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ABSTRACT 

A graph G is well covered, if any two maximal independent sets of G have the same number 

of vertices. A graph is called a block-cactus graph if each block is complete or a cycle. In 

this paper we characterize the well covered block-cactus graphs. 

1. TERMINOLOGY AND INTRODUCTION 

In this paper we consider finite, undirected, and simple graphs G with the vertex 

set V(G). The degree d(x, G) of a vertex x of G is the number of edges incident \vith 

x. We denote by ]{n the complete graph of order n. For A ~ V(G) let G[A] be the 

subgraph induced by A. Moreover, N(x, G) denotes the set of vertices adjacent to 

the vertex x and, more generally, N(X,G) = UXExN(x, G) for a subs'et X of V(G). 
We write N[x,G] and N[X,G] instead of N(x,G) U x and N(X,G) U X. A cycle of 

length n is denoted by en = XIX2"'XnXl' A vertex c of a graph G is called a cut 

vertex of G if G - c has more components than: G. A connected graph with no cut 

vertex is called a block. A block of a graph G is a subgraph of G which is itself a 

block and which is maximal with respect to that property. A graph G is a block 

graph if every block of G is a complete graph. A graph G is called a block-cactus 

graph if every block is complete or a cycle. A set I ~ V (G) is an independent set of 

G, if N(x, G) n I = 0 for every x E I. Let i(G) and a(G) denote the minimum and 

maximum cardinality of a maximal independent set in G. A graph G is said to be 



well covered if every maximal independent set in G is a maximum independent set 

in G. Equivalently, G is well covered if i( G) = a( G). 

The concept of well covered graphs was introduced by Plummer [6] and studied 

in a few papers. In particular, the well covered bipartite graphs were characterized 

by Favaron Ravindra [9], and Staples [10]. The cubic, planar, and 3-connected 

well covered graphs have been characterized in [1] by Campbell and Plummer. Re

cently, Finbow, Hartnell, and Nowakowski [3] and Prisner, Topp, and Vestergaard 

[8] have described the well covered graphs of girth at least five, and the well covered 

simplicial and chordal graphs, respectively. Additional exarnples and properties of 

well covered g~aphs may be found in the survey paper of Plummer [7]. In this paper 

we characterize the well covered block-cactus graphs. 

2. PRELIMINARY RESULTS 

The following simple property of well covered graphs was first observed by Camp

bell and Plummer [1]. 

Proposition 2.1 ([1]). If G is a well covered graph, then for each vertex v E V(G), 
the graph 0 G] is well covered. 

Proposition 2.2. If X and Yare two independent sets of a graph 0 with IXI > IYI 
and N[X, OJ ~ N[Y, GJ, then 0 is not well covered. 

Proof. Assume to the contrary that G is well covered. Then, for every maximal 

independent set I with Y ~ I, we have III = 0:( G). Furthermore, it follows from 

N[X, 0] ~ N[Y, 0] that J (1 Y)UX is an independent set such that 

a(O) 2: IJI = 1(1 - Y)uXI = III IYI + > 111 = a(O). 

This contradiction yields the desired result. 0 

A vertex v of a graph G is simplicial if every two vertices of N( v, 0) are adja

cent in G. Equivalently, a simplicial vertex is a vertex that appears in exactly one 

clique. A clique of a graph G containing at least one simplicial vertex of G is called 

a simplex of G. A graph G is said to be simplicial if every vertex of 0 is simplicial or 

is adjacent to a simplicial vertex of O. Certainly, if G is simplicial and S1, S2, ... , Sn 
are the simplexes of G, then V(G) = Ui=l V(Si)' The next result is a special case of 

Proposition 2.2. 
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Proposition 2.3 ([8]). If G is a well covered graph, then all its simplexes are pair

wise vertex-disjoint. 

Proof. Suppose that Sl and S2 are two distinct simplexes of G containing a 

common vertex v and the simplicial vertices VI and V2, respectively. Then the inde

pendent sets X = {VI, V2} and Y = {v} of G fulfill the condition N[X, G] ~ N[Y, G], 

a contradiction to Proposition 2.2. D 

The following characterization of well covered block graphs was first found by 

Topp and Volkmann [11]. 

Theorem 2.1 ([11]). A block graph G is well covered if and only if every vertex of 

G belongs to exactly one simplex of G. 

For extensions and generalizations of Theorem 2.1 we refer the reader to the pa

pers of Topp and Volkmann [12], Hattingh and Henning [5], and Prisner, Topp and 

Vestergaard [8]. 

A 5-cycle Cs of a graph is called basic, if Cs does not contain two adjacent vertices 

of degree three or more in G (see [3]). We call a 4-cycle C4 basic if it contains two 

adjacent vertices of degree two, and if the remaining two vertices belong to a simplex 

or a basic 5-cycle of G. A graph G is in the family SQC, if V(G) can be partitioned 

into three disjoint subsets S, Q, and C: The subset S contains all vertices of the 

simplexes of G, and the simplexes of G are vertex disjoint; the subset C consists of 

the vertices of the basic 5-cycles and the basic 5-cycles form a partition of C; the 

remaining set Q contains all vertices of degree two of the basic 4-cycles. Let us recall 

that a unicyclic graph is a connected graph with exactly one cycle. 

Theorem 2.2 ([13]). A unicyclic graph G is well covered if and only if G IS a 

member of {C4 , C7 }USQC. 

For a connected graph G with blocks {Bi} and cut vertices (cutpoints) {Cj}, the 

block-cutpoint graph of G, denoted by bc( G), is defined as the bipartite graph with 

the partition sets {Bi} and {cj} such that Cj is adjacent with Bi if and only if Cj is 

in B i . 

Proposition 2.4 ([4]). The block-cutpoint graph is a tree. 
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3. MAIN RESULTS 

Theorem 3.1. If G is a graph of the family SQC, then G is well covered. 

Proof. Let I be a maximal independent set of G. 

a) It is a simple matter to show that II n 51 = So, where So denotes the number of 

the simplexes of G. 
b) For a basic 5-cycle C' of G it is obvious that 1 :::; II n V( C') I :::; 2. If In V( C') 
consists of a single vertex v, then there exists a vertex w of C' which is not adjacent 

to v such that d( w, G) = 2. But then I U {w} is also an independent set of G, a 

contradiction. So we have lIn V(C')I = 2 and therefore II n CI 
c) If x and yare the two vertices of degree two of a basic 4-cycle, then it easy to see 

that II n {x, y}1 1, and hence we obtain II n QI = ~. 
Since G is in SQC, it follows together with a), b), and c) for an arbitrary maximal 

independent set I that 

III II n V(G)I = II n 51 + II n CI + II n QI canst. 

Consequently, the graph G is well covered. 0 

Theorem 3.2. A connected block-cactus graph G is well covered if and only if G is 

an element of {C4 , C7 } U SQC. 

Proof. If G E {C4 , C7 } U SQC, then we are done by Theorem 3.1. 

For the converse, assume that G is a well covered connected block-cactus graph. 

Suppose on the contrary that G rt {C4 , C7 } uSQC. In addition, let G be of minimum 

order with these properties. From Theorem 2.1 we can immediately deduce that G 

is not a block graph. Thus, G contains a cycle Cp with p 4, which is also a block 

of G. Combining this with Theorem 2.2, we see that there exists a further block of 

G with at least three vertices. So we obtain our first claim. 

Claim 1. The graph G contains at least two blocks with at least three vertices, 

and one block of G is a cycle of length greater or equal to four. 

Therefore, G has at least two end blocks. Now we shall prove the next claim. 
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Claim 2. Every end block of G is a K 2 , and thus a simplex of order two. 

Suppose that there exists an end block B of G with V(B) {Xl, X2, ... , xp} and p 2: 3. 

Let without loss of generality Xl be the unique cut vertex of B. 

Case 1. Let B Kp. 

First, we shall show that the graph G - X3 is also well covered. If not, then there 

exist two maximal independent sets 1* and J* in G - X3 with 11*1 < IJ*I. Since G is 

well covered, it follows that J = J* U {X3} is an independent set in G, and therefore 

J* n V(B) 0. Consequently, J* U {X2} is an independent set in G - X3, a contra

diction. 

Since G - X3 is a connected well covered block-cactus graph with fewer vertices than 

G, it is an element of SQC. But now it is a simple matter to verify that G is also in 

SQC and hence, Case 1 is not possible. 

Case 2. Let B C4 = XIX2X3X4XI' 

If the vertex Xo rt. V(B) is adjacent to Xl, then the independent sets {xo, X2, X4} and 

{XO,X3} of G have the property N[{XO,X2,X4},G] N[{XO,X3},G]. According to 

Proposition 2.2, the graph G is not well covered, a contradiction. 

Case 3. Let B C5 = XIX2.T3X4X5XI' 

After Proposition 2.1, the graph G - N[X4, G] is well covered, and hence it is a mem

ber of SQC. Now it is straightforward to show that G is also in the family SQC, but 

this contradicts our assumption. 

Case 4. Let B C6 = XIX2X3X4X5X6XI' 

According to Proposition 2.1, the graph G N[X4' is well covered. But Xl is a 

common vertex of two simplexes of G - N[X4, G], a contradiction to Proposition 2.3. 

Case 5. Let B Cp = XIX2 ... XpXI with P 2: 7. 

It follows again from Proposition 2.1 that the graph H = G N[Xp_l, G] is well 

covered. The two independent sets X {X p-3, xp-s, Xp-7} and Y = {X p-4, Xp-7} 

(for p = 7, the vertex Xo is an adjacent vertex of Xl with Xo t/:. V(B)) of H have 

the property N[X, H] = N[Y, H]. This is a contradiction to Proposition 2.2, and 

therefore Claim 2 is proved. 

N ow we choose a longest path P in the block-cutpoint tree bc( G): If Al and A2 

are the end vertices of P, then AJ and A2 are end blocks of G. Claim 2 implies 

that Al and A2 are simplexes of order two. Let Si be the simplicial and Xi the non 

simplicial vertex of Ai for i = 1,2. It is clear that Xl f X2. In addition, let Bi be the 

block on the path P such that Xi E V(Bi) for i = 1,2. 

Claim 3. The cut vertex Xi belongs only to the blocks Ai and Bi for i = 1,2. 

Suppose that there exists a further block D of G with Xi E V(D). In view of Claim 2 

and Proposition 2.3, D is not an end block of G. But then we obtain a contradiction 

to the fact that P is a longest path in the block-cutpoint tree bc( G). 
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Claim 4. The blocks Bl and B2 arc different. 

If Bl = B 2 , then the path P has length 4. From Claim 1, Claim 2, and Claim 3 we 

deduce that there exists a block B #- AI, A2, Bl which is not an end block such that 

XI, .7:2 ~ V(B). Let PI be a shortest path in the block-cutpoint tree bc(G) between the 

vertices rh and B. It is easy to see that the of PI is at least 4. Since B is not 

an end block, there is a longer path than P in the graph bc( G), but this is impossible. 

Claim 5. Bi has exactly one cut vertex Yi of G that belongs to no end block of G 

for i = 1,2. 

Since BI and B2 are different, we find the desired cut vertex Yi on our longest path 

P. If we suppose that there exists a further cut vertex in Bi which belongs to no 

end block, then we obtain a contradiction to the fact that P is a longest path in bc( G). 

In the following we need the induced subgraph Gi G - N[Si, G] which is accord-

ing to Proposition 2.1 also well covered for i = 1,2. From Claim 1 and Claim 2 we 

see that Gi is connected and not a cycle. Hence, is an element of SQC. By Si, Qi, 

and Ci we denote the decomposition of V (Gi ) in the sense of the definition above. 

Claim 6. The block Bi is neither a simplex nor a basic 4-cycle nor a basic 5-cycle 

of G for i = 1,2. 

\Ve prove Claim 6 for i = 1. Since Al is simplex, it follows from Proposition 2.3 that 

Bl is not a simplex. 

Suppose that BI is a basic 4-cycle of G with the two vertices VI and V2 of degree two. 

By the definition of a basic 4-cycle, the vertex YI of Bl Claim 5) belongs to a 

simplex or to a basic 5-cycle. Since VI and 1)2 induce a simplex of order 2 in G1 , the 

decomposi tion 

of V(G) shows that G is in SQC, a contradiction. Consequently, the block BI is not 

a basic 4-cycle. 

Suppose that BI is a basic 5-cycle of G. From d( Xl, G) 2: 3 and d(Yl, G) 2: 3 we 

deduce that Xl and YI are not adjacent. If w #- Xl is the second vertex of Bl which 

is not adjacent to YI, then we conclude N[{Sl,Yl,W},G] = N[{Yl,xd,G] for the in

dependent sets {81' VI, w} and {Yl, xd of G, a contradiction to Proposition 2.2. This 

completes the proof of Claim 6. 

Claim 1. The block Bi is not a clique of G for i = 1,2. 

We prove Claim 7 for i 1. Suppose that Bl Using Claim 6, we see that 

every vertex of Bl is a cut vertex of G. 
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If p 2: 3, then it is straightforward to verify that 8' 81 U {xl,sd, Q' = Ql, and 

C' = is a decomposition of V (G), a contradiction to the assumption that G is not 

in SQC. 

Now we investigate the more difficult case p = 2. If Yl E V(Bd is either a non

simplicial vertex of a simplex of G or a vertex of a basic 5-cycle of G, then the 

decomposition 8' = 8 1 U {Xl, sd, Q' = Ql, and C' = C1 of V(G) yields a contra

diction to the assumption that G is not a member of SQC. Therefore, it remains to 

discuss the following three possible cases: 

Case 1. The vertex Yl is the only simplicial vertex of a simplex B of G1 . 

Case 2. The vertex Y1 is a vertex of a basic 4-cycle B of G1 with d(Yl' Gd = 2. 

Case 3. The vertex Y1 is a vertex of a basic 5-cycle B of G1 with d(Yl' G1 ) = 2 such 

that at least one neighbour, say v, of Yl fulfills the condition d(v, G1 ) 2: 3. 

In Case 1, we choose for every vertex of B - Y1 exactly one neighbour in G1 which is 

not contained in B. If we denote this vertex set by J, then it is obvious that J is an 

independent set. Furthermore, we observe that N[J U {Yl, Sl}, Gj = N[J U {xt}, Gj. 
Since the two sets J U {Yl, sd and J U {xd are independent in G, we obtain by 

Proposition 2.2 a contradiction to the well coveredness of G. 

In Case 2, let W E V(B) be the non adjacent vertex of Yl. Then the two independent 

sets {w, Yl, } and {w, xd yield analogously to Case 1 a contradiction. 

In Case 3, let a E V(B) be the vertex which is adjacent to neither v nor Yl. In 

addition, let b rJ. V(B) be adjacent to v. Now, analogously to the cases above, we 

consider the independent sets {b, a, Yl, sd and {b, a, xd of G, and we see that Case 

3 is also not possible. 

Since G is a block-cactus graph, it follows from Claim 7 that the blocks Bl and 

B2 are cycles of length at least four. Finally, we consider two cases. 

Case 1. All vertices of the cycle Bl or B2 are cut vertices of G. 

Using Claim 2, Claim 5, and Proposition 2.3, we see that every vertex X E (V(Bi)-Yi) 
is contained in exactly one end block of order 2, and in no further block. Now it is 

straightforward to verify that G is in the family SQC, a contradiction. 

Case 2. Both of the blocks B1 and B2 contain at least one vertex, say Ul and U2, 
that are not cut vertices of G. 

From now on let i = 1, 2. The cycle Bi belongs also to G3- i and d( Ui, G3- i ) = 2. 

Since G3- i is an element of SQC, we deduce that Ui E , 'Ui E C3- i, or Ui E Q3-i. 
It is obvious that Ui E S3-i is impossible. But if Bi is a basic 5-cycle of G3- i , then 

V(Ai) n V(Bi) i= 0, a contradiction, because Ai is simplex of G3- i. Hence, Bi is a 

basic 4-cycle of G3- i. If V(Bl) n V(B2) = 0, then it is immediate that Bl and B2 
are also basic 4-cycles of G. Otherwise, we have Yl Y2, and Y1 belongs to a further 
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block D that is a simplex or a basic 5-cycle of G1 and G2 • Thus, the block D is also 

contained in G, and therefore Bl and B2 are again basic 4-cycles in G. This is a 
contradiction to Claim 6, and the proof of Theorem 3.2 is complete. 0 
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