containing u, and a (possibly empty) set B′ of
cyclic blocks containing v.

Next, we will show that if ` ≥ 2, then each element of B,B′ is a triangle. Let
B1 ∈ B. We perform the transformation

G− c2c3 + c2u+ c3w − wu,

where w ∈ V (B1) is the vertex of B1 closest to u along H. We then reorder the
vertices of B1 and T around H (e.g. Figure 6) so that the minimum value of a for G
has not increased. This is possible as deleting wu removes a region, and we added
the triangular region of boundary uc1c2. We may move the isolated vertices of G
lying between u and w to the c1c2-path in the transformed graph. This transformed
graph is not isomorphic to G unless B1 is a triangle, as claimed.

Thereby, if ` ≥ 2, then s′ is given by

x, y, 2(x−1)+(y−1)+`, 02+(x−1)/2+(y−1)/2
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Figure 6: In the depicted example, z1, z2, z3 ∈ Z, and w is the vertex of B1 closest to
u along H. We transform the graph on the left to the one on the right, contradicting
unigraphicity since B1 is not a triangle.

i.e., s is of type C.
In the rest of this section, we will assume that ` ≤ 1. Here we give an upper

bound for the order of F . The 3-polytope contains the vertex of eccentricity one v1,
a many of degree 0 in G, at most three on the uv-path, and #V (Bj) − 1 more for
each Bj ∈ B,B′:

p ≤ 1 + a+ 3 +
k∑
j=1

(#V (Bj)− 1),

where k = #B +#B′. We invoke Lemma 1.5,

a ≥ 2 +
k∑
j=1

(#V (Bj)− 2), (3.3)

to obtain
p ≤ 2a+ 2 + k. (3.4)

On the other hand, each cyclic block of G is of order at least three, and at least one
block is of order at least four, otherwise we would be in the case where all cyclic
blocks are triangles. Therefore, (3.3) also yields

a ≥ 2 + (3− 2)(k − 1) + (4− 2) = 3 + k. (3.5)

We substitute (3.5) into (3.4) to see that p ≤ 3a− 1 in this scenario.
The arguments of this section imply the following.

Proposition 3.2. Assume that s is unigraphic, G (Definition 1.3) has exactly one
cyclic component, and B in (3.1) is not 2-connected. Suppose further that there is
no cyclic block of G that contains only vertices that are separating in G. Then either
G is of type C, or p ≤ 3a− 1.

3.3 B is not 2-connected, case 2

In this section we suppose that B in (3.1) is not 2-connected, and moreover that
there exists a cyclic block B1 of G that contains only vertices that are separating
in G.
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We claim that there exists a cyclic endblock Bj 6= B1. There are always at least
two endblocks, and by contradiction, assume that both are acyclic, i.e. copies of K2

a, b and c, d,

where a, c are separating vertices in B, and b, d vertices of degree 1 in B. Since
B = G− Z − Y , the vertices b, d cannot belong to Y , i.e.

degG(b), degG(d) ≥ 2.

This implies that there exist y, y′ ∈ Y such that by, dy′ ∈ E(G). Hence there are in
G two disjoint paths of three vertices each,

a, b, y and c, d, y′.

We take
G− cd− dy′ + cy′ − by + bd+ dy,

contradicting unigraphicity (Figure 7). Hence Bj exists.

Figure 7: There cannot be two acyclic endblocks in B.

Planar, cyclic blocks with a region containing all of the vertices (i.e. polygons
possibly with some diagonals) have at least two vertices of degree 2. Let w be a
vertex of Bj of degree 2 in Bj, non-separating in B, and u a vertex of degree 2 in
B1 such that in G − u there is still a path between B1, Bj (u always exists, as B1

has at least two vertices of degree 2 in B1) – refer to Figure 8. We may transform
G by moving the adjacencies of u not in V (B1) to w instead, and vice versa the
adjacencies of w not in V (Bj) to u (this does not affect s). By unigraphicity, we
conclude that this operation produces an isomorphic graph. Now u is separating in
G by definition, and by construction any neighbour of w (save for the two in V (Bj))
belongs to Y of (3.1) (it has degree 1 in G). It follows that u,w are adjacent to the
same number α− 2 ≥ 1 of vertices in Y , where degG(u) = degG(w) = α.

The arguments of Section 3.1 now imply that all vertices of a cyclic endblock Bj

that are non-separating in B are adjacent to one or more elements of Y . Note that
all vertices of Bj are separating in G, and exactly one, w0 say, is separating in B.

Via an argument similar to previous sections, we now show that actually an
endblock of G cannot be a copy of K2, except possibly if there are only the two blocks
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Figure 8: In this example, we assume that Bj is an endblock, V (Bj) =
{w1, w2, w, w4}, and V (B1) = {u1, u2, u3, u, u5}. Moreover, all vertices of B1 are
separating in G, w1 is separating in B, and w2, w, w4 are separating in G but not in
B (only a subgraph of G is depicted).

B1 and K2 in G. Indeed, by contradiction call V (K2) = {w′0, w′1}, w′0 separating in
B and w′1 non-separating in B. By construction, w′1 is adjacent to y′1, . . . , y′i ∈ Y ,
i ≥ 1, and we have seen above that there exists y ∈ Y , w′1y 6∈ E. We perform

G− w′1y′1 − · · · − w′1y′i + yy′1 + · · ·+ yy′i (3.6)

and obtain a new graph, that is non-isomorphic to G as soon as there are two or
more cyclic blocks in G. We reach a contradiction unless there are only two blocks
B1 and K2, and moreover B1 must be a cycle in this case.

Still by the arguments of Section 3.1, a cyclic endblock Bj is either a triangle or
a triangulated quadrilateral or pentagon: the arguments for the only block B of G in
Section 3.1 apply here to Bj, since all vertices of Bj are separating in G, and exactly
one is separating in B.

If the cyclic endblocks of G are all triangles, then we may possibly have α = 3;
if one of them is a triangulated quadrilateral or pentagon, α ≥ 4. Let us see that
actually there cannot be two endblocks Bj, Bj′ that are both triangles. Indeed, in
this scenario, V (Bj) = {w0, w1, w2}, w0 separating in B, w1y1, w2y2 ∈ E, y1, y2 ∈ Y ,
and likewise V (Bj′) = {w′0, w′1, w′2}, w′0 separating in B, w′1y′1, w′2y′2 ∈ E, y′1, y′2 ∈ Y .
We consider the transformation

G− w1y1 − w2y2 + w1w
′
2 + w2w

′
2 − w′0w′2 − w′1w′2 + w′1y1 + w′0y2

that alters F but not s to reach a contradiction and rule out this scenario.
To summarise, either there are exactly two blocks in G, a cycle and a copy of

K2, or at least one endblock is a triangulated quadrilateral or pentagon, and α ≥ 4.
Suppose for the moment that we are in the latter case. Let

V (Bj) = {w0, w1, . . . , wl},

with w0 separating in B, and 2 ≤ l ≤ 4. Since w1, . . . , wl are adjacent to one
or more elements of Y , it must hold that degBj

(w0) = 2 by unigraphicity, with
w0w1, w0w2 ∈ E, say – refer to Figure 9a. We then transform G by

G− uy1 − uy2 + uw1 + uw2 − w0w1 − w0w2 + w0y1 + w0y2, (3.7)
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where u is adjacent to at least 2 elements y1, . . . , yα−2 ∈ Y , and in G − u there is
still a path between Bj and a vertex in the same block as u – refer to Figure 9b.

(a) The endblock Bj is a diamond graph. The
dashed-dotted line represents edges incident to a
non-empty graph A. By unigraphicity, the de-
grees of w1, w2, w3 in G must be the same value
α ≥ 4 (in this example α = 4.) The transforma-
tion from the first graph to the second graph is
applicable if and only if degBj

(w0) ≥ 3.

(b) An application of (3.7) transforms
the first graph into the second one.
Here α = 4, and the endblock Bj is
a diamond graph (l = 3). Only a sub-
graph of G is depicted.

Figure 9: The case α ≥ 4.

By unigraphicity, (3.7) must not change F , that is to say, all possible u must
belong to a block intersecting with Bj at the vertex w0. There are thus exactly two
cyclic blocks in G, one of them being a triangulated quadrilateral or pentagon, and
the other a triangle or triangulated quadrilateral or pentagon. It is straightforward
to see that

s′ : kb, 1c, 0a,

with 6 ≤ b ≤ 10, k ≥ 5, c depending only on k, and 5 ≤ a ≤ 8. One checks all
possibilities for b to rule out this option entirely.

Therefore, we finally see that B has exactly two blocks, one of them being a copy
of K2 on the vertices w0, w

′
1 say, and the other (i.e. B1) a cycle. We have seen that

B1 must also be a triangle or triangulated quadrilateral or pentagon, hence it is a
triangle, and we write V (B1) = {w0, w1, w2}. One quickly sees that for s unigraphic,
the degrees in G of w0, w1, w2, w

′
1 must all be equal. We have obtained a graphic

sequence s of type D. We summarise the work of this section as follows.

Proposition 3.3. Assume that s is unigraphic, G (Definition 1.3) has exactly one
cyclic component, and B in (3.1) is not 2-connected. Suppose further that there is a
cyclic block of G that contains only vertices that are separating in G. Then s is of
type D.
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3.4 Concluding the proof of Theorem 1.2

Gathering the results of Propositions 2.4, 3.1, 3.2, and 3.3, we deduce that if s
is unigraphic as a 3-polytope of radius one satisfying a ≥ 3, then either s is one of
B1, B2, B3, C, D, or p ≤ 3a− 1, or s is 14, 59, 35. The proof of Theorem 1.2 is thus
complete.

4 Proof of Proposition 1.4

In this section we assume that the number of degree three vertices in F is a = 2.

Lemma 4.1. The graph G is a forest, and every connected component of G is a
caterpillar.

Proof. The first statement is trivial in light of Lemma 1.5: the presence of a cycle
would yield a ≥ 3. For the second statement, again by contradiction, any non-
caterpillar tree contains the subgraph A depicted in Figure 10a. With the labelling
as in Figure 10a, reasoning as in Lemma 1.5 there are degree 0 vertices of G along
the internally disjoint u0u1- and u0u3-paths in H. Moreover, by planarity u4 lies on
one of the internally disjoint a1a2- and a2a3-paths, w.l.o.g. say the a2a3-path. Then
there is a third degree 0 vertex of G along the a2a4-subpath.

(a) Union of Hamiltonian cy-
cle H and non-caterpillar A.
There are at least three de-
gree 0 vertices in G, namely
b1, b2, b3.

(b) Two realisations of the se-
quence 3, 2, 15, 02.

(c) Two realisations of the se-
quence 2, 16, 02. Here p = 10
and t = 4.

Figure 10: a = 2.

We are reduced to characterising the sequences s′ with unique realisation as a
disjoint union of caterpillars. Since G is a forest, its sequence s′ has at least 2k 1’s,
where k is the number of non-trivial components (these are non-trivial trees). Now
if s′ is graphic, then it definitely has a realisation where k − 1 of these components
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are just copies of K2. Denote by T the remaining component. For s unigraphic, we
certainly have the possibility that G is just the union of k ≥ 1 copies of K2 and two
isolated vertices, i.e. s is of type A1, with k = (p− 1− 2)/2, i.e. p ≥ 5 and odd.

If k ≥ 2 but T 6' K2, then we claim that T ' Sn is a star on n ≥ 2 edges. To
see this, suppose by contradiction that there are in s′ at least two values x, y ≥ 2.
Then we would have the two realisations C(x, y) ∪K2 ∪G′ and Sx ∪ Sy ∪G′, where
G′ is a forest on k − 2 non-trivial trees, and S, C denote stars and caterpillars –
refer to Figure 10b. Thus indeed T ' Sn, n ≥ 2. Now we observe that in this case
necessarily k = 2: suppose not for a contradiction. We label

v1v2, v3v4, . . . , vt−1vt

the copies of K2, vt+1 the centre of the star, vt+2, . . . , vp−3 the remaining vertices of
the star, and vp−2, vp−1 the degree 0 vertices, where t is even and satisfies 4 ≤ t ≤ p−6.
Then we would have two non-isomorphic realisations of F , one with the vertices

vp−2, vt+1, v1, v3, . . . , vt−1, vp−1, vt, . . . , v4, v2, vt+2, . . . , vp−3

in order around H, and another with the order

vp−2, v1, vt+1, v3, . . . , vt−1, vp−1, vt, . . . , v4, vt+2, . . . , vp−3, v2

(Figure 10c). To summarise, G is the disjoint union of two isolated vertices, a copy
of K2, and a star Sn, n ≥ 2: this is possibility A2.

We are left with the case k = 1, i.e. G itself is a caterpillar together with two
isolated vertices. Now any caterpillar C(x1, . . . , x`) is determined by its length ` ≥ 1
and degrees xi ≥ 2, 1 ≤ i ≤ `, of vertices along its path. If x1 6= xj for any 2 ≤ j ≤ `,
we only need to exchange the order of the corresponding vertices along the path to
obtain another realisation of s, except if ` = 2. Thereby, either the xi’s are all equal
– type A3, or ` = 2 – type A4.

It is straightforward to check that, on the other hand, the sequences A1, A2, A3,
and A4 are indeed unigraphic. This concludes the proof of Proposition 1.4.
Remark 4.2. Let Qi be the set of degree one vertices adjacent to ui of degree xi in
the caterpillar C(x1, . . . , x`) of G. To ensure that a = 2, the vertices of C(x1, . . . , x`)
are placed around H in the order

Q1, x1, Q2, x3, Q4, x5, . . . , Q`−2, x`−1, Q`, x`, Q`−1, x`−2, . . . , x4, Q3, x2

if ` is even, and

Q1, x1, Q2, x3, Q4, x5, . . . , Q`−1, x`, Q`, x`−1, Q`−2, x`−3, . . . , x4, Q3, x2

if ` is odd.
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R.W. MAFFUCCI /AUSTRALAS. J. COMBIN. 89 (2) (2024), 268–293 289

edges 3-polytopes 3-polytopes of radius 1 rad. 1 sequences unigraphic rad. 1 seq.
6 1 1 1 1

7 0 0 0 0

8 1 1 1 1

9 2 1 1 1

10 2 1 1 1

11 4 1 1 1

12 12 2 2 2

13 22 2 1 0

14 58 4 3 2

15 158 5 4 3

16 448 7 3 1

17 1342 10 5 2

18 4199 16 7 5

19 13384 27 6 1

20 43708 42 10 3

21 144810 67 15 6

22 485704 116 11 2

23 1645576 187 18 2

24 5623571 329 28 11

25 19358410 570 21 1

26 67078828 970 35 4

27 ? 1723 52 12

28 3021 38 1

29 5338 61 3

30 9563 90 15

31 16981 67 1

32 30517 103 3

33 54913 158 18

34 98847 112 2

35 179119 178 3

36 324333 258 20

37 589059 191 1

38 1072997 287 3

39 1955207 425 24

40 3573129 ? 1

41 6538088 ? 1

Table 1: Number of 3-polytopes or radius 1, degree sequences and unigraphic se-
quences up to 41 edges. For the total number of 3-polytopes on q edges see e.g. Dil-
lencourt [6].
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q
p

4 5 6 7 8 9 10 11 12 13 14

6 1(1)
7 −
8 1(1)
9 1(1)
10 1(1)
11 1(1)
12 1(1) 1(1)
13 2
14 3(1) 1(1)
15 3(3) 2
16 6 1(1)
17 7(2) 3
18 4(4) 11 1(1)
19 24(1) 3
20 24(2) 17 1(1)
21 12(6) 51 4
22 89(1) 26 1(1)
23 74(2) 109 4
24 27(9) 265(1) 36 1(1)
25 371(1) 194 5
26 259(3) 660 50 1(1)
27 82(11) 1291(1) 345 5
28 1478 1477 65
29 891(2) 3891(1) 550
30 228(14) 6249 3000
31 6044(1) 10061
32 3176(2) 21524
33 733(18) 29133
34 24302
35 11326(3)
36 2282(19)

Table 2: Number of 3-polytopes or radius 1, sorted by order p and size q (continues
in Table 3). Numbers in brackets indicate unigraphic 3-polytopes.
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q
p

15 16 17 18 19 20 21

28 1(1)
29 6
30 85 1(1)
31 870 6
32 5710 106 1(1)
33 23747 1293 7
34 64183(1) 10228 133 1(1)
35 114541 51349 1896 7
36 133464 170904 17521 161 1(1)
37 98000(1) 384035 104349 2667 8
38 40942(2) 586696 416385 28777 196 1(1)
39 7528(23) 599516 1144304(1) 200137 3714 8
40 392528 2192206 942417 45745 232 1(1)
41 148646(1) 2923018 3094421 366982 5012 9
42 24834(23) 2656742 . . . . . . . . . . . .
43 1570490 . . . . . . . . . . . .
44 543515(2) . . . . . . . . . . . .
45 83898(28) . . . . . . . . . . . .

Table 3: Number of 3-polytopes or radius 1, sorted by order p and size q (continued
from Table 2). Numbers in brackets indicate unigraphic 3-polytopes.
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