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Abstract 

A number of properties of Young raising operators as applied to S-functions and 
Schur Q-functions are noted. The order of evaluating the action of inverse raising 
operators is found to require careful specification and the maximum power of the op
erators bij is determined. The operation of the inverse raising operator on a partition 
.A is found to be the same as for its conjugate t A new definition of the Shifted 
Lattice Property that can efficiently remove all the dead tableaux in the analogue of 
the Littlewood-Richardson rule for Q-functions is introduced. A simple combinato
rial analogue of raising and inverse raising operators is given that in turn simplifies 
the computation of the Kronecker products of Schur Q-functions. 

1 Introduction 

Young raising operators play an important role in the representation theory of the 
symmetric group Sn [1,10] and also in the theory of the projective representations 
of Sn via Schur Q-functions [2,7,8]. Schur Q-functions are a specialisation of the 
Hall-Littlewood polynomials [3] and have recently been shown to be relevant to the 
bilinear Kadomtsev-Petviashvii (KP) equations in (2+1)-dimensions [4,5]. In this 
article we report a number of properties and results related to the applications of 
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Young raising operators to Schur Q-functions and relevant to the elucidation of the 
properties of Schur Q-functions . 
The expansion of a Q-function in terms of S-functions and vice versa as discussed in 
sections 6 and 7 is of particular importance. The efficiency of the algorithm for the 
calculation of the inner product of Schur Q-fundions reported in [8] depends on the 
efficiency of rapid expansion of Q-fundions and S-fundions. In sections 6 and 7 we 
give very economical algorithms for such expansions. 
The operation ofthe Young raising operator 5ij on a partition..\ == (AI'" Ai'Aj'" An) 

increases Ai and decreases Aj by 1 provided i < j. Young raising operators are widely 
used in the operations of generalised S-functions S)..( -1) and Schur Q-fundions Q>.. 
as shown in Eq.(l). The generalised S-fundion, S).., will be represented by {A }q, 
defined by 

{Ah = II (1 - 5ij) q)... 
i<j 

Here we shall discuss their properties in this context which have not been discussed 
before. 
One can expand a generalised S-function in terms of Q-fundions using the raising 
operator as follows: 

{ A 1 A 2 ... An} q = II (1 + 5ij ) Q >.., 
l$i<j$n 

(1) 

and one can expand a Q-fundion in terms of generalised S-fundions using the inverse 
raising operator as follows: 

Q).. = II [1 + I) -1)t5:j ]{A}q. (2) 
l$i<j$n 

Sagan [6] and Worley [11] have developed a combinatorial theory of shifted tableaux 
in the description of Schur Q-functions . These tableaux playa similar role to that of 
ordinary Young tableaux of S-fundions. A shifted diagram is a diagonally adjusted 
Young diagram with the restriction that the (i + 1)-th row does not exceed the i-th 
row. This condition ensures that partitions are restricted to those involving distinct 
parts only. Let pI denote the ordered alphabet {I' < 1 < 2' < 2·· .}. The letters 
l' ,2' ... are said to be marked and we denote an unmarked version of any a E P' by 
lal. Let DP represent partitions into distinct parts only, then for each A E DP there 
is an associated shifted diagram defined by 

D\ = {(i,j) E Z2 : i ~ j ~ Ai + i-I, 1 ~ i :::; teA)}. 

A shifted tableau T of shape A is an assignment T : D~ -t pI satisfying the following 
conditions: 

1. T(i,j) ~ T(i + l,j), T(i,j) ~ T(i,j + 1); 

2. Each column has at most one k (k = 1,2,' .. ); 

3. Each row has at most one k' (k' = 1',2' ... ). 

If I T( i, j) I = k then the tableau T is said to have a content 
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We can define a generating function Q).. = Q)..( x) in the variables Xl, X2 . " for each 
A E DP by 

Q).. = L xT (3) 
T:D~->PI 

where the summation is over all tableaux T. 

2 Order of the inverse raising operators 

It is generaly assumed that the order of the operators is not important. Actual 
applications of (1) and (2) show that the order of raising operators is not important 
indeed but that of inverse raising operators used in (2) is. We observe that the 
operators in (2) should be set in such a way that from right to left the values of j are 
in non-ascending order and the values of i are in descending order for a given value 
of j. As an example, for a three part partition A, the equation (2) becomes 

3 Maximum power of the operators Dij 

Regarding the maximum value of t, we observe that the list on the right side of the 
equation (2) contains S-functions, so the maximum value of t is that for which Aj 
becomes (j - n). Hence it is not dependent on the value of Aj as given by Thomas 
[10] but on the position of Aj. As an example, if we apply [1 + Et( -1)t5f21 on {321} 
then the maximum value of t will be 3 whereas according to Thomas it should not 
be greater than 2. Thus 

{321}q - {411}q + {501}q - {6 -ll}q, 

{321}q - {411}q + {6}q, (5) 

where the second line of (5) is achieved by using the modification rules for S-functions. 

4 Raising operator and conjugate partitions 

Another important property of the raising operator used in equation (1) which sim
plifies its computation is that it gives the same set of Q-functions if applied to Q5.. 
where ~ is the conjugate partition of A: 

II (1 + 5ij )Q).. = II (1 + 5ij )Q>. (6) 
l~i<j~n l~i<j~n 
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As an example the Q-function content of {5} is the same as that of {I5}. It is 
clear from the Sn irreps analogue that the characters of positive classes of conjugate 
representations are same. Hence the expansion of conjugate representations in terms 
of spin irreps will also be the same. 

5 property 

A shifted analogue of the lattice permutation is given by Stembridge [9]. Given a 
shifted tableaux T a word weT) = WIW2 ... Wn is a sequence obtained by reading the 
rows of T from left to right (rather than right to left), starting with the last row 
(rather than the top row). Let w T = WnWn-l ... WI denote the reverse of wand let 
W = WI ... wn denote the word obtained by inverting the marks of w, i.e. 2 = 2' and 
2' 2. Let ni(w,j) denote the number of occurrences of the letter i among Wl'" Wj 

and n,:(w,O) O. An extended word of T is the sequence defined by e(T) = wTw. 
The tableau T is said to satisfy the shifted lattice property if the extended word 
e = el ... e2n satisfies the following conditions for all i ~ 1 and 0 :S j < 2n: 

( .) (.). l' { ej+l i- i, if O::S j < n 
ni e,) =ni-l e,) Imples -i' C" I)' <. 2 

ej+l ! t, t - n _ ) < n. 
(7) 

We can modify Stembridge's definition of the shifted lattice property as follows. 

DEFINITION 1 The tableaux T is said to satisfy the shifted lattice property if the 
reversed word w T = WnWn-1 ... WI satisfies the following conditions for all i ;::: I, 
o < j ::S nand 0 :S k < n. 

(i) ni(wT
, k) ni_l(wT

, k) implies wk+! i- i,i', 

(ii) nCi-I)I( w T
) j) - ni/( wT

, j) = V(i-l) - Vi implies wj_1 i- ii, (i - 1), 
where v is the content of the tableaux T. 

The second condition in (7) arises when 

n,:( e, n) + nd e, n) - nil( e, 2n - j) = nCi-l)C e, n) + nCi-1)/( e, n) - n(i-l)'( e, 2n - j), 

whereas we know that nlilC e, n) = Vi. and Vi-I;::: Vi, hence 

n(i_l)l(e,2n - j) - nde, 2n j) = Vi-1 - Vi· 

Thus to satisfy the second condition of (7) e2n-j-l i- i', (i 1). 
There are two advantages of this definition. First we do not need to form extended 
words as required by Stembridge. Secondly during the formation of the tableaux from 
the top right corner which is the reverse direction of the word, the dead tableaux can 
easily be discarded as soon as they arise. 
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6 Expansion of a Q-function 

A Q-function can be expanded in terms of generalised S-functions {A}q using the 
inverse raising operators as given by (2). A large number of non-standard partitions 
are generated in this process which are standardised using the modification rules. 
We can expand a Q-function in a more efficient way by making use of the following 
expression: 

QI-' = :Lb~{Ah, (8) 
>. 

where the coefficients b; are evaluated as follows: 

l(l-') q 

b; = L: L: [C(t) C(s)o,]( -It) (9) 
i=2 ni=p 

where q I:~(~l(ltk - .\k), l(lt) is the length of the partition (It), p is the maximum 

of 0 and Iti - Ai, t = A1 - 1t1 - n2, s = A2 - 1t2 - n2 - 1, x = I:~<:J nj and 8i is equal 

to 1 if I:~<:)+1 Itj > Ai and zero otherwise. C( z) is a binomial coefficient defined by 

_ l(p) ( N' - k + 1 ) 
C (z) - L: II N() , 

p k=2 Pk 

where N' is the number of i values such that ni 2': Pk, N(pk) is the number of Pk'S 
of equal weight, P is a partition of z such that I:~(p) Pi ::; 2:}p) ni and C(z) = 0 for 
z < O. 
The above expression is specifically designed to calculate the coefficients of the S
functions appearing in the expansion of a Q-function in an alternative way to using 
the inverse raising operators. Eq.(9) is suggested by the action of inverse raising 
operators and the modification rules for the S-functions. It has been suggested and 
tested by comparing the results of implementing both formulae (9) and the inverse 
raising operators on the computer. A large number of cases for the partitions It 
of length l(lt) ::; 5 and weight IfLl ~ 20 have been tested. It is very difficult for a 
computer to handle the situation arising from the action of inverse raising operators on 
a partition fL of length l(fL) > 5, whereas the algorithm of (9) can easily calculate the 
coefficient of any partition appearing in the expansion of a Q-function corresponding 
to the partition fL of length l(lt) ~ 9. 
A simple example of A == 41 and It == 32 will illustrate the working of (9). 
i=2 

1t2 .\2 = 1, P = 1, n2 = 1 and q = l. 
t = 4 3 - 1 = 0 and s = 1 - 2 - 1 - 1 = -3. 
Then P == 1, N' = 1 and N(Pk=2) = l. 
Hence C(t) = 1, C(s) = 0, 8i = 0 and x = l. 
Thus bj~ = (1 - 0)( -1) = -l. 

Though Eq.(9) looks complicated, it has several advantages as stated below: 
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.. It enables us to calculate the coefficient of a particular S -function without 
making the whole expansion. This simplification is very useful in the calculation 
of the inner product of Q-fundions . 

.. Application of the modification rules on a rather large list of partitions IS 

avoided . 

.. Its computer algorithm is extremly efficient for partitions of length greater than 
3 where the inverse raising operators produce a very large number of dead and 
non-standard partitions. 

In order to simplify further the computation we can easily set the highest and the 
lowest parti hons arising in (8). 

DEFINITION 2 A partition v = (VIV2 ... Vi) is lower than fL = (fLlfL2 .,. pj) if for all 

1 :s; k :s; j, 2.:k Vk :s; 2.:k fLk and IfLl = Ivl· 
This definition is different from Macdonald's [3] definition of a lower partition and is 
more appropriate in this case. 

THEOREM 1 The highest partition {A} appearing in the expansion of a Q-fundion 
Q/-L in terms of S-fundions is {n}, where n is the weight of the partition (fL). 

Proof 
Equation (9) and the properties of inverse raising operators observed in the pre

vious sections lead to the above conclusion. 

COROLLARY 1 The coefficient 

{
-I 

+1 

Proof 

for odd 2.:!~J (i - 1) fLi 

for even 2.:~~J (i 1 )fLi. 
(10) 

The above result can be concluded from (9). It appears from Eq.(9) that for 
A == n, the term [C(t) - C(s)5i ] vanishes except for i = l(fL). In that case it is 1 and 

"l(/-L)(' 1) x = L.."i=2 1, - fLi· 
THEOREM 2 The lowest partition {A} in the expansion of a Q-fundion Q/-L in terms 
of S -functions is A fL. 

Proof 
It is obvious from the nature of inverse raising operators. 

COROLLARY 2 The coefficient 

b~ = 1. 

Proof 
Since every Ai - fLi is 0, the equation (9) immediately gives the above result. 

This method is far more efficient and powerful than the inverse raising operators. A 
great advantage of this method is that the coefficient b~ of a particular A can easily 
be calculated without making the whole expansion. 
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7 Expansion of an S-function 

A generalised S-function {A}q can be expanded in terms of Q-functions using the 
raising operators as given by (1). This is a very cumbersome method and generates 
a large number of non standard partitions which are standardised at the end using 
modification rules. 
We can write (1) as follows: 

{j.£}q = Lg>.~Q>., (11 ) 
>. 

where g>.~ is the number of shifted tableaux of unshifted shape j.£ and content A such 
that 

1. w = w( S) satisfies the shifted lattice property, 

2. The leftmost i of Iwl is unmarked in w for 1 :::; i :::; l(A). 

The coefficients g)..IJ. are easily computable using the techniques developed in [8]. 
Stembridge [9] has used the same coefficients in the product of a basic spin represen
tation and an ordinary irrep of Sn. 
Similar to the expansion of a Q-function, we can set the highest and the lowest 
partitions arising in (11) using the properties of shifted tableaux of unshifted shape. 

DEFINITION 3 The rank of a partition (p) is the maximum value ofi for which Pi ~ i. 

THEOREM 3 The highest partition (A) in the expansion of an S-function SIJ. in terms 
of Q-functions is 

.Ai = j.£i. + P,i - 2i + 1 for 1 :::; i :::; r(j.£), 

where p, is the conjugate of j.£ and r(j.£) is the rank of j.£. 

Proof 

(12) 

By theorem 1 of [8] and the fact that only the leftmost 1 of the first row can be 
marked, we can not make a second entry of 1 in any other row. Hence the maximum 
number of 1 's can be placed in the first row and the first column only. Similarly the 
maximum number of 2's can be placed in the remaining places of the second row and 
the second column and so on. 

COROLLARY 3 The highest partition (A) in the expansion of an S -function SIJ. m 
terms of Q-functions is the same as for Sp.. 

Proof 
It can easily be concluded by conjugating both sides of (12). 

COROLLARY 4 For the highest partition (A)} the coefficient 

g>.IJ. = 1. 
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Proof 
It is clear from the proof of theorem 3 that there is only one possible tableau for 

the highest partition. 
In order to work out the lowest (.\) in (11) we note that if J..l E DP then the lowest 
A fJ, otherwise if Jt E DP then the lowest A Jt. If both fl and Jt have repeated 
parts then we can use the following algorithm. 

Algorithm 1 

1. If fJ,1 < 1(fJ,) then A == Jt otherwise A == p. 

2. Reading from right to left, for any Ai+l 2:: Ai interchange them such that 

3. Repeat step 2 till a partition of distinct parts is obtained. 

As an example, for fJ, == 433111 

A == Jt == 6331, 

using step 2 
A == 6421. 

8 Conclusion 

The properties of Young raising operators discussed in sections 1 and 2 remove all 
the ambiguities and the property observed in section 3 simplifies the computation of 
equation (1). We have redefined the Shifted Lattice Property in section 4 which is 
more efficient and simplifies the computational problems. In sections 5 and 6 we have 
given alternatives to (1) and (2) which are more powerful and easily computable. 
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