ON THE EXISTENCE OF ALMOST-REGULAR-GRAPHS

WITHOUT ONE-FACTORS

L. Caccetta and S. Mardiyono
School of Mathematics and Statistics
Curtin University of Technology
GPO Box U1987
Perth, 6001
Western Australia.

ABSTRACT:

A one-factor of a graph G is a 1-regular spanning subgraph of G. For given positive integers d and even e, let $\mathscr{G}(2 n ; d, e)$ be the class of simple connected graphs on $2 n$ vertices, ($2 n-1$) of which have degree d and one has degree $d+e$, having no one-factor. Recently, W.D. Wallis asked for what value of n is $\mathcal{G}(2 n ; d, e) \neq \phi$? In this paper we will answer this question.

1. INTRODUCTION

All graphs considered in this paper are undirected, finite, loopless and have no multiple edges. For the most part, our notation and terminology follows that of Bondy and Murty [2]. Thus G is a graph with vertex set $V(G)$, edge set $E(G), \nu(G)$ vertices and $\varepsilon(G)$ edges. However, we denote the complement of G by $\bar{G} . K_{n}$ denotes the complete graph on n vertices, $K_{n, m}$ the complete bipartite graph with bipartitioning sets of order n and m, and C_{n} denotes the cycle of length n .

A 1-factor of a graph G is a 1-regular spanning subgraph of G. A 1-factorization of G is a set of (pairwise) edge-disjoint 1-factors
which between them contain each edge of G. It is very well known that $K_{2 n}$ and $K_{n, n}$ have 1-factorizations for all n. The question of which graphs contain 1 -factors is one that has attracted considerable attention. For a comprehensive review we refer to the survey papers of: Akiyama and Kano [1]; Mendelsohn and Rosa [4]; and Wallis [8].

Wallis [7] studied regular graphs with no 1-factors. In particular, he proved the following theorem :

Theorem 1.1 : Let G be a d-regular graph with no 1 -factor and no odd component. Then

$$
v(G) \geq \begin{cases}3 d+7, & \text { if } d \text { is odd, } d \geq 3 \\ 3 d+4, & \text { if } d \text { is even, } d \geq 6 \\ 22, & \text { if } d=4 .\end{cases}
$$

Further, no such graphs exists for $d=1$ or 2 .

Pila [5] considered the same problem with a connectivity condition added.

Theorem 1.1 proved very useful in considering maximal sets of 1-factors (see Caccetta and Mardiyono [3]; Rees and Wallis [6]).

In [8] (p. 623, Problem 7), Wallis posed the question regarding the existence of almost regular graphs without 1-factors. More precisely, let $\mathscr{G}(2 \mathrm{n} ; \mathrm{d}, \mathrm{e})$ denote the class of simple connected graphs on $2 n$ vertices, ($2 \mathrm{n}-1$) of which have degree d and one has degree $\mathrm{d}+$ e (e even), having no 1-factor. Wallis asked for what values of n is $\mathscr{G}(2 n ; d, e) \neq \phi ?$ In this paper we will answer this question. More
specifically, we will establish that for $d \geq 2, \mathscr{G}(2 n ; d, e)=\phi$ for $2 \mathrm{n}<\mathrm{N}(\mathrm{d}, \mathrm{e})$ and $\mathscr{G}(2 \mathrm{n} ; \mathrm{d}, \mathrm{e}) \neq \phi$ for $2 \mathrm{n} \geq \mathrm{N}(\mathrm{d}, \mathrm{e})$, where
(i)

$$
\begin{aligned}
& \text { (i) } N(2, e)=e+6, \text { for } e \geq 4 \\
& \text { (ii) for odd } d \geq 3
\end{aligned}
$$

$$
N(d, e)= \begin{cases}e+d+1, & \text { if } e \geq 2 d \\ 3 d+3, & \text { if } d+1 \leq e \leq 2 d-2 \\ 3 d+5, & \text { otherwise }\end{cases}
$$

and
(iii) for even $d \geq 4$

$$
N(d, e)= \begin{cases}e+d+2, & \text { if } e \geq 3 d+4 \\ e+d+4, & \text { if } 2 d \leq e \leq 3 d+2 \\ 3 d+4, & \text { otherwise }\end{cases}
$$

As the only member of $\mathscr{\mathcal { G }}(2 ; 1, e)$ is the graph $K_{1, e+1}$ we assume that $\mathrm{d} \geq 2$.

2. LOWER BOUNDS

In this section we will determine a lower bound on the order of a graph $G \in \mathscr{G}(2 n ; d, e)$. That is, we determine a lower bound for the value of the function

$$
N(d, e)=\min \{2 n: \mathcal{G}(2 n ; d, e) \neq \phi\}
$$

We make use of the well known theorem of Tutte. Letting o(H) denote the number of odd components of a graph H, Tutte's theorem is :

Theorem 2.1 : A nontrivial graph G has a 1 -factor if and only if

$$
\begin{equation*}
o(G-S) \leq|S|, \quad \text { for every } S \subset V(G) \tag{ㅁ}
\end{equation*}
$$

For later reference, it is convenient to state the following simple fact as a Lemma.

Lemma 2.1 : Let H be an odd component of $G-S, S \subset V(G)$. If every vertex of H has degree d in G and $v(H) \leq d-1$, then the number of edges joining $\mathrm{V}(\mathrm{H})$ to S is at least

$$
(\mathrm{d}-v(\mathrm{H})+1)(v(\mathrm{H}))
$$

Our first result concerns d odd.

Theorem 2.2: Let $G \in \mathcal{G}(2 n ; d, e)$ for odd $d \geq 3$. Then

$$
2 n \geq \begin{cases}e+d+1, & \text { for } e \geq 2 d \tag{2.1}\\ 3 d+3, & \text { for } d+1 \leq e \leq 2 d-2 \\ 3 d+5, & \text { otherwise }\end{cases}
$$

Proof: Since $\nu(G) \geq d+e+1$ we have nothing to prove for $e \geq 2 d$. So we assume that $e<2 d$. Since G has no 1-factor, Tutte's theorem implies the existence of a set $S \subset V(G)$ such that $o(G-S)>|S|$. In fact, we must have $o(G-S) \geq|S|+2$.

The odd components of $G-S$ are classified into three groups according to order. We let :
α_{1} : the number of odd components of $G-S$ of order p, $1 \leq p \leq d-2$
α_{2} : the number of odd components of $G-S$ of order d
α_{3} : the number of odd components of $G-S$ of order at least $d+2$.

Then

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}+\alpha_{3} \geq|s|+2 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
v(G) \geq|S|+\alpha_{1}+d \alpha_{2}+(d+2) \alpha_{3} \tag{2.3}
\end{equation*}
$$

Noting Lemma 2.1 we can conclude that there are at least $\mathrm{d}\left(\alpha_{1}+\alpha_{2}\right)+\alpha_{3}$ edges joining $V(G-S)$ and S. Consequently,

$$
\begin{equation*}
d\left(\alpha_{1}+\alpha_{2}\right)+\alpha_{3} \leq d|S|+e \tag{2.4}
\end{equation*}
$$

Now we may assume that $\alpha_{3} \leq 2$, since otherwise (2.3) yields $v(G)>3 d+5$. Then (2.2) gives $\alpha_{1}+\alpha_{2} \geq|S| \geq 1$.

Let H be an odd component of G - S of order at most d. Observing that the vertices of H have degree d in $G[V(H) \cup S]$ we have $|V(H) \cup S| \geq d+1$ and hence

$$
\begin{equation*}
v(G) \geq d+1+(d+2) \alpha_{3} \tag{2.5}
\end{equation*}
$$

Thus we have nothing to prove when $\alpha_{3}=2$. So suppose that $\alpha_{3} \leq 1$. Then

$$
\alpha_{1}+\alpha_{2} \geq|S|+1
$$

It follows from (2.4) that the vertex u of G having degree $d+e$ must be in S, as otherwise the right hand side of (2.4) is just $d|S|$ which contradicts (2.2).

From (2.2) and (2.4) we have

$$
|s|+2-\alpha_{3} \leq \alpha_{1}+\alpha_{2} \leq|s|+\frac{e-\alpha_{3}}{d} .
$$

Hence

$$
\alpha_{3} \geq 2-\frac{e}{d}+\frac{\alpha_{3}}{d} .
$$

That is

$$
\begin{align*}
\left(1-\frac{1}{d}\right) \alpha_{3} & \geq \frac{2 d-e}{d}, \text { or } \\
\alpha_{3} & \geq\left(\frac{d}{d-1}\right)\left(\frac{2 d-e}{d-1}\right)=\frac{2 d-e}{d-1} \tag{2.6}
\end{align*}
$$

Since $\alpha_{3} \leq 1$ it follows from (2.6) that $e \geq d+1$.

Now since $e \leq 2 d-2$ we have from (2.6) $\alpha_{3} \leq \frac{2}{d-1}$ and so $\alpha_{3} \geq 1$. Since we have already established that $\alpha_{3} \leq 1$, we have $\alpha_{3}=1$. Hence $\alpha_{1}+\alpha_{2} \geq|S|+1 \geq 2$. We can take $\alpha_{2} \leq 1$, since otherwise from (2.3)
we get $\nu(G) \geq 3 d+3$, as required. Consequently $\alpha_{2} \geq 1$. Now clearly the subgraph H^{\prime} of G consisting of the vertices of S and an α_{1}-component has order at least $d+1$. Hence

$$
v(G) \geq d+1+d \alpha_{2}+d+2
$$

Consequently, $v(G) \geq 3 d+3$ for $\alpha_{2}=1$. So we can suppose that $\alpha_{2}=$ 0.

Now our odd component H defined earlier has at most $d-2$ vertices. It follows from Lemma 2.1 that the number of edges between $V(H)$ and $S-u$ is at least

$$
v(H)(\mathrm{d}-v(\mathrm{H}))=(\mathrm{d}-1)+(\nu(\mathrm{H})-1)(\mathrm{d}-v(\mathrm{H})-1) \geq \mathrm{d}-1
$$

Consequently, there are at least ($\mathrm{d}-1$) α_{1} edges between $V(G-S)$ and S - u. Hence

$$
(d-1) \alpha_{1} \leq d(|S|-1)
$$

and so, since $\alpha_{1} \geq|S|+1$, we have

$$
|S| \geq 2 d-1
$$

But then $\alpha_{1} \geq 2 \mathrm{~d}$ and so

$$
v(\mathrm{G}) \geq|\mathrm{S}|+\alpha_{1}+\mathrm{d}+2>3 \mathrm{~d}+3
$$

This completes the proof of the theorem.

Our next result concerns the case $d=2$.

Lemma 2.2 : Let $G \in \mathscr{G}(2 n ; 2, e) . \quad$ Then $e \geq 4$ and $2 n \geq e+6$.

Proof : Since G has no 1-factor, there exists a subset $S \subset V(G)$ such that $k=o(G-S) \geq|S|+2$. Each odd component has an even number of edges incident to S. Consequently

$$
2 k \leq 2|S|+e
$$

and thus $e \geq 2 k-2|S| \geq 4$, as required. Further, the vertex u of G having degree $e+2$ must be in S.

Suppose that $2 n<e+6$. Then $2 n=e+4$ and u is adjacent to every vertex of G except one, say v. Clearly since every vertex of $G-u$ has degree $2, G-S$ has at most one component of order 3 or more. Hence at least $k-1$ components of $G-S$ have order 1. This implies that there are at least $k-1$ edges between $V(G-S)$ and $S-u$. But there can be at most $|S|$ edges going out of $S-u$ and so $k \leq|S|+1$, a contradiction. This completes the proof of the lemma.

Theorem 2.3 : Let $G \in \mathscr{G}(2 n ; d, e), d$ even. Then for $d \geq 4$

$$
2 n \geq \begin{cases}e+d+2, & \text { for } e \geq 3 d+4 \tag{2.7}\\ e+d+4, & \text { for } 2 d \leq e \leq 3 d+2 \\ 3 d+4, & \text { otherwise }\end{cases}
$$

For $d=2, e \geq 4$ and $2 n \geq e+6$.

Proof: In view of Lemma 2.2, we assume that $d \geq 4$. Since $\nu(G) \geq e+d+2$ we have nothing to prove for $e \geq 3 d+4$. So we assume that $e \leq 3 d+2$. Since G has no 1 -factor, Tutte's theorem implies the existence of a set $S \subset V(G)$ with $o(G-S) \geq|S|+2$.

We classify the odd components of G - S into three groups according to order. We let
β_{1} : the number of odd components of $G-S$ having one vertex.
β_{2} : the number of odd components of $G-S$ of order p, $3 \leq p \leq d-1$.
β_{3} : the number of odd components of $G-S$ of order at least $d+1$.

Then

$$
\begin{equation*}
\beta_{1}+\beta_{2}+\beta_{3} \geq|S|+2 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
v(G) \geq|S|+\beta_{1}+3 \beta_{2}+(d+1) \beta_{3} . \tag{2.9}
\end{equation*}
$$

Noting Lemma 2.1 we can conclude that there are at least

$$
\mathrm{d} \beta_{1}+2(\mathrm{~d}-1) \beta_{2}+2 \beta_{3}
$$

edges joining $V(G-S)$ and S. Consequently

$$
\begin{equation*}
d \beta_{1}+2(d-1) \beta_{2}+2 \beta_{3} \leq d|S|+e . \tag{2.10}
\end{equation*}
$$

We now distinguish two cases according to the value of e.

Case (i) : $2 d \leq e \leq 3 d+2$.
Suppose that $2 \mathrm{n}<\mathrm{d}+\mathrm{e}+4$. Then $2 \mathrm{n}=\mathrm{d}+\mathrm{e}+2$ and the vertex u of G having degree $d+e$ is adjacent to every vertex of G except one, v say. It is clear that $u \in S$, since otherwise at least two of the odd components of $G-S$ do not contain u and hence $d_{G}(u) \neq d+e$ $(=v(G)-2)$.

First we consider the case when $v \in S$. Then every vertex of G-S is joined to u. Consequently, counting the edges (note Lemma 2.1) between the odd components of $G-S$ and $S-u$ we have

$$
\begin{equation*}
(d-1) \beta_{1}+(d-1) \beta_{2}+\beta_{3} \leq(|S|-1)(d-1)+1 \tag{2.11}
\end{equation*}
$$

Consequently

$$
\beta_{1}+\beta_{2} \leq|S|-1-\frac{\beta_{3}-1}{d-1}
$$

Now combining this with (2.8) we get

$$
\beta_{3} \geq 3+\frac{2}{\mathrm{~d}-2}>3
$$

Thus $\beta_{3} \geq 4$ and so

$$
d+e+2=v(G) \geq 4(d+1)+1
$$

But then $\mathrm{e} \geq 3 \mathrm{~d}+3$, a contradiction.

Now consider the case $v \notin S$. Observe that (2.11) is valid with the right hand side reduced by 1 . So again we will end up with $\beta_{3} \geq 4$ and the above contradiction that $e \geq 3 d+3$. This completes the proof of the theorem for case (i).

Case (ii) : e $\leq 2 d-2$.
It follows from (2.9) that $v(G) \geq 3 d+4$ when $\beta_{3} \geq 3$. Further, when $\beta_{3}=2$ we have $\beta_{1}+\beta_{2} \geq|S| \geq 1$ and thus G has an odd component H of order at most $d-1$. Now $G[V(H) \cup S]$ has at least $d+1$ vertices and hence $v(G) \geq 3 d+4$ as required. So we may take $\beta_{3} \leq 1$.

If $\beta_{3}=0$, then from (2.8) and (2.10) we get

$$
d(|S|+2) \leq d(\beta+\beta)+(d-2) \beta \leq d|S|+e
$$

and hence $e \geq 2 \mathrm{~d}$. Therefore $\beta_{3} \neq 0$ and so $\beta_{3}=1$. Now from (2.8) $\beta_{1}+\beta_{2} \geq|S|+1$. Let $d_{G}(u)=d+e$. Then $u \in S$, since otherwise (2.10) is valid with the right side equal to $\mathrm{d}|\mathrm{S}|$ which along with (2.8) yields

$$
(|S|+1) d \leq d\left(\beta_{1}+\beta_{2}\right)+(d-2) \beta_{2}+2 \leq d|S|
$$

a contradiction.

Now we count the edges between $V(G-S)$ and $S-u$. We have

$$
(d-1) \beta_{1}+(d-1) \beta_{2}+1 \leq d(|S|-1)
$$

Using the fact that $\beta_{1}+\beta_{2} \geq|S|+1$ we get $|S| \geq 2 d$. But then (2.9) yields

$$
v(G) \geq|S|+(|S|+1)+2 \beta_{2}+d+1 \geq 5 d+2>3 d+4
$$

This completes the proof of the theorem.

3. CONSTRUCTIONS

In this section we establish the existence of a graph $G \in$ $\mathscr{G}(2 n ; d, e)$ for every even positive integer $2 n \geq N(d, e)$. We make use of the following notation in our construction.

$$
\begin{array}{ll}
R(s, t) \quad & t \text {-regular graph on } s \text { vertices. } \\
H\left(n_{1}, n_{2} ; d_{1}, d_{1}-1\right) \quad & \text { graph on } n_{1}+n_{2} \text { vertices having } n_{1} \\
& \text { vertices of degree } d_{1}, \text { and } n_{2} \text { vertices } \\
& \text { of degree } d_{1}-1 . \\
H\left(n_{1}, n_{2}, n_{3} ; d_{1}, d_{1}-1, d_{1}-2\right): & \text { graph on } n_{1}+n_{2}+n_{3} \text { vertices having } \\
& n_{1} \text { vertices of degree } d_{1}, n_{2} \text { of degree } \\
& d_{1}-1 \text { and and } n_{3} \text { of degree } d_{1}-2 .
\end{array}
$$

It is easy to establish that $H\left(n_{1}, n_{2} ; d_{1}, d_{1}-1\right)$ exists for all n_{1}, n_{2} and d_{1} satisfying the conditions : $n_{1}+n_{2} \geq d_{1}+1, n_{1} d_{1}$ even and $n_{2}\left(d_{1}-1\right)$ even. For example, when n_{2} is even simply delete a matching of size $\frac{1}{2} n_{2}$ from $R\left(n_{1}+n_{2}, d_{1}\right)$ and when n_{2} is odd delete $n_{2}+\frac{1}{2} n_{1}$ edges from $R\left(n_{1}+n_{2}, d_{1}+1\right)$. Our constructions for even d make use of the graph $H\left(n_{1}, n_{2}, 1 ; d, d-1, d-2\right)$ which exists for even n_{2} when $n_{1}+n_{2} \geq d$ (simply modify $R\left(n_{1}+n_{2}+1\right.$, $\left.d\right)$).

We begin by describing the construction for the case of d odd, $\mathrm{d} \geq 3$. Let

$$
2 \mathrm{n}=\mathrm{N}(\mathrm{~d}, \mathrm{e})+2 \mathrm{x}
$$

We consider three cases depending on the value of e. In each case, our graphs consists of 3 subgraphs G_{1}, G_{2} and G_{3} containing a total of $2 n-1$ vertices, $d+e$ of which have degree $d-1$ in $G_{1} \cup G_{2} \cup G_{3}$ and the rest have degree d, plus a vertex u joined to the $d+e$ vertices of $G_{1} \cup G_{2} \cup G_{3}$ having degree $d-1$. The particular, choices for the G_{i} 's are given in Table 3.1. Note that in

Case	2 n	i	G_{1}
$e \geq 2 d$	$d+e+1+2 x$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & R(e-d, d-1) \\ & K_{d} \\ & H(2 x, d ; d, d-1) \end{aligned}$
$d+1 \leq e \leq 2 d-2$	$3 \mathrm{~d}+3+2 \mathrm{x}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & H(2 d-e+2, e-d ; d, d-1) \\ & K_{d} \\ & H(2 x, d ; d, d-1) \end{aligned}$
$2 \leq e \leq d-1$	$3 \mathrm{~d}+5+2 \mathrm{x}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & H(d+3-e, e-1 ; d, d-1) \\ & H(d+1,1 ; d, d-1) \\ & H(2 x, d ; d, d-1) \end{aligned}$

Table 3.1
each case the resulting graph $G \in \mathscr{G}(2 n ; d, e)$ and has no 1 -factor since $G-u$ consists of 3 odd components. Figure 3.1 displays the structure of our graphs. Note that we partition the vertices of each G_{i} into two sets according to degree. The label in each set indicates the number of vertices in the set. This establishes that for odd $d \geq 3$ there exists a graph in $\mathcal{G}(2 n ; d, e)$ for every $2 n \geq N(d, e)$.

Figure 3.1

We next consider the case d even. Again we let $2 \mathrm{n}=\mathrm{N}(\mathrm{d}, \mathrm{e})+2 \mathrm{x}$. For $\mathrm{d}=2$ the graph G displayed in Figure 3.2 belongs to the class $\mathscr{Y}(2 n ; 2, e)$. Note that P_{t} denotes a path of order t.

Figure $3.2 \mathrm{G} \in \mathscr{G}(2 \mathrm{n} ; 2, \mathrm{e})$

Since G - u has 3 odd components, G has no 1-factor.
For even $d \geq 4$ we consider 3 cases according to the value of e. For $e \geq 3 d+4$ we begin with the graph

$$
\begin{aligned}
G_{0}= & 2 H(d, 1 ; d-1, d-2) \cup H(2 x, d, 1 ; d, d-1, d-2) \\
& \cup H(e-3 d, d-3 ; d-1, d-2)
\end{aligned}
$$

consisting of 4 components. Note that G_{0} is well defined for $e \geq 3 d+4$ and has $e+2 x+d$ vertices, d of which have degree $d-2$, e of which have degree $d-1$ and the remaining $2 x$ have degree d. We form the required graph G by adding two vertices u and v and joining u to the $d+e$ vertices of G_{0} having degree less than d and joining v to the d vertices of G_{0} having degree $d-2$. Note that the resulting $G \in \mathcal{Y}(2 n ; d, e)$ has $e+d+2+2 x$ vertices and no 1 -factor as $G-u-v$ $=G_{0}$ has 4 odd components. Thus $G \in \mathscr{G}(2 n ; d, e), e \geq 3 d+4$.

For $2 \leq e<3 d+4$ the required graphs are obtained from the graphs $G_{0}^{\prime}=G_{1} \cup G_{2} \cup G_{3}$ consisting of 3 odd components which between them have a total of $2 n-1$ vertices, $e+d$ of which have degree $d-1$ and the rest have degree d. The required graph G is obtained by adding a vertex u and joining u to the $e+d$ vertices of G_{0}^{\prime} having degree $d-1$. The particular choices of G_{i}^{\prime} 's are given in Table 3.2. Note that we use the notation that $\delta_{1}\left(\delta_{2}\right)$ is 0 or 1 according to whether or not $\frac{1}{2} \mathrm{e}\left(\frac{1}{2} \mathrm{~d}\right)$ is even or odd.

Case	$2 n$	i	G_{i}
$2 d \leq e \leq 3 d+2$	$d+e+4+2 x$	2	1
		$H\left(1, \frac{1}{2} e+d ; d, d-1\right)$	
$d+2 \leq e \leq 2 d-2$	$3 d+4+2 x$	2	$H(1+2 x, d ; d, d-1)$
		3	$H\left(d+1-\frac{1}{2} e-\delta_{1}, \frac{1}{2} e+\delta_{1} ; d, d-1\right)$
		$H\left(d-\frac{1}{2} e+\delta_{1}+1, \frac{1}{2} e-\delta_{1} ; d, d-1\right)$	
$2 \leq e \leq d$	$3 d+4+2 x$	2	$H(1+2 x, d ; d, d-1)$

Table 3.2

Note that in each case the resulting graph $G \in \mathscr{\mathcal { G }}(2 \mathrm{n} ; \mathrm{d}, \mathrm{e})$ and has no 1 -factor since $G-u$ consists of 3 odd components. Figure 3.3 displays the graphs. This establishes that for even $d \geq 4$ there exists a graph $G \in \mathscr{G}(2 n ; d, e)$ for every $2 n \geq N(d, e)$.

Figure 3.3
[1] Akiyama, J. and Kano, M. Factors and Factorizations of Graph - A Survey, Journal Graph Theory 9(1985), 1-42.
[2] Bondy, J.A. and Murty, U.S.R. Graph Theory with Applications, 1st Edition, The MacMillan Press, 1976.
[3] Caccetta, L. and Mardiyono, S. On Maximal Set of One-Factors, Australasian Journal of Combinatorics 1 (1990), 5-14.
[4] Mendelsohn, E. and Rosa, A. One-Factorizations of the Complete Graphs-A Survey, Journal of Graph Theory 9(1985), 129-146.
[5] Pila, J. Connected Regular Graphs Without One-Factors, Ars Combinatoria 18(1983), 161-172.
[6] Rees, R. and Wallis, W.D. The Spectrum of Maximal Set of OneFactors, Discrete Mathematics 97(1991), 357-369.
[7] Wallis, W.D. The Smallest Regular Graphs Without One-Factors, Ars Combinatoria 11(1981), 21-35.
[8] Wallis, W.D. Contemporary Design Theory : A Collection of Surveys, Edited by Jeffrey H. Dinitz, Douglas R. Stinson, John Wiley \& Sons, Inc., 1992.

