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Let G be a simple connected graph on 2n vertices with a perfect 

matching. G is k-extendable if for any set M of k independent edges, 

there exists a perfect matching in G containing all the edges of M. G 

is minimally k-extendable if G is k-extendable but G - uv is not 

k-extendable for every pair of adjacent vertices u and v of G. The 

problem that arises is that of characterizing k-extendable and 

minimally k-extendable graphs. k-extendable graphs have been studied 

by a number of authors whilst minimally k-extendable graphs have not 

been studied. In this paper, we focus on the problem of characterizing 

minimally k-extendable graphs. We establish necessary and sufficient 

conditions for a graph to be minimally k-extendable. In addition, we 

obtain a complete characterization of Cn-l)-extendable graphs. 

1. INTRODUCTION 

All graphs considered in this paper are finite, connected,loopless 

and have no multiple edges. For the most part our notation and 



terminology follows that of Bondy and Murty [3]. Thus G is a graph 

wi th vertex set V(G), edge set E(G), v (G) vertices, 8 (G) edges and 

minimum degree o(G). For V' S;; V(G), G[V/ ] denotes the subgraph 

induced by V'. Similarly G[E / ] denotes the subgraph induced by the 

edge set E' of G. NG(u) denotes the neighbour set of u in G and NG(u) 

the non-neighbours of u. Note that NG(U) = V(G) - NG(u) - u. The join 

G v H of disjoint graphs G and H is the graph obtained from G v H by 

joining each vertex of G to each vertex of H. 

A matching M in G is a subset of E(G) in which no two edges have a 

vertex in common. M is a maximum matching if IMI ~ 1M' I for any other 

matching M' of G. A vertex v is saturated by M if some edge of M is 

incident to v; otherwise v is said to be unsaturated. A matching M is 

perfect if it saturates every vertex of the graph. For simplicity we 

let V(M) denote the vertex set of the subgraph G[M] induced by M. 

Let G be a simple connected graph on 2n vert ices wi th a perfect 

matching. For s k s n - 1, G is k-extendable if for any matching M 

in G of size k there exists a perfect matching in G containing all the 

. edges of M. We say that G is minimally (critically) k-extendable or 

simply k-minimal (k-critical) if it is k-extendable but G - uv (G + 

uv) is not k-extendable for any edge uv of G (uv E E(G»). 

Observe that a cycle C2n of order 2n <!: 4 is i-minimal but not 

1-cri tical. The complete graph K2n of order 2n and the complete 

biparti te graph K wi th biparti tioning sets of order n are each n,n 

k-extendable for 1 s k S n - 1. Further, these graphs are k-critical. 

However, K and K are k-minimal if and only if k = n - 1; we will 
2n n,n 

prove this in due course. 

For convenience, we say that G is Q-extendable if G has a perfect 



matching. Plummer [7,8] proved the following result. 

Theorem 1.1: Let G be a k-extendable graph on 2n vertices, :s k :s 

n - 1. Then 

(a) G is (k-l)-extendablej 

(b) G is (k+l)-connected; 

(e) For any edge e of G, G - e is (k-l)-extendable. c 

Theorem 1.1 allows us to make the following observations. 

Remark 1: A k-minimal graph G need not be (k-l)-minimal. For example, 

the graph in Figure 1.1 is 2-minimal but not 1-minimal. 

Figure 1.1 

Remark 2: Consider any k-extendable graph G on 2n vertices, 1 :s k 

:s n - 1. If dG(u) = k + 1 or dG(v) = k + 1 for any edge e = uv in G. 

then G is minimal. This implies that a (k+l )-regular k-extendable 

graph on 2n vertices, 1 :s k :s n - 1, is minimal. Thus the k-eube Q
k 

which is a k-regular (k-1)-extendable graph (see Gyori and Plummer 



[4]), is (k-1)-minimal. 

A number of authors have studied k-extendable graphs; an excellent 

survey is the paper of Plummer [9J. Anunchuen and Caccetta [lJ 

characterized k-cri tical graphs of order 2n for k = 1,2, n-2 and n-l. 

k-minimal graphs have not been previously investigated; the 

characterization problem was posed to us (private communication) by 

M.D. Plummer. In this paper, we focus on this problem. 

We establish necessary and sufficient conditions for a graph to be 

k-minimal. In addition, we prove that a graph G of order 2n is 

(n-l)-minimal if and only if it is (n-i)-extendable. The only 

(n-l )-extendable graphs on 2n vertices are shown to be K and K 
n,n 2n 

We present a number of properties of k-minimal graphs. including an 

upper bound on the minimum degree. 

Section 2 contains some preliminary results that we make use of in 

establishing our main results. In Section 3, we prove some properties 

of k-minimal graphs and establish necessary and sufficient conditions 

for k-minimal graphs. The complete characterization of 

. (n-l )-extendable graphs and (n-l )-minimal graphs are given in Section 

4. 

2. PRELIMINARIES 

In this section, we state a number of results on k-extendable 

graphs which we make use of in our work. We state only results which 

we use; for a more detailed account we refer to the paper of Plummer 

[9] . 

We begin with an important result of Berge (see [6] p. 90). Let M 

be a maximum matching in a graph G. The deficiency def(G) of G is 



defined as the number of M-unsaturated vertices of G. Denoting the 

number of odd components in a graph H by o(H) we can now state Berge's 

Formula : 

Theorem 2.1: For any graph G 

def(G) max{o(G - X) - IXI X S; V(G)}. o 

We let M(S) denote a maximum matching in G[S] . One 

characterization of k-extendable graphs was proved by Lou [5]. The 

result is 

Theorem 2.2: G is a k-extendable graph on 2n vertices, 1 ~ k ~ n - 1 

if and only if for any S S; V(G), o(G - S) ~ lSi - 2d where d 

min{ IM(S) I ,k}. o 

Anunchuen and Caccetta [1] proved the following result. 

Theorem 2.3: Let G be a k-extendable graph on 2n vertices with o(G) 

k + t, 1 s t S k S n - 1. If dG(u) = o(G), then IMCNG(u))1 S t - 1. 0 

Plummer [7] gave the following sufficient condition for graphs on 

2n vertices to be k-extendable, 1 S k ~ n - 1 : 

Theorem 2.4: Let G be a graph on 2n vertices and 1 ~ k S n - 1. If 

o(G) ~ n + k, then G is k-extendable. o 



We conclude this section by stating Dirac's Theorem (see [3] p. 

54) . 

Theorem 2.5: If G is a simple graph with v(G) ~ 3 and o(G) 1 
~ 2" v(G), 

then G is hamiltonian. o 

3. PROPERTIES OF MINIMALLY k-EXTENDABLE GRAPHS 

Consider a k-minimal graph G. Since for any edge e of G, G-e is 

not k-extendable, there exists a matching M in G-e of size k that does 

not extend to a perfect matching in G-e. Our first result concerns the 

size of a maximum matching in G-e-V(M). 

Lemma 3.1: Let '\ G be a k-minimal graph on 2n vert ices, 1:s k :s 

n ~ 1 and e any edge of G. If M is a matching of size k in G-e that 

does not extend to a perfect matching in G-e, then G-e-V(M) has a 

maximum matching of size n-k-1. 

. Proof: Let M' be a maximum matching of G' = G-e-V(M). Since G is 

k-minimal, IM'I :s n-k-1. Suppose that IM'I :s n-k-2. Then 

def(G') = IVCG') I - 21M' I 

= 2(n-k) - 21M'1 

~ 4. 

By Theorem 2.1, there exists a subset 5' of V(G') such that 

o(G' - 5') - 15'1 = def(G') ~ 4. 

Let xy be an edge of M. Put 5" = 5' v {x,y} and Gil G' v (x,y}. Then 

o(G" - 5") = o(G' - 5') and hence 



o(G" - 5") - 15"1 = O(G' - 5') - 15'1 - 2 ~ 2. 

Then def(G") ~ 2, implying that G-e is not (k-U-extendable, 

contradicting Theorem 1.l(c). This completes the proof of the lemma.D 

Our next two lemmas yield a characterization of k-minimal graphs. 

Lemma 3.2: Let G be a k-extendable graph on 2n vertices, 1 ~ k 

~ n - 1. Then G is minimal if and only if for any edge e = uv of G 

there exists a matching M of size k in G-e such that V(M) n {u,v} = ¢ 

and for every perfect matching F, in G, containing M, e E F. 

Proof: The sufficiency is obvious, so we need only prove the 

necessity. Let e = uv be an edge of G and M a matching of size k in 

G-e that does not extend to a perfect matching in G-e. We need to show 

that V(M) n {u,v} = ¢. 

Suppose to the contrary that V(M) n {u,v} '* ¢. First we 

assume that {u,v} S; V(M). Then G-V(M) = G-e-V(M). Hence, M is 

extendable in G only if it is extendable in G-e, a contradiction. 

Hence, {u,v} 4 V(M) . So we need only consider the case when exactly 

one of u or v belongs to V(M) . 

Without any loss of generality, assume that 

{u,v} n V(M) = {u}. 

Since M is a matching in G-e, there exists a vertex u' E V(G) - v such 

that uu' E M. If F is a perfect matching in G containing M, then uv E 

F since uu' E F. Consequently, F is a perfect matching in G-e 

containing M which contradicts the choice of M. Hence, u E V(M). This 



proves that V(M) ~ {u,v} = ~. 

Since M is a matching in G-e, M is also a matching in G. If there 

exists a perfect matching F' in G containing M such that uv e F', then 

F' is a perfect matching in G-e containing M, a contradiction. Hence, 

every perfect matching in G containing M must contain edge uv. This 

proves our result. 0 

Recall that M(S) denotes a maximum matching in G[S]. We now 

establish another characterization of k-minimal graphs. 

Lemma 3.3: Let G be a k-extendable graph on 2n vertices, 1 ~ k ~ 

n - 1. Then G is minimal if and only if for any edge e = uv of G there 

exists a vertex set S of G-u-v such that 

(i) IM(S)I :.: k; 

(ii) o(G-e-S) = lSi - 2k + 2; 

and (iii) u and v belong to different odd components of G-e-S. 

Proof: The sufficiency follows directly from Theorem 2.2. We need 

only consider the necessity. Let e = uv be an edge of G. Since G is 

minimal, G-e is not k-extendable. However, by Theorem 1.1 (c), G-e is 

(k-l)-extendable. Thus by Theorem 2.2, there exists a set So ~ V(G-e) 

such that oCG-e-So ) > ISol - 2do ' where do = min{IMCSo ) I ,k}. Further, 

since G-e is Ck-l)-extendable we have, for any Sl ~ V(G-e), oCG-e-S
1

) ~ 

IS
1

1 - 2d
1

, where d
l 

= min{IMCS
1

)1 ,k-l}. 

Now if IM(So)1 ~ k - 1, then 

and 

2d 
o 21MCS )1 

o 



a contradiction. Hence, IM(So)1 ~ k. proving (i). 

and d
1 

= k - 1. Consequently, 

and 

o(G-e-S ) 
o 

2d 
o 

2d 
1 

Is I o 

= Is I o 

Thus we have d 
o 

2k 

2(k-l) . 

Since vCG) is even, So and oCG-e-So) have the same parity. Hence, 

proving (iil. 

o(G-e-S ) 
o 

2k + 2, 

k 

Now we establish (iii). Since G is k-extendable, by Theorem 2.2 

and the fact that IM(So) I ~ k, we have 

o(G-S ) s ISol 2k. 
0 

Now making use of the fact that 

we conclude that 

IS I - 2k + 2 
0 

Hence, 

o (G-e-S ) 
0 

o(G-e-S ) 
0 

o(G-e-S ) 
o 

s 

s 

o(G-S ) + 2, 
0 

o(G-S ) 
0 

+ 2 s 

o(G-S ) + 2. 
o 

ISol - 2k + 2. 

This implies that e must be an edge joining two different odd 

components of G-e-So Consequently, u and v belong to different odd 

components of G-e-So and clearly So A {u,v} =~. This proves (iii) and 



thus completes the proof of our lemma. o 

Lemmas 3.2 and 3.3 together yield the following Theorem 

Theorem 3.1: Let G be a k-extendable graph on 2n vertices, 1 ~ k 

$ n - 1. Then the following are equivalent: 

(a) G is minimal. 

(b) For any edge e = uv of G there exists a matching M of size k 

in G-e such that V(M) (\ {u,v} = ¢ and for every perfect 

matching F, in G, containing M, e E F. 

(c) For any edge e = uv of G there exists a vertex set S of G-u-v 

such that IMCS)I ~ k; o(G-e-S) =ISI - 2k + 2; and u and v 

belong to different odd components of G-e-S. o 

Clearly the graphs K and K
2n 

are k-extendable for each k, 1 ~ k 
n,n 

~ n - 1. However, it is not so obvious that K and K are k-minimal 
n,n 2n 

if and only if k = n - 1. We prove this in our next result. 

Theorem 3.2: (a) K is k-minimal, ~ k ~ n 
2n 

k n-1. 

(b) K is k-minimal, ~ k ~ n 
n,n 

k = n - 1. 

Proof: (a) First we will prove the sufficiency. 

-

-

1 if and only 

1 if and only 

Let uv E K 
2n 

if 

if 

By 

Theorem 3.1 (b), there exists a matching M of size k in K
2n 

- uv such 

that V(M) n {u,v} = ¢ and for every perfect matching F, in K
2n

, 

containing M, e E F. 



If vCK 2n 
(V(M) v {u,v}» :?:: 2, then there exists a perfect 

matching Fl in K2n , containing M such that e ~ Fl , since K
2n 

- V(M) is 

a 1-factorable graph on 2n 2k vertices, a contradiction. 

Consequen tl Y , 

v (K 2n - ( V (M) v {u, v} ) ) 0 . 

Hence, n = k + 1 as required. 

Now we show that K is (n-1)-minimal. 
2n 

Clearly, K is 
2n 

(n-l)-extendable. Let e = xy be any edge of K
2n

. 

Clearly K2n- 2 contains a matching Ml of size n-1 and Ml does K 2n-2 

not extend to a perfect matching in K2n - xy since Ml saturates the 

neighbour set of x and y in K2n - xy. Therefore, K2n is minimal. This 

completes the proof of (a). 

The proof of (b) is similar. o 

Theorem 1.1 (b) implies that a k-extendable graph G has minimum 

degree at least k + 1. A useful resul t in our work on k-cri tical 

graphs was an upper bound on the minimum degree. Our next theorem 

establishes a similar upper bound on the minimum degree of a k-minimal 

graph. 

Theorem 3.3: If G * K2n is a k-minimal graph on 2n vertices, 1 ~ k ~ 

n - 1, then oCG) ~ n + k - 1. 

Proof: If k = n - 1, then since G * K2n , we have o(G) ~ 2n - 2 

= n + k - 1 and we are done. Now we may assume 1 ~ k ~ n - 2. Suppose 

to the contrary that o(G) :?:: n + k. Let e be an edge of G. Since G - e 



is not k-extendable, G - e has a matching M of size k such that M is 

not extendable to a perfect matching of G - e. On the other hand, we 

have o(G - V(M)) ~ n + k - 2k = n - k = ! v(G - V(M)) and v(G - V(M») = 
2 

2 (n - k) ~ 4, since k :s n - 2. Hence, by Theorem 2.5, G - V(M) is 

hamil tonian and hence G - V(M) has a hamil tonian cycle of even order 

2(n k). Since every even cycle has two disjoint perfect matchings, G 

- V(M) has at least two disjoint perfect matchings Ml and M
2

. Clearly, 

Without any loss of 

general ity, assume that e ~ Mi' But then F = Mi v M is a perfect 

matching of G - e with M ~ F, contradicting the assumption on M. Thus 

o (G) :s n + k - 1. 0 

Theorems 2.4 and 3.3 together yield the following corollary: 

Corollary: Let G * K
2n 

be a graph on 2n vertices, 1 :s k :s n - 1. 

If o(G) ~ n + k, then G is k-extendable but not k-minimal. o 

The upper bound of n + k - 1 given in Theorem 3.3 is not always 

achievable. The characterization of Cn-i)-minimal graphs given in the 

next section shows that the bound is not achievable for the case k = n 

- 1. On the other hand, our characterization of (n-2)-minimal graphs 

given in [2] shows that the bound is achievable for the case k = n - 2; 

an example is the graph K2 v K2n_2\{a hamiltonian cycle}. It would be 

interesting to determine when the bound is achievable. 

4. CHARACTERIZATION OF (n-I)-EXTENDABLE AND (n-I)-MINIMAL GRAPHS 

We begin with the following lemma which establishes the possible 



values of the minimum degree of (n-1)-extendable graphs. 

Lenuna 4.1: If G :f:: K
2n 

is an (n-l )-extendable graph on 2n 1:!::: 4 

vertices, then o(G) = n. 

Proof: We shall first establish that o(G) :$ n. Suppose to the 

contrary that n + :$ o(G) :$ 2n - 2. Let u be a vertex of G with dG(u) 

= o(G) = rand M a maximum matching in G[NG(u»). By Theorem 2.3 and 

the fact that r (n - 1) + (r - n + 1) :$ 2n - 2, we have 

IMI :$ (r - n + 1) - 1 = r - n. 

Let x and y be vertices of NG(u) - V(M); x and y exist since 

r - 21MI 1:!::: 2n - r 1:!::: 2. Since o(G) = rand M is a maximum matching in 

G[NG(U)] , we have 

2r :$ dG(x) + dG(y) :$ 21MI + 2(2n - r) 

:$ 2(r - n) + 2(2n - r) 

= 2n. 

But then r :$ n, contradicting the fact that r 1:!::: n + 1. This proves 

that o(G) :$ n. 

On the other hand, we have, by Theorem 1.1(b), G is n - connected 

and hence o(G) 1:!::: n. Thus o(G) = n as required. I.J 

We now characterize the (n-l)-extendable graphs on 2n vertices. 

Theorem 4. 1 : G is an (n-l)-extendable graph on 2n 1:!::: 4 vertices if and 

only if G ~ K or K n,n 2n 



Proof: We need only prove the necessity condition as K and K 
n,n 2n 

are clearly Cn-1)-extendable. So suppose that G is Cn-1)-extendable and 

G ;to K and K 
n,n 2n 

Then by Lemma 4.1, o(G) = n. 

n. By Theorem 2.3, NGCu) is independen t . 

Consequently, every vertex in NG Cu) is adjacent to every vertex in 

Consider any vertex v of NG(u), dG(v) = n and so NG(v) is 

independent. Hence, NG (u) is an independent set and therefore G -

K ,a contradiction. This completes the proof of the theorem. 0 
n,n 

By Theorems 3.2 and 4.1 we have the following corollary. 

Corollary: G is an (n-1 )-minimal graph on 2n ?:: 4 vertices if and 

only if G ~ Kn,n or K2n 
o 

Remark: By Theorem 4.1 and its corollary, every (n-1)-extendable 

graph on 2n ?:: 4 vertices is minimal. The result is best possible in 

the sense that there is an (n-2) -extendable graph on 2n ?:: 6 vertices 

which is not minimal. Such a graph is H = K2 v K2n- 2 

(n-2)-extendable, but it is not minimal since H 

(n-2)-extendable where u E K
2

, V E K2n-
2 

Clearly H is 

uv is also 

It is interesting to observe that, by Theorem 3.2, K and K 
n,n 2n 

are not k-minimal for 1 s k S n - 2. It turns out that characterizing 

k-minimal graphs, 1 S k S n - 2, on 2n vertices is a much more 

challenging task than that of characterizing the Cn-1)-minimal graphs. 

We have completely characterized the (n-2)-minimal graphs in a lengthy 

paper [2]. Our main result is : 

;c:.e:. 



Theorem 4.2: Let G be an (n-2)-extendable graph on 2n ~ 10 vertices. 

G is minimal if and only if G 

(1) is an (n-l)-regular bipartite graph, or 

(2) is a (2n-3)-regular graph, or 

(3) contains one vertex of degree 2n-l and 2n-l vertices of 

degree 2n-3, or 

(4) contains 2n-2 vertices of degree 2n-3 and two vertices ,u and 

v saY,of degree 2n-2such that NG(u) - v = NG(v) - u. 0 
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