Various super-simple designs with block size four

A. Khodkar
Centre for Combinatorics, Department of Mathematics, The University of Queensland, Queensland 4072, Australia.

ABSTRACT: In this note the existence of a $\left(v ; \rho_{2} ; 4,2\right) \mathrm{BTD}$, for $\rho_{2}=0$, 1 and 2 , in which any pair of blocks intersect in at most two elements, is proved for any admissible v.

1 Introduction and definitions

A balanced ternary design is a collection of multi-sets of size k, chosen from a v-set in such a way that each element occurs 0,1 or 2 times in any one block, each pair of non-distinct elements, $\{x, x\}$, occurs in ρ_{2} blocks of the design and each pair of distinct elements, $\{x, y\}$, occurs λ times throughout the design. We denote these parameters by $\left(v ; \rho_{2} ; k, \lambda\right)$ BTD. It is easy to see that each element must occur singly in a constant number of blocks, say ρ_{1} blocks, and so each element occurs altogether $r=\rho_{1}+2 \rho_{2}$ times. Also if b is the number of blocks in the design, then

$$
v r=b k \quad \text { and } \quad \lambda(v-1)=r(k-1)-2 \rho_{2} .
$$

(For further information [3] should be consulted.)
A BTD is called simple if it contains no repeated blocks.
A $\left(v ; \rho_{2} ; 4, \lambda\right)$ BTD is said to be super-simple if any pair of its blocks have at most two elements in common, where repetition of elements is counted. For example, the blocks $x x y z$ and $x x s t$ are said to have two elements in common. Obviously, any super-simple BTD is a simple BTD. In [7] Gronau and Mullin introduce super-simple $(v ; 0 ; 4, \lambda)$ BTDs (which are of course balanced incomplete block designs $(v, 4, \lambda)$) and in [9] Kejun proves that super-simple ($v ; 0 ; 4,3$) BTDs exist if and only if $v \equiv 0$ or 1 $(\bmod 4), v \geqslant 8$.

In this note we concentrate on the cases $\rho_{2}=0,1$ and $2, k=4$ and $\lambda=2$. Indeed, we shall prove the following results.

MAIN THEOREM (1) There exists a super-simple ($v, 4,2$) BIBD if and only if $v \equiv 1(\bmod 3)$ and $v \neq 4$ ([7], Theorem A).
(2) There exists a super-simple $(v ; 1 ; 4,2)$ BTD if and only if $v \equiv 0(\bmod 6)$.
(3) There exists a super-simple $(v ; 2 ; 4,2)$ BTD if and only if $v \equiv 2(\bmod 3), v \geqslant 11$.

Since Theorem A of [7] uses Theorem 3.1 of that paper, and Theorem 3.1 of [7] is not correct as it stands, in Section 2, we shall give a correct proof for Theorem A of [7], which is part (1) of the main theorem. Nevertheless, we shall use some of the results of [7].

In Sections 3 and 4, we deal with super-simple $\left(v ; \rho_{2} ; 4,2\right)$ BTDs, with $\rho_{2}=1$ and 2 , respectively. It has been shown (see Donovan [6]) that a ($\left.v ; \rho_{2} ; 4,2\right)$ BTD, $\rho_{2}=1$ and 2 , exists for all admissible v. However, these were not necessarily all simple.

Most of the techniques we use here involve certain group divisible designs and frames. A group divisible design, $\operatorname{GDD}(K, \lambda, M ; v)$ is a collection of subsets of size $k \in K$, called blocks, chosen from a v-set, where the v-set is partitioned into disjoint subsets (called groups) of size $m \in M$ such that each block contains at most one element from each group, and any two elements from distinct groups occur together in λ blocks. If $M=\{m\}$ and $K=\{k\}$ we write $\operatorname{GDD}(k, \lambda, m ; v)$. A group divisible design, with element set X, group set G and block set B, is also denoted by $\operatorname{GDD}(X, G, B)$. In this paper, a transversal design $\operatorname{TD}(k, n)$ is a $\operatorname{GDD}(k, 1, n ; k n)$.

A BTD with hole, or frame-BTD, is a collection of multi-sets (blocks) of size k chosen from a v-set V so that the following conditions hold:
(i) $\left\{\infty_{i} \mid i=1,2, \ldots, h\right\}=H$ is a subset of V called a hole;
(ii) any element in $V \backslash H$ occurs 0,1 or 2 times per block, and precisely 2 times in ρ_{2} blocks;
(iii) each element of H occurs at most once in any block;
(iv) any pair $x y$, where x and y are distinct elements, not both in H, occurs λ times altogether in the blocks.
We write the parameters of a frame-BTD as $\left(v[h] ; \rho_{2} ; k, \lambda\right)$. Of course a BTD is a frame with $h=0$.

Analogously, we call a transversal design, a aroup divisible design and a frame-BTD super-simple if any two of their blocks have at most two elements in common.

We shall now summarize the main results we use for our constructions.

THEOREM 1.1 ([5])

For all integers m, λ and v, a necessary and sufficient condition for the existence of a group divisible design $G D D(4, \lambda, m ; v)$ is that $(\lambda, m, v) \neq(1,2,8)$ or $(1,6,24)$, and that

$$
v \equiv 0(\bmod m), \quad \lambda(v-m) \equiv 0(\bmod 3), \quad \lambda v(v-m) \equiv 0(\bmod 12)
$$

and $v \geqslant 4 m$ or $v=m$.

THEOREM 1.2 ([10])

Let (X, G, B) be a "master" GDD of index unity and let $w: X \rightarrow \mathbb{Z}^{+} \cup\{0\}$ be a weighting of the GDD. For every $x \in X$, let S_{x} be $w(x)$ "copies" of x. Suppose that for each block $b \in B, a \operatorname{GDD}\left(\cup_{x \in b} S_{x},\left\{S_{x}: x \in b\right\}, A_{b}\right)$ of index λ is given. Let $X^{*}=\bigcup_{x \in X} S_{x}, G^{*}=\left\{\bigcup_{x \in g} S_{x}: g \in G\right\}$ and $B^{*}=\bigcup_{b \in B} A_{b}$. Then $\left(X^{*}, G^{*}, B^{*}\right)$ is a GDD of index λ.

It is easy to see that if all small (input) GDDs in Theorem 1.2 are super-simple then the resulting GDD is also super-simple.

THEOREM 1.3 ([6])
If there exists a $\operatorname{GDD}\left(k, \lambda,\left\{v-h,\left(v^{\prime}-h\right)^{*}\right\} ;(n-1)(v-h)+v^{\prime}-h\right)$ and a frame$B T D\left(v[h] ; \rho_{2} ; k, \lambda\right)$ and a BTD with parameters $\left(v^{\prime} ; \rho_{2} ; k, \lambda\right)$, then there exists a BTD with parameters $\left((n-1)(v-h)+v^{\prime} ; \rho_{2} ; k, \lambda\right)$.

Obviously, if we apply Theorem 1.3 with a super-simple GDD together with a super-simple frame-BTD and a super-simple BTD then the resulting BTD is also super-simple.

2 The case $\rho_{2}=0$

In this section, using some results of [7], we prove that there exists a super-simple $(v, 4,2) \operatorname{BIBD}((v ; 0 ; 4,2) \mathrm{BTD})$ for all $v \equiv 1(\bmod 3)$ and $v \neq 4$. It is known (see Hanani [8]) that ($v, 4,2$) BIBDs exist if and only if $v \equiv 1(\bmod 3)$. Obviously, there does not exist a super-simple $(4,4,2)$ BIBD.

LEMMA 2.1 There exists a super-simple $\operatorname{GDD}(4,2,12 ; 12 n)$ for all integers $n \geqslant 5$.
Proof. By Theorem 1.1 there exists a $\operatorname{GDD}(4,1,6 ; 6 n)$ for all integers $n \geqslant 5$. Moreover there exists a super-simple $\operatorname{GDD}(4,2,2 ; 8)$ with groups $\{1,2\},\{3,4\},\{5,6\}$, $\{7,8\}$ and blocks $1357,1368,1458,1467,2358,2367,2457$ and 2468 . Now apply Theorem 1.2 with a $\operatorname{GDD}(4,1,6 ; 6 n)$ as a "master" GDD together with a super-simple $\operatorname{GDD}(4,2,2 ; 8)$. The resulting GDD is a super-simple $\operatorname{GDD}(4,2,12 ; 12 n)$.

COROLLARY 2.2 There exists a super-simple ($12 n+1,4,2$) BIBD for all integers $n \geqslant 5$ or $n=1$.

Proof. First note that any (v, k, λ) BIBD is also a ($v[1] ; 0 ; k, \lambda$) frame-BTD. Now apply Theorem 1.3 with a super-simple $\operatorname{GDD}(4,2,12 ; 12 n)$, which exists by Lemma 2.1, together with a super-simple $(13,4,2)$ BIBD, which exists (consider base blocks 0139 and $01511(\bmod 13))$. The result is a super-simple $(12 n+1,4,2)$ BIBD, where $n \geqslant 5$.

LEMMA 2.3 (see also [7], Theorem 3.2)
Let $m \geqslant 4, m \neq 6, m \neq 10$ and $0 \leqslant n \leqslant m$ be integers. Then there exists a super-simple $\operatorname{GDD}(4,2,\{3 m, 3 n\} ; 12 m+3 n)$.

Proof. Start with a transversal design $\operatorname{TD}(5, m)$ which exists for $m \geqslant 4, m \neq 6$ and $m \neq 10$. Delete $m-n$ points of the last group to obtain a $\operatorname{GDD}(\{4,5\}, 1,\{m, n\} ; 4 m+$ n). Now apply Theorem 1.2 with the following as the ingredient designs:
(i) for the blocks of size 4 , use a super-simple $\operatorname{GDD}(4,2,3 ; 12)$ with groups $G_{i}=$ $\{i, i+4, i+8\}, 0 \leqslant i \leqslant 3$, and base blocks 0235 and 0167 (short orbit), which are cycled under the permutation ($012 \ldots 11$);
(ii) for the blocks of size 5 use the following two group divisible designs T_{1} and T_{2} with $\lambda=1$, block size 4 and groups $G_{i}=\{(i, j) \mid 0 \leqslant j \leqslant 2\}, 0 \leqslant i \leqslant 4$ (see [7]):

$$
T_{1}=\{((0,0),(1,1),(2,1),(3,0))(\bmod (5,3))\}
$$

$$
T_{2}=\{((0,0),(1,2),(2,2),(3,0))(\bmod (5,3))\} .
$$

The result is a super-simple $\operatorname{GDD}(4,2,\{3 m, 3 n\} ; 12 m+3 n)$.
COROLLARY 2.4 (see also [7], Corollary 3.2.2 part 2)
Let $m \geqslant 4, m \neq 6, m \neq 10$ and $0 \leqslant n \leqslant m$. If there exists a super-simple
$\left((3 m+f)[f] ; \rho_{2} ; 4,2\right)$ frame-BTD and a super-simple $\left(3 n+f ; \rho_{2} ; 4,2\right)$ BTD, then there exists a super-simple $\left(12 m+3 n+f ; \rho_{2} ; 4,2\right)$ BTD.

LEMMA 2.5 (see also [7], Theorem A)
If there exists a super-simple ($v, 4,2$) BIBD for all admissible $v \leqslant 136$, then there exists a super-simple $(v, 4,2)$ BIBD for all $v \equiv 1(\bmod 3), v \neq 4$.

Proof. Let $w \equiv 1(\bmod 3), w \geqslant 34$. Then by Corollary 2.4 we can construct the desired designs of the orders belonging to $W(w)=\{4(w-1)+7,4(w-1)+$ $10, \ldots, 4(w-1)+19\}$, which are just 5 consecutive numbers of type $1 \bmod 3$. Since $4(w-1)+19=4((w+3)-1)+7$ and the gap between two consecutive numbers of type $1 \bmod 3$ has length $3, \bigcup_{w \geqslant 34} W(w)$ covers all of the remaining orders.

Now we examine small cases. Indeed, we show that for all $v \equiv 1(\bmod 3), 7 \leqslant$ $v \leqslant 136$, there exists a super-simple $(v, 4,2)$ BIBD. So part (1) of the main theorem follows with this information and Lemma 2.5 .

LEMMA 2.6 If $v \in\{7,10,13,16,19,22,25,28,31,34,37,40,43,46,79,82\}$, then there exists a super-simple $(v, 4,2)$ BIBD.

Proof. See [7].
LEMMA 2.7 If $v \equiv 1(\bmod 3), 49 \leqslant v \leqslant 136$ and $v \neq 79$ or 82 , then there exists a super-simple $(v, 4,2)$ BIBD.

Proof. For $v \in\{61,73,85,97,109,121,133\}$ apply Corollary 2.2. For $v=64$ we proceed as follows. Adjoin seven new points to a resolvable 2-(15, 3,1$)$ design to obtain a pairwise balanced design on 22 points which contains one block of size 7 and all the other blocks of size 4 (see [7]). Delete a point which occurs on the block of size 7 to obtain a $\operatorname{GDD}(4,1,\{3,6\} ; 21)$. Since there exists a super-simple $\operatorname{GDD}(4,2,3 ; 12)$ (see Lemma 2.3), we can apply Theorem 1.2 to find a super-simple $\operatorname{GDD}(4,2,\{9,18\} ; 63)$. Now apply Theorem 1.3 with this GDD together with a supersimple ($10,4,2$) BIBD and a super-simple $(19,4,2)$ BIBD (which exist by Lemma 2.6). The result is a super-simple $(64,4,2)$ BIBD. For $v=52,88$ and 100 see Table 1. This table gives base blocks for these designs (short orbits are marked with an asterisk). These designs were found using the program autogen (see [1]).

52	0	1	3	5	0	3	7	12	0	6	13	30	0	6	21	37
	0	8	19	36	0	8	20	38	0	9	20	34	0	10	23	33
	$(0$	1	26	$27)^{\star}$												
88	0	1	9	41	0	2	57	51	0	2	76	35	0	3	45	71
	0	3	70	18	0	4	77	17	0	4	20	26	0	5	10	19
	0	7	19	42	0	7	31	56	0	8	30	58	0	10	34	61
	0	11	36	59	0	13	29	67	$(0$	1	44	$45)^{\star}$				
100	0	1	46	74	0	2	91	72	0	2	41	32	0	3	93	59
	0	3	80	69	0	4	78	60	0	4	84	22	0	5	43	29
	0	5	36	24	0	6	12	27	0	7	17	54	0	8	23	68
	0	8	29	65	0	13	48	61	0	14	47	63	0	17	42	75
	10	1	50	$51)^{\star}$												

Table 1
For the remaining cases, we use Corollary 2.4 according to Table 2.

v	m	n	v	m	n	v	m	n
49	4	0	91	7	2	118	8	7
55	4	2	94	7	3	124	9	5
58	4	3	103	7	6	127	9	6
67	5	2	106	8	3	130	9	7
70	5	3	112	8	5	136	9	9
76	5	5	115	8	6			

Table 2

3 The case $\rho_{2}=1$

In this section we shall prove that there exists a super-simple ($v ; 1 ; 4,2$) BTD for all integers $v \equiv 0(\bmod 6)$. It is easy to see that the condition $v \equiv 0(\bmod 6)$ is necessary for the existence of a $(v ; 1 ; 4,2)$ BTD.

LEMMA 3.1 There exists a super-simple $(12 n ; 1 ; 4,2)$ BTD for all integers $n \geqslant 5$.
Proof. Apply Theorem 1.3 with a super-simple $\operatorname{GDD}(4,2,12 ; 12 n)$, which exists by Lemma 2.1 for all integers $n \geqslant 5$, together with a super-simple ($12 ; 1 ; 4,2$) BTD, which exists (see Table 3).

LEMMA 3.2 There exists a super-simple $(12 n+6 ; 1 ; 4,2)$ BTD for all integers $n \geqslant 5$.

Proof. Apply Theorem 1.3 with a super-simple $\operatorname{GDD}(4,2,12 ; 12 n)$, a super simple (12; $1 ; 4,2$) BTD (see Table 3) and a super-simple (18[6];1;4, 2) frame-BTD (see Table 3).

So far, we have proved that there exists a super-simple $(v ; 1 ; 4,2)$ BTD for all $v \equiv 0$ (mod 6) and $v \geqslant 60$ or $v=12$. The remaining cases are $v=6,18,24,30,36,42,48$ and 54. For $v=6$ or 18 , see [4]. For $v=36$, consider initial blocks 0013,02613 , $041325,051722,061522$ and $081626(\bmod 36)$. The other remaining cases are settled by the following lemmas.

LEMMA 3.3 There exists a super-simple $(v ; 1 ; 4,2) B T D$ for all $v \equiv 0$ or $6(\bmod$ 24).

Proof. Apply Theorem 1.2 with a $\operatorname{GDD}(4,1,3 ; w)$, which exists by Theorem 1.1 for all $w \equiv 0$ or $3(\bmod 12), w \geqslant 12$, together with a super-simple $\operatorname{GDD}(4,2,2 ; 8)$ (see Lemma 2.1). The result is a super-simple $\operatorname{GDD}(4,2,6 ; v)$, where $v \equiv 0$ or $6(\bmod 24)$, $v \geqslant 24$. Now apply Theorem 1.3 with this GDD and a $(6 ; 1 ; 4,2)$ BTD.

LEMMA 3.4 There exists a super-simple $(v ; 1 ; 4,2) B T D$, for all $v \equiv 6(\bmod 18)$, $v \geqslant 2$.

Proof. Apply Theorem 1.2 with a $\operatorname{GDD}(4,1,2 ; 6 n+2)$, which exists by Theorem 1.1 for all integers $n \geqslant 2$, together with a super-simple $\operatorname{GDD}(4,2,3 ; 12)$ (see Lemma 2.3). The result is a super-simple $\operatorname{GDD}(4,2,6 ; 18 n+6)$, where $n \geqslant 2$. Now apply Theorem 1.3 with this GDD and a $(6 ; 1 ; 4,2)$ BTD.

12	0024	$119 b$	$221 a$	3318	4418	$551 a$	6601	7701
	8805	9905	$a a 03$	$b b 03$	2357	2369	$245 b$	2678
	$289 b$	3479	3456	$469 a$	$47 a b$	$567 b$	$68 a b$	$789 a$
$18[6]$	$\infty_{1} 33 b$	$\infty_{1} 22 b$	$\infty_{1} 6 a a$	$\infty_{1} 678$	$\infty_{1} 017$	$\infty_{1} 458$	$\infty_{1} 149$	$\infty_{1} 059$
	$\infty_{2} 77 b$	$\infty_{2} 00 b$	$\infty_{2} 689$	$\infty_{2} 156$	$\infty_{2} 348$	$\infty_{2} 129$	$\infty_{2} 24 a$	$\infty_{2} 35 a$
	$\infty_{3} 88 b$	$\infty_{3} 55 b$	$\infty_{3} 679$	$\infty_{3} 246$	$\infty_{3} 147$	$\infty_{3} 039$	$\infty_{3} 02 a$	$\infty_{3} 13 a$
	$\infty_{4} 99 b$	$\infty_{4} 44 b$	$\infty_{4} 78 a$	$\infty_{4} 15 a$	$\infty_{4} 237$	$\infty_{4} 018$	$\infty_{4} 026$	$\infty_{4} 356$
	$\infty_{5} 66 b$	$\infty_{5} 11 b$	$\infty_{5} 89 a$	$\infty_{5} 04 a$	$\infty_{5} 258$	$\infty_{5} 239$	$\infty_{5} 347$	$\infty_{5} 057$
	$\infty_{6} a b b$	$\infty_{6} 79 a$	$\infty_{6} 046$	$\infty_{6} 136$	$\infty_{6} 257$	$\infty_{6} 038$	$\infty_{6} 128$	$\infty_{6} 459$

Table 3

4 The case $\rho_{2}=2$

In this section we shall prove that there exists a super-simple $(v ; 2 ; 4,2) \mathrm{BTD}$ for all integers $v \equiv 2(\bmod 3)$ and $v \geqslant 11$. Note that the necessary condition for the existence of a $(v ; 2 ; 4,2) \mathrm{BTD}$ is $v \equiv 2(\bmod 3)$ and $v \geqslant 11($ see $[6])$.

LEMMA 4.1 There exist a super-simple $(12 n+2 ; 2 ; 4,2)$ BTD and a super-simple (12n+2[2];2;4,2) frame-BTD for all integers $n \geqslant 1$.

Proof. Apply Theorem 1.3 with a super-simple $\operatorname{GDD}(4,2,12 ; 12 n)$, a super-simple (14[2]; $2 ; 4,2$) frame-BTD (see [2]) and a super-simple (14; $2 ; 4,2$) BTD (see [2]). The result is a super-simple $(12 n+2 ; 2 ; 4,2) \mathrm{BTD}$, where $n \geqslant 5$ or $n=1$. For $v=26$ see [2], and for $v=38$ and 50 see the Appendix. Similarly, we can construct a supersimple $(12 n+2[2] ; 2 ; 4,2)$ frame-BTD, for $n \geqslant 5$. For the remaining values see the Appendix.

LEMMA 4.2 If there exists a super-simple $(v ; 2 ; 4,2) B T D$ for all admissible v with $11 \leqslant v \leqslant 248$ then there exists a super-simple $(v ; 2 ; 4,2) B T D$ for all $v \equiv 2(\bmod 3)$, $v \geqslant 11$.

Proof. Let $v \equiv 2(\bmod 3)$ and $v \geqslant 251$. Then $v=3(4 m+n)+2$, where $m \equiv 0(\bmod$ 4) and $3 \leqslant n \leqslant 18$. Now apply Lemma 2.3 , Lemma 4.1 and Corollary 2.4. The result is a super-simple $(v ; 2 ; 4,2)$ BTD.

LEMMA 4.3 There exists a super-simple $(v ; 2 ; 4,2) B T D$ for all $v \equiv 2(\bmod 3)$ and $11 \leqslant v \leqslant 248$.

Proof. For $v \equiv 2(\bmod 12)$ apply Lemma 4.1. For $v=11,17,23$ and 29 see [2]. For $v=41$ see [6]. For $v=35$ we may use a super-simple (35[11];2;4,2) frame-BTD (see [6]) and a super-simple ($11 ; 2 ; 4,2$) BTD. For $v \in\{20,32,44,47,53,56,65,68,71,77$, $80,83,89,92,95,101,104\}$ see the Appendix. Some of these designs were found using the program autogen (see [1]). For $v \in\{137,140,143,149,152\}$ we proceed as follows. First consider that there exists a super-simple $\operatorname{GDD}(4,2,3 ; 18)$ with groups $G_{i}=$ $\{i, i+6, i+12\}, 0 \leqslant i \leqslant 5$, and base blocks 0138,01414 and 02911 (short orbit) (mod 18). Secondly, apply a method similar to that described in Lemma 2.3 with a $\operatorname{TD}(6,8)$ to obtain a $\operatorname{GDD}(\{5,6\}, 1,\{8, n\} ; 40+n)$, where $0 \leqslant n \leqslant 8$. Now apply Theorem 1.2 with this GDD, together with a super-simple $\operatorname{GDD}(4,2,3 ; 15)$ and a super-simple $\operatorname{GDD}(4,2,3 ; 18)$. The result is a $\operatorname{GDD}(4,2,\{24,3 n\} ; 120+3 n)$. Finally, apply Theorem 1.3 together with a super-simple ($26[2] ; 2 ; 4,2$) frame-BTD or a super-simple ($35[11] ; 2 ; 4,2)$ frame-BTD. For the remaining cases, we use Corollary 2.4 according to Table 4 (see the Appendix and Lemma 4.1 for ($(w+2)[2] ; 2 ; 4,2)$ frame-BTDs, where $w=42,54$ or $w=12 n$ and $n \geqslant 1$). This completes the proof.

v	m	n	frame-BTD used	v	m	n	frame-BTD used
59	4	3	$(14[2] ; 2 ; 4,2)$	107	8	3	$(26[2] ; 2 ; 4,2)$
113	8	5	$(26[2] ; 2 ; 4,2)$	116	8	6	$(26[2] ; 2 ; 4,2)$
119	8	7	$(26[2] ; ; 4,2)$	125	8	6	$(35[11 ; 2 ; 4,2)$
128	8	7	$(35[11] ; 2 ; 4,2)$	131	8	8	$(35[1] ; 2 ; 4,2)$
155	12	3	$(38[2] ; 2 ; 4,2)$	161	12	5	$(38[2] ; 2 ; 4,2)$
164	12	6	$(38[2] ; 2 ; 4,2)$	167	12	7	$(38[2] ; 2 ; 4,2)$
173	12	9	$(38[2] ; 2 ; 4,2)$	176	12	10	$(38[2] ; 2 ; 4,2)$
179	12	11	$(38[2] ; 2 ; 4,2)$	185	14	5	$(44[2] ; 2 ; 4,2)$
188	14	6	$(44[2] ; 2 ; 4,2)$	191	14	7	$(44[2] ; 2 ; 4,2)$
197	14	9	$(44[2] ; 2 ; 4,2)$	200	14	10	$(44[2] ; 2 ; 4,2)$
203	14	11	$(44[2] ; 2 ; 4,2)$	209	14	13	$(44[2] ; 2 ; 4,2)$
212	14	14	$(44[2] ; 2 ; 4,2)$	215	16	7	$(50[2] ; 2 ; 4,2)$
221	16	9	$(44[2] ; 2 ; 4,2)$	224	16	10	$(50[2] ; 2 ; 4,2)$
227	16	11	$(44[2] ; 2 ; 4,2)$	233	16	13	$(50[2] ; 2 ; 4,2)$
236	16	14	$(44[2] ; 2 ; 4,2)$	239	16	15	$(50[2] ; 2 ; 4,2)$
245	18	9	$(56[2] ; 2 ; 4,2)$	248	18	10	$(56[2] ; 2 ; 4,2)$

Table 4

References

[1] P. Adams, A user's guide to autogen, (preprint).
[2] A. Assaf, A. Hartman and E. Mendelsohn, Multi-set designs - designs having blocks with repeated elements, Congr. Numer. 48 (1985), 7-24.
[3] E.J. Billington, Designs with repeated elements in blocks: a survey and some recent results, Congr. Numer. 68 (1989), 123-146.
[4] E.J. Billington and P.J. Robinson, A list of balanced ternary designs with $R \leqslant 15$, and some necessary existence conditions, Ars Combin. 16 (1983), 235-258.
[5] A.E. Brouwer, A. Schrijver and H. Hanani, Group divisible designs with block-size four, Discrete Math. 20 (1977), 1-10.
[6] D. Donovan, Balanced ternary designs with block size four, Ars Combin. 21 A (1986), 81-88.
[7] H.-D.O.F. Gronau and R.C. Mullin, On super-simple 2-($v, 4, \lambda$) designs, J. Combin. Math. Combin. Comput. 11 (1992), 113-121.
[8] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961), 361-386.
[9] C. Kejun, On the existence of super-simple ($v, 4,3$) BIBDs, JCMCC, (to appear).
[10] R. Wilson, Construction and uses of pairwise balanced designs, Math. Centre Tracts 55 (1974), 18-41.

Appendix

Hole elements for frame-BTDs are denoted by x and y; short starters are marked with an asterisk. For a frame-BTD on $v[2]$ elements, blocks are cycled under the permutation $(x y)(012 \ldots(v-3))$, while blocks in BTDs on v elements are cycled under the permutation (012 $\ldots(v-1)$).

20	0	0	1	3	0	0	7	12	0	2	6	11	(0	4	10	$14)^{\star}$
26[2]	x	0	0	3	0	0	4	13	0	1	6	7	0	2	7	16
	(y	0	8	16)*	(0	2	12	14)*								
32	0	0	2	10	0	0	4	13	0	1	7	8	0	3	12	17
	0	3	14	20	(0	5	16	$21)^{\star}$								
38	0	0	2	5	0	0	4	11	0	1	7	22	0	3	13	26
	0	6	14	28	0	8	17	26	$(0$	1	19	$20)^{\star}$				
38[2]	0	0	1	4	x	0	0	13	0	2	9	28	0	3	10	
	0	5	11	20	0	5	22	30	$(0$	2	18	$20)^{\star}$	(y	0	12	$24)^{\star}$
44	0	0	1	5	0	0	6	15	0	7	16	30	0	2	10	27
	0	2	13	26	0	3	10	21	0	4	12	32	(0)	3	22	25)*
44[2]	x	0	0	3	0	0	9	17	0	1	2	6	0	4	12	22
	0	5	15	$\stackrel{31}{31}^{\text {a }}$	0	6	18	29	0	7	14	27	(0)	2	21	23)*
	(y	0	14	28)*												
47	0	0	9	25	0	0	6	17	0	1	4	12	0	1	3	27
	0	2	7	34	0	4	14	32	0	5	12	33	0	8	18	31
50	0	0	8	23	0	0	12	30	0	1	2	4	0	3	9	16
	0 0 0	5	$\begin{aligned} & 11 \\ & 25 \end{aligned}$	$\begin{gathered} 37 \\ 29)^{\star} \end{gathered}$	0	5	19	33	0	7	17	28	0	9	19	35
50[2]	0	0	1	4	0	5	27	35	0	2	5	11	0	6	20	40
	0	7	17	36	0	7	25	38	0	9	25	36	x	0	0	15
	$(0$	2	24	26) ${ }^{\text {® }}$	(y	0	16	32)*								
53	0	0	13	23	0	0	17	25	0	5	24	39	0	4	11	12
	0	1	3	5	0	3	9	29	0	6	16	37	0	7	18	38
	0	9	21	35												
56	0	0	13	38	0	0	17	27	0	4	11	12	0	1	3	5
	0	3	9	23	0	6	22	30	0	7	21	37	0	9	20	41
	0	10	22	41	(0	5	28	33)*								
56[2]	x	0	0	3	0	0	15	23	0	9	16	28	0	4	10	17
	0	1	2	22	0	4	36	41	0	5	16	30	0	6	14	26
	0	9	19	30	$(0$	2	27	29)*	(y	0	18	$36)^{\text {* }}$				
65	0	0	1	3	0	0	4	6	0	5	10	27	0	7	14	38
	0	8	16	40	0	9	18	40	0	10	21	47	0	11	23	46
	0	12	28	48	0	13	26	46	0	14	35	50				
68	0	0	42	49	0	0	10	40	0	1	13	51	0	2	66	31
	0	3	9	21	0	3	7	23	0	5	11	48	0	5	13	27
	0	8	23	52	0	9	24	41	0	11	25	47	(0)	1	34	$35)^{\star}$
71	0	0	68	47	0	0	20	35	0	1	64	9	0	1	38	22
	0	2	54	11	0	2	6	12	0	4	11	34	0	5	23	49
	0	5	30	44	0	10	29	42	0	12	26	43	0	13	31	46
77	0	0	35	61	0	0	1	63	0	2	66	15	0	2	74	38
	0	3	55	22	0	4	8	25	0	5	11	23	0	6	34	65
	0	7	31	39	0	7	34	44	0	9	28	57	0	9	30	54
	0	10	27	47												

80	0	0	24	26	0	0	59	63	0	1	20	6	0	2	16	31
	0	3	70	77	0	4	73	38	0	5	27	50	0	8	16	36
	0	9	28	51	0	9	36	48	0	10	32	43	0	12	30	55
	0	13	31	46	$(0$	1	40	$41)^{\star}$								
83	0	0	52	45	0	0	61	50	0	1	2	17	0	2	48	68
	0	3	26	62	0	3	42	76	0	4	16	73	0	4	13	41
	0	5	11	23	0	5	13	40	0	6	25	53	0	8	27	51
	0	9	29	58	0	14	32	53								
89	0	0	11	8	0	0	55	62	0	1	68	24	0	1	48	44
	0	2	53	75	0	2	58	17	0	3	16	63	0	4	64	21
	0	5	10	19	0	6	12	32	0	7	37	57	0	9	28	61
	0	10	35	59	0	12	35	50	0	13	31	49				
92	0	0	30	67	0	0	60	64	0	1	87	76	0	2	63	12
	0	2	49	16	0	3	80	59	0	3	23	41	0	4	10	73
	0	5	24	48	0	7	18	27	0	7	21	57	0	8	34	42
	0	9	31	57	0	13	40	53	0	15	37	54	$(0$	1	46	$47)^{\star}$
95	0	0	60	31	0	0	86	36	0	1	76	19	0	1	80	74
	0	2	81	58	0	2	69	43	0	3	50	84	0	3	24	30
	0	4	67	55	0	4	11	24	0	5	10	32	0	7	15	53
	0	8	33	56	0	10	43	61	0	12	41	58	0	13	30	55
101	0	0	38	83	0	0	84	48	0	1	10	60	0	1	8	52
	0	2	90	97	0	2	72	35	0	3	81	37	0	3	82	12
	0	4	28	14	0	5	66	46	0	5	11	26	0	8	29	76
	0	12	39	73	0	13	36	58	0	15	39	69	0	16	32	58
	0	19	46	71												
104	0	0	15	62	0	0	3	96	0	1	50	25	0	2	21	57
	0	2	37	85	0	4	36	82	0	4	80	43	0	5	28	91
	0	5	77	71	0	6	84	93	0	7	14	23	0	10	40	69
	0	10	43	74	0	12	34	63	0	12	39	56	0	13	44	58
	0	16	34	54	$(0$	1	52	$53)^{\star}$								

(Received 12/5/93)

